This patch converts rfc4106-gcm-aesni to the new AEAD interface.
The low-level interface remains as is for now because we can't
touch it until cryptd itself is upgraded.
In the conversion I've also removed the duplicate copy of the
context in the top-level algorithm. Now all processing is carried
out in the low-level __driver-gcm-aes-aesni algorithm.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
No new code should be using the return value of crypto_unregister_alg
as it will become void soon.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch ensures that the tfm context always has enough extra
memory to ensure that it is aligned according to cra_alignment.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Now that type-safe init/exit functions exist, they often need
to access the underlying aead_instance. So this patch adds the
helper aead_alg_instance to access aead_instance from a crypto_aead
object.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
As it stands the only non-type safe functions left in the new
AEAD interface are the cra_init/cra_exit functions. It means
exposing the ugly __crypto_aead_cast to every AEAD implementor.
This patch adds type-safe init/exit functions to AEAD. Existing
algorithms are unaffected while new implementations can simply
fill in these two instead of cra_init/cra_exit.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The patch updates the DocBook to cover the new AEAD interface
implementation.
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This reverts commit f858c7bcca as
the algif_aead interface has been switched over to the new AEAD
interface.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The patch removes the use of timekeeping_valid_for_hres which is now
marked as internal for the time keeping subsystem. The jitterentropy
does not really require this verification as a coarse timer (when
random_get_entropy is absent) is discovered by the initialization test
of jent_entropy_init, which would cause the jitter rng to not load in
that case.
Reported-by: kbuild test robot <fengguang.wu@intel.com>
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch makes use of the new AEAD interface which uses a single
SG list instead of separate lists for the AD and plain text.
Note that the user-space interface now requires both input and
output to be of the same length, and both must include space for
the AD as well as the authentication tag.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch makes use of the new AEAD interface which uses a single
SG list instead of separate lists for the AD and plain text.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch makes use of the new AEAD interface which uses a single
SG list instead of separate lists for the AD and plain text.
Tested-by: Johannes Berg <johannes@sipsolutions.net>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch makes use of the new AEAD interface which uses a single
SG list instead of separate lists for the AD and plain text.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch makes use of the new AEAD interface which uses a single
SG list instead of separate lists for the AD and plain text. The
IV generation is also now carried out through normal AEAD methods.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch makes use of the new AEAD interface which uses a single
SG list instead of separate lists for the AD and plain text. The
IV generation is also now carried out through normal AEAD methods.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch adds IV generator information to xfrm_state. This
is currently obtained from our own list of algorithm descriptions.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch adds IV generator information for each AEAD and block
cipher to xfrm_algo_desc. This will be used to access the new
AEAD interface.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch makes use of the new AEAD interface which uses a single
SG list instead of separate lists for the AD and plain text.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
On module unload we weren't unregistering the seqniv template,
thus leading to a crash the next time someone walks the template
list.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch fixes a bug in the context size calculation where we
were still referring to the old cra_aead.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
As the AD does not necessarily exist in the destination buffer
it must be copied along with the plain/cipher text.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch fixes a bug in the context size calculation where we
were still referring to the old cra_aead.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
As the AD does not necessarily exist in the destination buffer
it must be copied along with the plain text.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch adds some common IV generation code currently duplicated
by seqiv and echainiv. For example, the setkey and setauthsize
functions are completely identical.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch tries to preserve in-place processing in old_crypt as
various algorithms are optimised for in-place processing where
src == dst.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch defines the behaviour of AD in the new interface more
clearly. In particular, it specifies that if the user must copy
the AD to the destination manually when src != dst if they wish
to guarantee that the destination buffer contains a copy of the
AD.
The reason for this is that otherwise every AEAD implementation
would have to perform such a copy when src != dst. In reality
most users do in-place processing where src == dst so this is
not an issue.
This patch also kills some remaining references to cryptoff.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Remove the length field from the ccp_sg_workarea since it is unused.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The underlying device support will set the device dma_mask pointer
if DMA is set up properly for the device. Remove the check for and
assignment of dma_mask when it is null. Instead, just error out if
the dma_set_mask_and_coherent function fails because dma_mask is null.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The CPU Jitter RNG provides a source of good entropy by
collecting CPU executing time jitter. The entropy in the CPU
execution time jitter is magnified by the CPU Jitter Random
Number Generator. The CPU Jitter Random Number Generator uses
the CPU execution timing jitter to generate a bit stream
which complies with different statistical measurements that
determine the bit stream is random.
The CPU Jitter Random Number Generator delivers entropy which
follows information theoretical requirements. Based on these
studies and the implementation, the caller can assume that
one bit of data extracted from the CPU Jitter Random Number
Generator holds one bit of entropy.
The CPU Jitter Random Number Generator provides a decentralized
source of entropy, i.e. every caller can operate on a private
state of the entropy pool.
The RNG does not have any dependencies on any other service
in the kernel. The RNG only needs a high-resolution time
stamp.
Further design details, the cryptographic assessment and
large array of test results are documented at
http://www.chronox.de/jent.html.
CC: Andreas Steffen <andreas.steffen@strongswan.org>
CC: Theodore Ts'o <tytso@mit.edu>
CC: Sandy Harris <sandyinchina@gmail.com>
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
During initialization, the DRBG now tries to allocate a handle of the
Jitter RNG. If such a Jitter RNG is available during seeding, the DRBG
pulls the required entropy/nonce string from get_random_bytes and
concatenates it with a string of equal size from the Jitter RNG. That
combined string is now the seed for the DRBG.
Written differently, the initial seed of the DRBG is now:
get_random_bytes(entropy/nonce) || jitterentropy (entropy/nonce)
If the Jitter RNG is not available, the DRBG only seeds from
get_random_bytes.
CC: Andreas Steffen <andreas.steffen@strongswan.org>
CC: Theodore Ts'o <tytso@mit.edu>
CC: Sandy Harris <sandyinchina@gmail.com>
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The async seeding operation is triggered during initalization right
after the first non-blocking seeding is completed. As required by the
asynchronous operation of random.c, a callback function is provided that
is triggered by random.c once entropy is available. That callback
function performs the actual seeding of the DRBG.
CC: Andreas Steffen <andreas.steffen@strongswan.org>
CC: Theodore Ts'o <tytso@mit.edu>
CC: Sandy Harris <sandyinchina@gmail.com>
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
In order to prepare for the addition of the asynchronous seeding call,
the invocation of seeding the DRBG is moved out into a helper function.
In addition, a block of memory is allocated during initialization time
that will be used as a scratchpad for obtaining entropy. That scratchpad
is used for the initial seeding operation as well as by the
asynchronous seeding call. The memory must be zeroized every time the
DRBG seeding call succeeds to avoid entropy data lingering in memory.
CC: Andreas Steffen <andreas.steffen@strongswan.org>
CC: Theodore Ts'o <tytso@mit.edu>
CC: Sandy Harris <sandyinchina@gmail.com>
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The added API calls provide a synchronous function call
get_blocking_random_bytes where the caller is blocked until
the nonblocking_pool is initialized.
CC: Andreas Steffen <andreas.steffen@strongswan.org>
CC: Theodore Ts'o <tytso@mit.edu>
CC: Sandy Harris <sandyinchina@gmail.com>
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
If more than one application invokes getrandom(2) before the pool
is ready, then all bar one will be stuck forever because we use
wake_up_interruptible which wakes up a single task.
This patch replaces it with wake_up_all.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The newly added AEAD user-space isn't quite ready for prime time
just yet. In particular it is conflicting with the AEAD single
SG list interface change so this patch disables it now.
Once the SG list stuff is completely done we can then renable
this interface.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The cryptoff parameter was added to facilitate the skipping of
IVs that sit between the AD and the plain/cipher text. However,
it was never implemented correctly as and we do not handle users
such as IPsec setting cryptoff. It is simply ignored.
Implementing correctly is in fact more trouble than what it's
worth.
This patch removes the uses of cryptoff by moving the AD forward
to fill the gap left by the IV. The AD is moved back after the
underlying AEAD processing is finished.
This is in fact beter than the cryptoff solution because it allows
algorithms that use seqniv (i.e., GCM and CCM) to hash the whole
packet as a single piece, while cryptoff meant that there was
guaranteed to be a gap.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The cryptoff parameter was added to facilitate the skipping of
IVs that sit between the AD and the plain/cipher text. However,
it was never implemented correctly as and we do not handle users
such as IPsec setting cryptoff. It is simply ignored.
Implementing correctly is in fact more trouble than what it's
worth.
This patch removes the uses of cryptoff and simply falls back
to using the old AEAD interface as it's only needed for old AEAD
implementations.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The function aead_geniv_alloc currently sets cra_type even for
new style instances. This is unnecessary and may hide bugs such
as when our caller uses crypto_register_instance instead of the
correct aead_register_instance.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
New style AEAD instances must use aead_register_instance. This
worked by chance because aead_geniv_alloc is still setting things
the old way.
This patch converts the template over to the create model where
we are responsible for instance registration so that we can call
the correct function.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
New style AEAD instances must use aead_register_instance. This
worked by chance because aead_geniv_alloc is still setting things
the old way.
This patch converts the template over to the create model where
we are responsible for instance registration so that we can call
the correct function.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Newer templates use tmpl->create and have a NULL tmpl->alloc. So
we must use tmpl->create if it is set.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Newer templates use tmpl->create and have a NULL tmpl->alloc. So
we must use tmpl->create if it is set.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>