linux/drivers/net/ethernet/chelsio/cxgb4/cxgb4_debugfs.c

3897 lines
108 KiB
C

/*
* This file is part of the Chelsio T4 Ethernet driver for Linux.
*
* Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/seq_file.h>
#include <linux/debugfs.h>
#include <linux/string_helpers.h>
#include <linux/sort.h>
#include <linux/ctype.h>
#include "cxgb4.h"
#include "t4_regs.h"
#include "t4_values.h"
#include "t4fw_api.h"
#include "cxgb4_debugfs.h"
#include "clip_tbl.h"
#include "l2t.h"
#include "cudbg_if.h"
#include "cudbg_lib_common.h"
#include "cudbg_entity.h"
#include "cudbg_lib.h"
#include "cxgb4_tc_mqprio.h"
/* generic seq_file support for showing a table of size rows x width. */
static void *seq_tab_get_idx(struct seq_tab *tb, loff_t pos)
{
pos -= tb->skip_first;
return pos >= tb->rows ? NULL : &tb->data[pos * tb->width];
}
static void *seq_tab_start(struct seq_file *seq, loff_t *pos)
{
struct seq_tab *tb = seq->private;
if (tb->skip_first && *pos == 0)
return SEQ_START_TOKEN;
return seq_tab_get_idx(tb, *pos);
}
static void *seq_tab_next(struct seq_file *seq, void *v, loff_t *pos)
{
v = seq_tab_get_idx(seq->private, *pos + 1);
++(*pos);
return v;
}
static void seq_tab_stop(struct seq_file *seq, void *v)
{
}
static int seq_tab_show(struct seq_file *seq, void *v)
{
const struct seq_tab *tb = seq->private;
return tb->show(seq, v, ((char *)v - tb->data) / tb->width);
}
static const struct seq_operations seq_tab_ops = {
.start = seq_tab_start,
.next = seq_tab_next,
.stop = seq_tab_stop,
.show = seq_tab_show
};
struct seq_tab *seq_open_tab(struct file *f, unsigned int rows,
unsigned int width, unsigned int have_header,
int (*show)(struct seq_file *seq, void *v, int i))
{
struct seq_tab *p;
p = __seq_open_private(f, &seq_tab_ops, sizeof(*p) + rows * width);
if (p) {
p->show = show;
p->rows = rows;
p->width = width;
p->skip_first = have_header != 0;
}
return p;
}
/* Trim the size of a seq_tab to the supplied number of rows. The operation is
* irreversible.
*/
static int seq_tab_trim(struct seq_tab *p, unsigned int new_rows)
{
if (new_rows > p->rows)
return -EINVAL;
p->rows = new_rows;
return 0;
}
static int cim_la_show(struct seq_file *seq, void *v, int idx)
{
if (v == SEQ_START_TOKEN)
seq_puts(seq, "Status Data PC LS0Stat LS0Addr "
" LS0Data\n");
else {
const u32 *p = v;
seq_printf(seq,
" %02x %x%07x %x%07x %08x %08x %08x%08x%08x%08x\n",
(p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4,
p[1] & 0xf, p[2] >> 4, p[2] & 0xf, p[3], p[4], p[5],
p[6], p[7]);
}
return 0;
}
static int cim_la_show_3in1(struct seq_file *seq, void *v, int idx)
{
if (v == SEQ_START_TOKEN) {
seq_puts(seq, "Status Data PC\n");
} else {
const u32 *p = v;
seq_printf(seq, " %02x %08x %08x\n", p[5] & 0xff, p[6],
p[7]);
seq_printf(seq, " %02x %02x%06x %02x%06x\n",
(p[3] >> 8) & 0xff, p[3] & 0xff, p[4] >> 8,
p[4] & 0xff, p[5] >> 8);
seq_printf(seq, " %02x %x%07x %x%07x\n", (p[0] >> 4) & 0xff,
p[0] & 0xf, p[1] >> 4, p[1] & 0xf, p[2] >> 4);
}
return 0;
}
static int cim_la_show_t6(struct seq_file *seq, void *v, int idx)
{
if (v == SEQ_START_TOKEN) {
seq_puts(seq, "Status Inst Data PC LS0Stat "
"LS0Addr LS0Data LS1Stat LS1Addr LS1Data\n");
} else {
const u32 *p = v;
seq_printf(seq, " %02x %04x%04x %04x%04x %04x%04x %08x %08x %08x %08x %08x %08x\n",
(p[9] >> 16) & 0xff, /* Status */
p[9] & 0xffff, p[8] >> 16, /* Inst */
p[8] & 0xffff, p[7] >> 16, /* Data */
p[7] & 0xffff, p[6] >> 16, /* PC */
p[2], p[1], p[0], /* LS0 Stat, Addr and Data */
p[5], p[4], p[3]); /* LS1 Stat, Addr and Data */
}
return 0;
}
static int cim_la_show_pc_t6(struct seq_file *seq, void *v, int idx)
{
if (v == SEQ_START_TOKEN) {
seq_puts(seq, "Status Inst Data PC\n");
} else {
const u32 *p = v;
seq_printf(seq, " %02x %08x %08x %08x\n",
p[3] & 0xff, p[2], p[1], p[0]);
seq_printf(seq, " %02x %02x%06x %02x%06x %02x%06x\n",
(p[6] >> 8) & 0xff, p[6] & 0xff, p[5] >> 8,
p[5] & 0xff, p[4] >> 8, p[4] & 0xff, p[3] >> 8);
seq_printf(seq, " %02x %04x%04x %04x%04x %04x%04x\n",
(p[9] >> 16) & 0xff, p[9] & 0xffff, p[8] >> 16,
p[8] & 0xffff, p[7] >> 16, p[7] & 0xffff,
p[6] >> 16);
}
return 0;
}
static int cim_la_open(struct inode *inode, struct file *file)
{
int ret;
unsigned int cfg;
struct seq_tab *p;
struct adapter *adap = inode->i_private;
ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
if (ret)
return ret;
if (is_t6(adap->params.chip)) {
/* +1 to account for integer division of CIMLA_SIZE/10 */
p = seq_open_tab(file, (adap->params.cim_la_size / 10) + 1,
10 * sizeof(u32), 1,
cfg & UPDBGLACAPTPCONLY_F ?
cim_la_show_pc_t6 : cim_la_show_t6);
} else {
p = seq_open_tab(file, adap->params.cim_la_size / 8,
8 * sizeof(u32), 1,
cfg & UPDBGLACAPTPCONLY_F ? cim_la_show_3in1 :
cim_la_show);
}
if (!p)
return -ENOMEM;
ret = t4_cim_read_la(adap, (u32 *)p->data, NULL);
if (ret)
seq_release_private(inode, file);
return ret;
}
static const struct file_operations cim_la_fops = {
.owner = THIS_MODULE,
.open = cim_la_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release_private
};
static int cim_pif_la_show(struct seq_file *seq, void *v, int idx)
{
const u32 *p = v;
if (v == SEQ_START_TOKEN) {
seq_puts(seq, "Cntl ID DataBE Addr Data\n");
} else if (idx < CIM_PIFLA_SIZE) {
seq_printf(seq, " %02x %02x %04x %08x %08x%08x%08x%08x\n",
(p[5] >> 22) & 0xff, (p[5] >> 16) & 0x3f,
p[5] & 0xffff, p[4], p[3], p[2], p[1], p[0]);
} else {
if (idx == CIM_PIFLA_SIZE)
seq_puts(seq, "\nCntl ID Data\n");
seq_printf(seq, " %02x %02x %08x%08x%08x%08x\n",
(p[4] >> 6) & 0xff, p[4] & 0x3f,
p[3], p[2], p[1], p[0]);
}
return 0;
}
static int cim_pif_la_open(struct inode *inode, struct file *file)
{
struct seq_tab *p;
struct adapter *adap = inode->i_private;
p = seq_open_tab(file, 2 * CIM_PIFLA_SIZE, 6 * sizeof(u32), 1,
cim_pif_la_show);
if (!p)
return -ENOMEM;
t4_cim_read_pif_la(adap, (u32 *)p->data,
(u32 *)p->data + 6 * CIM_PIFLA_SIZE, NULL, NULL);
return 0;
}
static const struct file_operations cim_pif_la_fops = {
.owner = THIS_MODULE,
.open = cim_pif_la_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release_private
};
static int cim_ma_la_show(struct seq_file *seq, void *v, int idx)
{
const u32 *p = v;
if (v == SEQ_START_TOKEN) {
seq_puts(seq, "\n");
} else if (idx < CIM_MALA_SIZE) {
seq_printf(seq, "%02x%08x%08x%08x%08x\n",
p[4], p[3], p[2], p[1], p[0]);
} else {
if (idx == CIM_MALA_SIZE)
seq_puts(seq,
"\nCnt ID Tag UE Data RDY VLD\n");
seq_printf(seq, "%3u %2u %x %u %08x%08x %u %u\n",
(p[2] >> 10) & 0xff, (p[2] >> 7) & 7,
(p[2] >> 3) & 0xf, (p[2] >> 2) & 1,
(p[1] >> 2) | ((p[2] & 3) << 30),
(p[0] >> 2) | ((p[1] & 3) << 30), (p[0] >> 1) & 1,
p[0] & 1);
}
return 0;
}
static int cim_ma_la_open(struct inode *inode, struct file *file)
{
struct seq_tab *p;
struct adapter *adap = inode->i_private;
p = seq_open_tab(file, 2 * CIM_MALA_SIZE, 5 * sizeof(u32), 1,
cim_ma_la_show);
if (!p)
return -ENOMEM;
t4_cim_read_ma_la(adap, (u32 *)p->data,
(u32 *)p->data + 5 * CIM_MALA_SIZE);
return 0;
}
static const struct file_operations cim_ma_la_fops = {
.owner = THIS_MODULE,
.open = cim_ma_la_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release_private
};
static int cim_qcfg_show(struct seq_file *seq, void *v)
{
static const char * const qname[] = {
"TP0", "TP1", "ULP", "SGE0", "SGE1", "NC-SI",
"ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI",
"SGE0-RX", "SGE1-RX"
};
int i;
struct adapter *adap = seq->private;
u16 base[CIM_NUM_IBQ + CIM_NUM_OBQ_T5];
u16 size[CIM_NUM_IBQ + CIM_NUM_OBQ_T5];
u32 stat[(4 * (CIM_NUM_IBQ + CIM_NUM_OBQ_T5))];
u16 thres[CIM_NUM_IBQ];
u32 obq_wr_t4[2 * CIM_NUM_OBQ], *wr;
u32 obq_wr_t5[2 * CIM_NUM_OBQ_T5];
u32 *p = stat;
int cim_num_obq = is_t4(adap->params.chip) ?
CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
i = t4_cim_read(adap, is_t4(adap->params.chip) ? UP_IBQ_0_RDADDR_A :
UP_IBQ_0_SHADOW_RDADDR_A,
ARRAY_SIZE(stat), stat);
if (!i) {
if (is_t4(adap->params.chip)) {
i = t4_cim_read(adap, UP_OBQ_0_REALADDR_A,
ARRAY_SIZE(obq_wr_t4), obq_wr_t4);
wr = obq_wr_t4;
} else {
i = t4_cim_read(adap, UP_OBQ_0_SHADOW_REALADDR_A,
ARRAY_SIZE(obq_wr_t5), obq_wr_t5);
wr = obq_wr_t5;
}
}
if (i)
return i;
t4_read_cimq_cfg(adap, base, size, thres);
seq_printf(seq,
" Queue Base Size Thres RdPtr WrPtr SOP EOP Avail\n");
for (i = 0; i < CIM_NUM_IBQ; i++, p += 4)
seq_printf(seq, "%7s %5x %5u %5u %6x %4x %4u %4u %5u\n",
qname[i], base[i], size[i], thres[i],
IBQRDADDR_G(p[0]), IBQWRADDR_G(p[1]),
QUESOPCNT_G(p[3]), QUEEOPCNT_G(p[3]),
QUEREMFLITS_G(p[2]) * 16);
for ( ; i < CIM_NUM_IBQ + cim_num_obq; i++, p += 4, wr += 2)
seq_printf(seq, "%7s %5x %5u %12x %4x %4u %4u %5u\n",
qname[i], base[i], size[i],
QUERDADDR_G(p[0]) & 0x3fff, wr[0] - base[i],
QUESOPCNT_G(p[3]), QUEEOPCNT_G(p[3]),
QUEREMFLITS_G(p[2]) * 16);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(cim_qcfg);
static int cimq_show(struct seq_file *seq, void *v, int idx)
{
const u32 *p = v;
seq_printf(seq, "%#06x: %08x %08x %08x %08x\n", idx * 16, p[0], p[1],
p[2], p[3]);
return 0;
}
static int cim_ibq_open(struct inode *inode, struct file *file)
{
int ret;
struct seq_tab *p;
unsigned int qid = (uintptr_t)inode->i_private & 7;
struct adapter *adap = inode->i_private - qid;
p = seq_open_tab(file, CIM_IBQ_SIZE, 4 * sizeof(u32), 0, cimq_show);
if (!p)
return -ENOMEM;
ret = t4_read_cim_ibq(adap, qid, (u32 *)p->data, CIM_IBQ_SIZE * 4);
if (ret < 0)
seq_release_private(inode, file);
else
ret = 0;
return ret;
}
static const struct file_operations cim_ibq_fops = {
.owner = THIS_MODULE,
.open = cim_ibq_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release_private
};
static int cim_obq_open(struct inode *inode, struct file *file)
{
int ret;
struct seq_tab *p;
unsigned int qid = (uintptr_t)inode->i_private & 7;
struct adapter *adap = inode->i_private - qid;
p = seq_open_tab(file, 6 * CIM_OBQ_SIZE, 4 * sizeof(u32), 0, cimq_show);
if (!p)
return -ENOMEM;
ret = t4_read_cim_obq(adap, qid, (u32 *)p->data, 6 * CIM_OBQ_SIZE * 4);
if (ret < 0) {
seq_release_private(inode, file);
} else {
seq_tab_trim(p, ret / 4);
ret = 0;
}
return ret;
}
static const struct file_operations cim_obq_fops = {
.owner = THIS_MODULE,
.open = cim_obq_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release_private
};
struct field_desc {
const char *name;
unsigned int start;
unsigned int width;
};
static void field_desc_show(struct seq_file *seq, u64 v,
const struct field_desc *p)
{
char buf[32];
int line_size = 0;
while (p->name) {
u64 mask = (1ULL << p->width) - 1;
int len = scnprintf(buf, sizeof(buf), "%s: %llu", p->name,
((unsigned long long)v >> p->start) & mask);
if (line_size + len >= 79) {
line_size = 8;
seq_puts(seq, "\n ");
}
seq_printf(seq, "%s ", buf);
line_size += len + 1;
p++;
}
seq_putc(seq, '\n');
}
static struct field_desc tp_la0[] = {
{ "RcfOpCodeOut", 60, 4 },
{ "State", 56, 4 },
{ "WcfState", 52, 4 },
{ "RcfOpcSrcOut", 50, 2 },
{ "CRxError", 49, 1 },
{ "ERxError", 48, 1 },
{ "SanityFailed", 47, 1 },
{ "SpuriousMsg", 46, 1 },
{ "FlushInputMsg", 45, 1 },
{ "FlushInputCpl", 44, 1 },
{ "RssUpBit", 43, 1 },
{ "RssFilterHit", 42, 1 },
{ "Tid", 32, 10 },
{ "InitTcb", 31, 1 },
{ "LineNumber", 24, 7 },
{ "Emsg", 23, 1 },
{ "EdataOut", 22, 1 },
{ "Cmsg", 21, 1 },
{ "CdataOut", 20, 1 },
{ "EreadPdu", 19, 1 },
{ "CreadPdu", 18, 1 },
{ "TunnelPkt", 17, 1 },
{ "RcfPeerFin", 16, 1 },
{ "RcfReasonOut", 12, 4 },
{ "TxCchannel", 10, 2 },
{ "RcfTxChannel", 8, 2 },
{ "RxEchannel", 6, 2 },
{ "RcfRxChannel", 5, 1 },
{ "RcfDataOutSrdy", 4, 1 },
{ "RxDvld", 3, 1 },
{ "RxOoDvld", 2, 1 },
{ "RxCongestion", 1, 1 },
{ "TxCongestion", 0, 1 },
{ NULL }
};
static int tp_la_show(struct seq_file *seq, void *v, int idx)
{
const u64 *p = v;
field_desc_show(seq, *p, tp_la0);
return 0;
}
static int tp_la_show2(struct seq_file *seq, void *v, int idx)
{
const u64 *p = v;
if (idx)
seq_putc(seq, '\n');
field_desc_show(seq, p[0], tp_la0);
if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL)
field_desc_show(seq, p[1], tp_la0);
return 0;
}
static int tp_la_show3(struct seq_file *seq, void *v, int idx)
{
static struct field_desc tp_la1[] = {
{ "CplCmdIn", 56, 8 },
{ "CplCmdOut", 48, 8 },
{ "ESynOut", 47, 1 },
{ "EAckOut", 46, 1 },
{ "EFinOut", 45, 1 },
{ "ERstOut", 44, 1 },
{ "SynIn", 43, 1 },
{ "AckIn", 42, 1 },
{ "FinIn", 41, 1 },
{ "RstIn", 40, 1 },
{ "DataIn", 39, 1 },
{ "DataInVld", 38, 1 },
{ "PadIn", 37, 1 },
{ "RxBufEmpty", 36, 1 },
{ "RxDdp", 35, 1 },
{ "RxFbCongestion", 34, 1 },
{ "TxFbCongestion", 33, 1 },
{ "TxPktSumSrdy", 32, 1 },
{ "RcfUlpType", 28, 4 },
{ "Eread", 27, 1 },
{ "Ebypass", 26, 1 },
{ "Esave", 25, 1 },
{ "Static0", 24, 1 },
{ "Cread", 23, 1 },
{ "Cbypass", 22, 1 },
{ "Csave", 21, 1 },
{ "CPktOut", 20, 1 },
{ "RxPagePoolFull", 18, 2 },
{ "RxLpbkPkt", 17, 1 },
{ "TxLpbkPkt", 16, 1 },
{ "RxVfValid", 15, 1 },
{ "SynLearned", 14, 1 },
{ "SetDelEntry", 13, 1 },
{ "SetInvEntry", 12, 1 },
{ "CpcmdDvld", 11, 1 },
{ "CpcmdSave", 10, 1 },
{ "RxPstructsFull", 8, 2 },
{ "EpcmdDvld", 7, 1 },
{ "EpcmdFlush", 6, 1 },
{ "EpcmdTrimPrefix", 5, 1 },
{ "EpcmdTrimPostfix", 4, 1 },
{ "ERssIp4Pkt", 3, 1 },
{ "ERssIp6Pkt", 2, 1 },
{ "ERssTcpUdpPkt", 1, 1 },
{ "ERssFceFipPkt", 0, 1 },
{ NULL }
};
static struct field_desc tp_la2[] = {
{ "CplCmdIn", 56, 8 },
{ "MpsVfVld", 55, 1 },
{ "MpsPf", 52, 3 },
{ "MpsVf", 44, 8 },
{ "SynIn", 43, 1 },
{ "AckIn", 42, 1 },
{ "FinIn", 41, 1 },
{ "RstIn", 40, 1 },
{ "DataIn", 39, 1 },
{ "DataInVld", 38, 1 },
{ "PadIn", 37, 1 },
{ "RxBufEmpty", 36, 1 },
{ "RxDdp", 35, 1 },
{ "RxFbCongestion", 34, 1 },
{ "TxFbCongestion", 33, 1 },
{ "TxPktSumSrdy", 32, 1 },
{ "RcfUlpType", 28, 4 },
{ "Eread", 27, 1 },
{ "Ebypass", 26, 1 },
{ "Esave", 25, 1 },
{ "Static0", 24, 1 },
{ "Cread", 23, 1 },
{ "Cbypass", 22, 1 },
{ "Csave", 21, 1 },
{ "CPktOut", 20, 1 },
{ "RxPagePoolFull", 18, 2 },
{ "RxLpbkPkt", 17, 1 },
{ "TxLpbkPkt", 16, 1 },
{ "RxVfValid", 15, 1 },
{ "SynLearned", 14, 1 },
{ "SetDelEntry", 13, 1 },
{ "SetInvEntry", 12, 1 },
{ "CpcmdDvld", 11, 1 },
{ "CpcmdSave", 10, 1 },
{ "RxPstructsFull", 8, 2 },
{ "EpcmdDvld", 7, 1 },
{ "EpcmdFlush", 6, 1 },
{ "EpcmdTrimPrefix", 5, 1 },
{ "EpcmdTrimPostfix", 4, 1 },
{ "ERssIp4Pkt", 3, 1 },
{ "ERssIp6Pkt", 2, 1 },
{ "ERssTcpUdpPkt", 1, 1 },
{ "ERssFceFipPkt", 0, 1 },
{ NULL }
};
const u64 *p = v;
if (idx)
seq_putc(seq, '\n');
field_desc_show(seq, p[0], tp_la0);
if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL)
field_desc_show(seq, p[1], (p[0] & BIT(17)) ? tp_la2 : tp_la1);
return 0;
}
static int tp_la_open(struct inode *inode, struct file *file)
{
struct seq_tab *p;
struct adapter *adap = inode->i_private;
switch (DBGLAMODE_G(t4_read_reg(adap, TP_DBG_LA_CONFIG_A))) {
case 2:
p = seq_open_tab(file, TPLA_SIZE / 2, 2 * sizeof(u64), 0,
tp_la_show2);
break;
case 3:
p = seq_open_tab(file, TPLA_SIZE / 2, 2 * sizeof(u64), 0,
tp_la_show3);
break;
default:
p = seq_open_tab(file, TPLA_SIZE, sizeof(u64), 0, tp_la_show);
}
if (!p)
return -ENOMEM;
t4_tp_read_la(adap, (u64 *)p->data, NULL);
return 0;
}
static ssize_t tp_la_write(struct file *file, const char __user *buf,
size_t count, loff_t *pos)
{
int err;
char s[32];
unsigned long val;
size_t size = min(sizeof(s) - 1, count);
struct adapter *adap = file_inode(file)->i_private;
if (copy_from_user(s, buf, size))
return -EFAULT;
s[size] = '\0';
err = kstrtoul(s, 0, &val);
if (err)
return err;
if (val > 0xffff)
return -EINVAL;
adap->params.tp.la_mask = val << 16;
t4_set_reg_field(adap, TP_DBG_LA_CONFIG_A, 0xffff0000U,
adap->params.tp.la_mask);
return count;
}
static const struct file_operations tp_la_fops = {
.owner = THIS_MODULE,
.open = tp_la_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release_private,
.write = tp_la_write
};
static int ulprx_la_show(struct seq_file *seq, void *v, int idx)
{
const u32 *p = v;
if (v == SEQ_START_TOKEN)
seq_puts(seq, " Pcmd Type Message"
" Data\n");
else
seq_printf(seq, "%08x%08x %4x %08x %08x%08x%08x%08x\n",
p[1], p[0], p[2], p[3], p[7], p[6], p[5], p[4]);
return 0;
}
static int ulprx_la_open(struct inode *inode, struct file *file)
{
struct seq_tab *p;
struct adapter *adap = inode->i_private;
p = seq_open_tab(file, ULPRX_LA_SIZE, 8 * sizeof(u32), 1,
ulprx_la_show);
if (!p)
return -ENOMEM;
t4_ulprx_read_la(adap, (u32 *)p->data);
return 0;
}
static const struct file_operations ulprx_la_fops = {
.owner = THIS_MODULE,
.open = ulprx_la_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release_private
};
/* Show the PM memory stats. These stats include:
*
* TX:
* Read: memory read operation
* Write Bypass: cut-through
* Bypass + mem: cut-through and save copy
*
* RX:
* Read: memory read
* Write Bypass: cut-through
* Flush: payload trim or drop
*/
static int pm_stats_show(struct seq_file *seq, void *v)
{
static const char * const tx_pm_stats[] = {
"Read:", "Write bypass:", "Write mem:", "Bypass + mem:"
};
static const char * const rx_pm_stats[] = {
"Read:", "Write bypass:", "Write mem:", "Flush:"
};
int i;
u32 tx_cnt[T6_PM_NSTATS], rx_cnt[T6_PM_NSTATS];
u64 tx_cyc[T6_PM_NSTATS], rx_cyc[T6_PM_NSTATS];
struct adapter *adap = seq->private;
t4_pmtx_get_stats(adap, tx_cnt, tx_cyc);
t4_pmrx_get_stats(adap, rx_cnt, rx_cyc);
seq_printf(seq, "%13s %10s %20s\n", " ", "Tx pcmds", "Tx bytes");
for (i = 0; i < PM_NSTATS - 1; i++)
seq_printf(seq, "%-13s %10u %20llu\n",
tx_pm_stats[i], tx_cnt[i], tx_cyc[i]);
seq_printf(seq, "%13s %10s %20s\n", " ", "Rx pcmds", "Rx bytes");
for (i = 0; i < PM_NSTATS - 1; i++)
seq_printf(seq, "%-13s %10u %20llu\n",
rx_pm_stats[i], rx_cnt[i], rx_cyc[i]);
if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
/* In T5 the granularity of the total wait is too fine.
* It is not useful as it reaches the max value too fast.
* Hence display this Input FIFO wait for T6 onwards.
*/
seq_printf(seq, "%13s %10s %20s\n",
" ", "Total wait", "Total Occupancy");
seq_printf(seq, "Tx FIFO wait %10u %20llu\n",
tx_cnt[i], tx_cyc[i]);
seq_printf(seq, "Rx FIFO wait %10u %20llu\n",
rx_cnt[i], rx_cyc[i]);
/* Skip index 6 as there is nothing useful ihere */
i += 2;
/* At index 7, a new stat for read latency (count, total wait)
* is added.
*/
seq_printf(seq, "%13s %10s %20s\n",
" ", "Reads", "Total wait");
seq_printf(seq, "Tx latency %10u %20llu\n",
tx_cnt[i], tx_cyc[i]);
seq_printf(seq, "Rx latency %10u %20llu\n",
rx_cnt[i], rx_cyc[i]);
}
return 0;
}
static int pm_stats_open(struct inode *inode, struct file *file)
{
return single_open(file, pm_stats_show, inode->i_private);
}
static ssize_t pm_stats_clear(struct file *file, const char __user *buf,
size_t count, loff_t *pos)
{
struct adapter *adap = file_inode(file)->i_private;
t4_write_reg(adap, PM_RX_STAT_CONFIG_A, 0);
t4_write_reg(adap, PM_TX_STAT_CONFIG_A, 0);
return count;
}
static const struct file_operations pm_stats_debugfs_fops = {
.owner = THIS_MODULE,
.open = pm_stats_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
.write = pm_stats_clear
};
static int tx_rate_show(struct seq_file *seq, void *v)
{
u64 nrate[NCHAN], orate[NCHAN];
struct adapter *adap = seq->private;
t4_get_chan_txrate(adap, nrate, orate);
if (adap->params.arch.nchan == NCHAN) {
seq_puts(seq, " channel 0 channel 1 "
"channel 2 channel 3\n");
seq_printf(seq, "NIC B/s: %10llu %10llu %10llu %10llu\n",
(unsigned long long)nrate[0],
(unsigned long long)nrate[1],
(unsigned long long)nrate[2],
(unsigned long long)nrate[3]);
seq_printf(seq, "Offload B/s: %10llu %10llu %10llu %10llu\n",
(unsigned long long)orate[0],
(unsigned long long)orate[1],
(unsigned long long)orate[2],
(unsigned long long)orate[3]);
} else {
seq_puts(seq, " channel 0 channel 1\n");
seq_printf(seq, "NIC B/s: %10llu %10llu\n",
(unsigned long long)nrate[0],
(unsigned long long)nrate[1]);
seq_printf(seq, "Offload B/s: %10llu %10llu\n",
(unsigned long long)orate[0],
(unsigned long long)orate[1]);
}
return 0;
}
DEFINE_SHOW_ATTRIBUTE(tx_rate);
static int cctrl_tbl_show(struct seq_file *seq, void *v)
{
static const char * const dec_fac[] = {
"0.5", "0.5625", "0.625", "0.6875", "0.75", "0.8125", "0.875",
"0.9375" };
int i;
u16 (*incr)[NCCTRL_WIN];
struct adapter *adap = seq->private;
incr = kmalloc_array(NMTUS, sizeof(*incr), GFP_KERNEL);
if (!incr)
return -ENOMEM;
t4_read_cong_tbl(adap, incr);
for (i = 0; i < NCCTRL_WIN; ++i) {
seq_printf(seq, "%2d: %4u %4u %4u %4u %4u %4u %4u %4u\n", i,
incr[0][i], incr[1][i], incr[2][i], incr[3][i],
incr[4][i], incr[5][i], incr[6][i], incr[7][i]);
seq_printf(seq, "%8u %4u %4u %4u %4u %4u %4u %4u %5u %s\n",
incr[8][i], incr[9][i], incr[10][i], incr[11][i],
incr[12][i], incr[13][i], incr[14][i], incr[15][i],
adap->params.a_wnd[i],
dec_fac[adap->params.b_wnd[i]]);
}
kfree(incr);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(cctrl_tbl);
/* Format a value in a unit that differs from the value's native unit by the
* given factor.
*/
static char *unit_conv(char *buf, size_t len, unsigned int val,
unsigned int factor)
{
unsigned int rem = val % factor;
if (rem == 0) {
snprintf(buf, len, "%u", val / factor);
} else {
while (rem % 10 == 0)
rem /= 10;
snprintf(buf, len, "%u.%u", val / factor, rem);
}
return buf;
}
static int clk_show(struct seq_file *seq, void *v)
{
char buf[32];
struct adapter *adap = seq->private;
unsigned int cclk_ps = 1000000000 / adap->params.vpd.cclk; /* in ps */
u32 res = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
unsigned int tre = TIMERRESOLUTION_G(res);
unsigned int dack_re = DELAYEDACKRESOLUTION_G(res);
unsigned long long tp_tick_us = (cclk_ps << tre) / 1000000; /* in us */
seq_printf(seq, "Core clock period: %s ns\n",
unit_conv(buf, sizeof(buf), cclk_ps, 1000));
seq_printf(seq, "TP timer tick: %s us\n",
unit_conv(buf, sizeof(buf), (cclk_ps << tre), 1000000));
seq_printf(seq, "TCP timestamp tick: %s us\n",
unit_conv(buf, sizeof(buf),
(cclk_ps << TIMESTAMPRESOLUTION_G(res)), 1000000));
seq_printf(seq, "DACK tick: %s us\n",
unit_conv(buf, sizeof(buf), (cclk_ps << dack_re), 1000000));
seq_printf(seq, "DACK timer: %u us\n",
((cclk_ps << dack_re) / 1000000) *
t4_read_reg(adap, TP_DACK_TIMER_A));
seq_printf(seq, "Retransmit min: %llu us\n",
tp_tick_us * t4_read_reg(adap, TP_RXT_MIN_A));
seq_printf(seq, "Retransmit max: %llu us\n",
tp_tick_us * t4_read_reg(adap, TP_RXT_MAX_A));
seq_printf(seq, "Persist timer min: %llu us\n",
tp_tick_us * t4_read_reg(adap, TP_PERS_MIN_A));
seq_printf(seq, "Persist timer max: %llu us\n",
tp_tick_us * t4_read_reg(adap, TP_PERS_MAX_A));
seq_printf(seq, "Keepalive idle timer: %llu us\n",
tp_tick_us * t4_read_reg(adap, TP_KEEP_IDLE_A));
seq_printf(seq, "Keepalive interval: %llu us\n",
tp_tick_us * t4_read_reg(adap, TP_KEEP_INTVL_A));
seq_printf(seq, "Initial SRTT: %llu us\n",
tp_tick_us * INITSRTT_G(t4_read_reg(adap, TP_INIT_SRTT_A)));
seq_printf(seq, "FINWAIT2 timer: %llu us\n",
tp_tick_us * t4_read_reg(adap, TP_FINWAIT2_TIMER_A));
return 0;
}
DEFINE_SHOW_ATTRIBUTE(clk);
/* Firmware Device Log dump. */
static const char * const devlog_level_strings[] = {
[FW_DEVLOG_LEVEL_EMERG] = "EMERG",
[FW_DEVLOG_LEVEL_CRIT] = "CRIT",
[FW_DEVLOG_LEVEL_ERR] = "ERR",
[FW_DEVLOG_LEVEL_NOTICE] = "NOTICE",
[FW_DEVLOG_LEVEL_INFO] = "INFO",
[FW_DEVLOG_LEVEL_DEBUG] = "DEBUG"
};
static const char * const devlog_facility_strings[] = {
[FW_DEVLOG_FACILITY_CORE] = "CORE",
[FW_DEVLOG_FACILITY_CF] = "CF",
[FW_DEVLOG_FACILITY_SCHED] = "SCHED",
[FW_DEVLOG_FACILITY_TIMER] = "TIMER",
[FW_DEVLOG_FACILITY_RES] = "RES",
[FW_DEVLOG_FACILITY_HW] = "HW",
[FW_DEVLOG_FACILITY_FLR] = "FLR",
[FW_DEVLOG_FACILITY_DMAQ] = "DMAQ",
[FW_DEVLOG_FACILITY_PHY] = "PHY",
[FW_DEVLOG_FACILITY_MAC] = "MAC",
[FW_DEVLOG_FACILITY_PORT] = "PORT",
[FW_DEVLOG_FACILITY_VI] = "VI",
[FW_DEVLOG_FACILITY_FILTER] = "FILTER",
[FW_DEVLOG_FACILITY_ACL] = "ACL",
[FW_DEVLOG_FACILITY_TM] = "TM",
[FW_DEVLOG_FACILITY_QFC] = "QFC",
[FW_DEVLOG_FACILITY_DCB] = "DCB",
[FW_DEVLOG_FACILITY_ETH] = "ETH",
[FW_DEVLOG_FACILITY_OFLD] = "OFLD",
[FW_DEVLOG_FACILITY_RI] = "RI",
[FW_DEVLOG_FACILITY_ISCSI] = "ISCSI",
[FW_DEVLOG_FACILITY_FCOE] = "FCOE",
[FW_DEVLOG_FACILITY_FOISCSI] = "FOISCSI",
[FW_DEVLOG_FACILITY_FOFCOE] = "FOFCOE"
};
/* Information gathered by Device Log Open routine for the display routine.
*/
struct devlog_info {
unsigned int nentries; /* number of entries in log[] */
unsigned int first; /* first [temporal] entry in log[] */
struct fw_devlog_e log[]; /* Firmware Device Log */
};
/* Dump a Firmaware Device Log entry.
*/
static int devlog_show(struct seq_file *seq, void *v)
{
if (v == SEQ_START_TOKEN)
seq_printf(seq, "%10s %15s %8s %8s %s\n",
"Seq#", "Tstamp", "Level", "Facility", "Message");
else {
struct devlog_info *dinfo = seq->private;
int fidx = (uintptr_t)v - 2;
unsigned long index;
struct fw_devlog_e *e;
/* Get a pointer to the log entry to display. Skip unused log
* entries.
*/
index = dinfo->first + fidx;
if (index >= dinfo->nentries)
index -= dinfo->nentries;
e = &dinfo->log[index];
if (e->timestamp == 0)
return 0;
/* Print the message. This depends on the firmware using
* exactly the same formating strings as the kernel so we may
* eventually have to put a format interpreter in here ...
*/
seq_printf(seq, "%10d %15llu %8s %8s ",
be32_to_cpu(e->seqno),
be64_to_cpu(e->timestamp),
(e->level < ARRAY_SIZE(devlog_level_strings)
? devlog_level_strings[e->level]
: "UNKNOWN"),
(e->facility < ARRAY_SIZE(devlog_facility_strings)
? devlog_facility_strings[e->facility]
: "UNKNOWN"));
seq_printf(seq, e->fmt,
be32_to_cpu(e->params[0]),
be32_to_cpu(e->params[1]),
be32_to_cpu(e->params[2]),
be32_to_cpu(e->params[3]),
be32_to_cpu(e->params[4]),
be32_to_cpu(e->params[5]),
be32_to_cpu(e->params[6]),
be32_to_cpu(e->params[7]));
}
return 0;
}
/* Sequential File Operations for Device Log.
*/
static inline void *devlog_get_idx(struct devlog_info *dinfo, loff_t pos)
{
if (pos > dinfo->nentries)
return NULL;
return (void *)(uintptr_t)(pos + 1);
}
static void *devlog_start(struct seq_file *seq, loff_t *pos)
{
struct devlog_info *dinfo = seq->private;
return (*pos
? devlog_get_idx(dinfo, *pos)
: SEQ_START_TOKEN);
}
static void *devlog_next(struct seq_file *seq, void *v, loff_t *pos)
{
struct devlog_info *dinfo = seq->private;
(*pos)++;
return devlog_get_idx(dinfo, *pos);
}
static void devlog_stop(struct seq_file *seq, void *v)
{
}
static const struct seq_operations devlog_seq_ops = {
.start = devlog_start,
.next = devlog_next,
.stop = devlog_stop,
.show = devlog_show
};
/* Set up for reading the firmware's device log. We read the entire log here
* and then display it incrementally in devlog_show().
*/
static int devlog_open(struct inode *inode, struct file *file)
{
struct adapter *adap = inode->i_private;
struct devlog_params *dparams = &adap->params.devlog;
struct devlog_info *dinfo;
unsigned int index;
u32 fseqno;
int ret;
/* If we don't know where the log is we can't do anything.
*/
if (dparams->start == 0)
return -ENXIO;
/* Allocate the space to read in the firmware's device log and set up
* for the iterated call to our display function.
*/
dinfo = __seq_open_private(file, &devlog_seq_ops,
sizeof(*dinfo) + dparams->size);
if (!dinfo)
return -ENOMEM;
/* Record the basic log buffer information and read in the raw log.
*/
dinfo->nentries = (dparams->size / sizeof(struct fw_devlog_e));
dinfo->first = 0;
spin_lock(&adap->win0_lock);
ret = t4_memory_rw(adap, adap->params.drv_memwin, dparams->memtype,
dparams->start, dparams->size, (__be32 *)dinfo->log,
T4_MEMORY_READ);
spin_unlock(&adap->win0_lock);
if (ret) {
seq_release_private(inode, file);
return ret;
}
/* Find the earliest (lowest Sequence Number) log entry in the
* circular Device Log.
*/
for (fseqno = ~((u32)0), index = 0; index < dinfo->nentries; index++) {
struct fw_devlog_e *e = &dinfo->log[index];
__u32 seqno;
if (e->timestamp == 0)
continue;
seqno = be32_to_cpu(e->seqno);
if (seqno < fseqno) {
fseqno = seqno;
dinfo->first = index;
}
}
return 0;
}
static const struct file_operations devlog_fops = {
.owner = THIS_MODULE,
.open = devlog_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release_private
};
/* Show Firmware Mailbox Command/Reply Log
*
* Note that we don't do any locking when dumping the Firmware Mailbox Log so
* it's possible that we can catch things during a log update and therefore
* see partially corrupted log entries. But it's probably Good Enough(tm).
* If we ever decide that we want to make sure that we're dumping a coherent
* log, we'd need to perform locking in the mailbox logging and in
* mboxlog_open() where we'd need to grab the entire mailbox log in one go
* like we do for the Firmware Device Log.
*/
static int mboxlog_show(struct seq_file *seq, void *v)
{
struct adapter *adapter = seq->private;
struct mbox_cmd_log *log = adapter->mbox_log;
struct mbox_cmd *entry;
int entry_idx, i;
if (v == SEQ_START_TOKEN) {
seq_printf(seq,
"%10s %15s %5s %5s %s\n",
"Seq#", "Tstamp", "Atime", "Etime",
"Command/Reply");
return 0;
}
entry_idx = log->cursor + ((uintptr_t)v - 2);
if (entry_idx >= log->size)
entry_idx -= log->size;
entry = mbox_cmd_log_entry(log, entry_idx);
/* skip over unused entries */
if (entry->timestamp == 0)
return 0;
seq_printf(seq, "%10u %15llu %5d %5d",
entry->seqno, entry->timestamp,
entry->access, entry->execute);
for (i = 0; i < MBOX_LEN / 8; i++) {
u64 flit = entry->cmd[i];
u32 hi = (u32)(flit >> 32);
u32 lo = (u32)flit;
seq_printf(seq, " %08x %08x", hi, lo);
}
seq_puts(seq, "\n");
return 0;
}
static inline void *mboxlog_get_idx(struct seq_file *seq, loff_t pos)
{
struct adapter *adapter = seq->private;
struct mbox_cmd_log *log = adapter->mbox_log;
return ((pos <= log->size) ? (void *)(uintptr_t)(pos + 1) : NULL);
}
static void *mboxlog_start(struct seq_file *seq, loff_t *pos)
{
return *pos ? mboxlog_get_idx(seq, *pos) : SEQ_START_TOKEN;
}
static void *mboxlog_next(struct seq_file *seq, void *v, loff_t *pos)
{
++*pos;
return mboxlog_get_idx(seq, *pos);
}
static void mboxlog_stop(struct seq_file *seq, void *v)
{
}
static const struct seq_operations mboxlog_seq_ops = {
.start = mboxlog_start,
.next = mboxlog_next,
.stop = mboxlog_stop,
.show = mboxlog_show
};
static int mboxlog_open(struct inode *inode, struct file *file)
{
int res = seq_open(file, &mboxlog_seq_ops);
if (!res) {
struct seq_file *seq = file->private_data;
seq->private = inode->i_private;
}
return res;
}
static const struct file_operations mboxlog_fops = {
.owner = THIS_MODULE,
.open = mboxlog_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release,
};
static int mbox_show(struct seq_file *seq, void *v)
{
static const char * const owner[] = { "none", "FW", "driver",
"unknown", "<unread>" };
int i;
unsigned int mbox = (uintptr_t)seq->private & 7;
struct adapter *adap = seq->private - mbox;
void __iomem *addr = adap->regs + PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
/* For T4 we don't have a shadow copy of the Mailbox Control register.
* And since reading that real register causes a side effect of
* granting ownership, we're best of simply not reading it at all.
*/
if (is_t4(adap->params.chip)) {
i = 4; /* index of "<unread>" */
} else {
unsigned int ctrl_reg = CIM_PF_MAILBOX_CTRL_SHADOW_COPY_A;
void __iomem *ctrl = adap->regs + PF_REG(mbox, ctrl_reg);
i = MBOWNER_G(readl(ctrl));
}
seq_printf(seq, "mailbox owned by %s\n\n", owner[i]);
for (i = 0; i < MBOX_LEN; i += 8)
seq_printf(seq, "%016llx\n",
(unsigned long long)readq(addr + i));
return 0;
}
static int mbox_open(struct inode *inode, struct file *file)
{
return single_open(file, mbox_show, inode->i_private);
}
static ssize_t mbox_write(struct file *file, const char __user *buf,
size_t count, loff_t *pos)
{
int i;
char c = '\n', s[256];
unsigned long long data[8];
const struct inode *ino;
unsigned int mbox;
struct adapter *adap;
void __iomem *addr;
void __iomem *ctrl;
if (count > sizeof(s) - 1 || !count)
return -EINVAL;
if (copy_from_user(s, buf, count))
return -EFAULT;
s[count] = '\0';
if (sscanf(s, "%llx %llx %llx %llx %llx %llx %llx %llx%c", &data[0],
&data[1], &data[2], &data[3], &data[4], &data[5], &data[6],
&data[7], &c) < 8 || c != '\n')
return -EINVAL;
ino = file_inode(file);
mbox = (uintptr_t)ino->i_private & 7;
adap = ino->i_private - mbox;
addr = adap->regs + PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
ctrl = addr + MBOX_LEN;
if (MBOWNER_G(readl(ctrl)) != X_MBOWNER_PL)
return -EBUSY;
for (i = 0; i < 8; i++)
writeq(data[i], addr + 8 * i);
writel(MBMSGVALID_F | MBOWNER_V(X_MBOWNER_FW), ctrl);
return count;
}
static const struct file_operations mbox_debugfs_fops = {
.owner = THIS_MODULE,
.open = mbox_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
.write = mbox_write
};
static int mps_trc_show(struct seq_file *seq, void *v)
{
int enabled, i;
struct trace_params tp;
unsigned int trcidx = (uintptr_t)seq->private & 3;
struct adapter *adap = seq->private - trcidx;
t4_get_trace_filter(adap, &tp, trcidx, &enabled);
if (!enabled) {
seq_puts(seq, "tracer is disabled\n");
return 0;
}
if (tp.skip_ofst * 8 >= TRACE_LEN) {
dev_err(adap->pdev_dev, "illegal trace pattern skip offset\n");
return -EINVAL;
}
if (tp.port < 8) {
i = adap->chan_map[tp.port & 3];
if (i >= MAX_NPORTS) {
dev_err(adap->pdev_dev, "tracer %u is assigned "
"to non-existing port\n", trcidx);
return -EINVAL;
}
seq_printf(seq, "tracer is capturing %s %s, ",
adap->port[i]->name, tp.port < 4 ? "Rx" : "Tx");
} else
seq_printf(seq, "tracer is capturing loopback %d, ",
tp.port - 8);
seq_printf(seq, "snap length: %u, min length: %u\n", tp.snap_len,
tp.min_len);
seq_printf(seq, "packets captured %smatch filter\n",
tp.invert ? "do not " : "");
if (tp.skip_ofst) {
seq_puts(seq, "filter pattern: ");
for (i = 0; i < tp.skip_ofst * 2; i += 2)
seq_printf(seq, "%08x%08x", tp.data[i], tp.data[i + 1]);
seq_putc(seq, '/');
for (i = 0; i < tp.skip_ofst * 2; i += 2)
seq_printf(seq, "%08x%08x", tp.mask[i], tp.mask[i + 1]);
seq_puts(seq, "@0\n");
}
seq_puts(seq, "filter pattern: ");
for (i = tp.skip_ofst * 2; i < TRACE_LEN / 4; i += 2)
seq_printf(seq, "%08x%08x", tp.data[i], tp.data[i + 1]);
seq_putc(seq, '/');
for (i = tp.skip_ofst * 2; i < TRACE_LEN / 4; i += 2)
seq_printf(seq, "%08x%08x", tp.mask[i], tp.mask[i + 1]);
seq_printf(seq, "@%u\n", (tp.skip_ofst + tp.skip_len) * 8);
return 0;
}
static int mps_trc_open(struct inode *inode, struct file *file)
{
return single_open(file, mps_trc_show, inode->i_private);
}
static unsigned int xdigit2int(unsigned char c)
{
return isdigit(c) ? c - '0' : tolower(c) - 'a' + 10;
}
#define TRC_PORT_NONE 0xff
#define TRC_RSS_ENABLE 0x33
#define TRC_RSS_DISABLE 0x13
/* Set an MPS trace filter. Syntax is:
*
* disable
*
* to disable tracing, or
*
* interface qid=<qid no> [snaplen=<val>] [minlen=<val>] [not] [<pattern>]...
*
* where interface is one of rxN, txN, or loopbackN, N = 0..3, qid can be one
* of the NIC's response qid obtained from sge_qinfo and pattern has the form
*
* <pattern data>[/<pattern mask>][@<anchor>]
*
* Up to 2 filter patterns can be specified. If 2 are supplied the first one
* must be anchored at 0. An omitted mask is taken as a mask of 1s, an omitted
* anchor is taken as 0.
*/
static ssize_t mps_trc_write(struct file *file, const char __user *buf,
size_t count, loff_t *pos)
{
int i, enable, ret;
u32 *data, *mask;
struct trace_params tp;
const struct inode *ino;
unsigned int trcidx;
char *s, *p, *word, *end;
struct adapter *adap;
u32 j;
ino = file_inode(file);
trcidx = (uintptr_t)ino->i_private & 3;
adap = ino->i_private - trcidx;
/* Don't accept input more than 1K, can't be anything valid except lots
* of whitespace. Well, use less.
*/
if (count > 1024)
return -EFBIG;
p = s = kzalloc(count + 1, GFP_USER);
if (!s)
return -ENOMEM;
if (copy_from_user(s, buf, count)) {
count = -EFAULT;
goto out;
}
if (s[count - 1] == '\n')
s[count - 1] = '\0';
enable = strcmp("disable", s) != 0;
if (!enable)
goto apply;
/* enable or disable trace multi rss filter */
if (adap->trace_rss)
t4_write_reg(adap, MPS_TRC_CFG_A, TRC_RSS_ENABLE);
else
t4_write_reg(adap, MPS_TRC_CFG_A, TRC_RSS_DISABLE);
memset(&tp, 0, sizeof(tp));
tp.port = TRC_PORT_NONE;
i = 0; /* counts pattern nibbles */
while (p) {
while (isspace(*p))
p++;
word = strsep(&p, " ");
if (!*word)
break;
if (!strncmp(word, "qid=", 4)) {
end = (char *)word + 4;
ret = kstrtouint(end, 10, &j);
if (ret)
goto out;
if (!adap->trace_rss) {
t4_write_reg(adap, MPS_T5_TRC_RSS_CONTROL_A, j);
continue;
}
switch (trcidx) {
case 0:
t4_write_reg(adap, MPS_TRC_RSS_CONTROL_A, j);
break;
case 1:
t4_write_reg(adap,
MPS_TRC_FILTER1_RSS_CONTROL_A, j);
break;
case 2:
t4_write_reg(adap,
MPS_TRC_FILTER2_RSS_CONTROL_A, j);
break;
case 3:
t4_write_reg(adap,
MPS_TRC_FILTER3_RSS_CONTROL_A, j);
break;
}
continue;
}
if (!strncmp(word, "snaplen=", 8)) {
end = (char *)word + 8;
ret = kstrtouint(end, 10, &j);
if (ret || j > 9600) {
inval: count = -EINVAL;
goto out;
}
tp.snap_len = j;
continue;
}
if (!strncmp(word, "minlen=", 7)) {
end = (char *)word + 7;
ret = kstrtouint(end, 10, &j);
if (ret || j > TFMINPKTSIZE_M)
goto inval;
tp.min_len = j;
continue;
}
if (!strcmp(word, "not")) {
tp.invert = !tp.invert;
continue;
}
if (!strncmp(word, "loopback", 8) && tp.port == TRC_PORT_NONE) {
if (word[8] < '0' || word[8] > '3' || word[9])
goto inval;
tp.port = word[8] - '0' + 8;
continue;
}
if (!strncmp(word, "tx", 2) && tp.port == TRC_PORT_NONE) {
if (word[2] < '0' || word[2] > '3' || word[3])
goto inval;
tp.port = word[2] - '0' + 4;
if (adap->chan_map[tp.port & 3] >= MAX_NPORTS)
goto inval;
continue;
}
if (!strncmp(word, "rx", 2) && tp.port == TRC_PORT_NONE) {
if (word[2] < '0' || word[2] > '3' || word[3])
goto inval;
tp.port = word[2] - '0';
if (adap->chan_map[tp.port] >= MAX_NPORTS)
goto inval;
continue;
}
if (!isxdigit(*word))
goto inval;
/* we have found a trace pattern */
if (i) { /* split pattern */
if (tp.skip_len) /* too many splits */
goto inval;
tp.skip_ofst = i / 16;
}
data = &tp.data[i / 8];
mask = &tp.mask[i / 8];
j = i;
while (isxdigit(*word)) {
if (i >= TRACE_LEN * 2) {
count = -EFBIG;
goto out;
}
*data = (*data << 4) + xdigit2int(*word++);
if (++i % 8 == 0)
data++;
}
if (*word == '/') {
word++;
while (isxdigit(*word)) {
if (j >= i) /* mask longer than data */
goto inval;
*mask = (*mask << 4) + xdigit2int(*word++);
if (++j % 8 == 0)
mask++;
}
if (i != j) /* mask shorter than data */
goto inval;
} else { /* no mask, use all 1s */
for ( ; i - j >= 8; j += 8)
*mask++ = 0xffffffff;
if (i % 8)
*mask = (1 << (i % 8) * 4) - 1;
}
if (*word == '@') {
end = (char *)word + 1;
ret = kstrtouint(end, 10, &j);
if (*end && *end != '\n')
goto inval;
if (j & 7) /* doesn't start at multiple of 8 */
goto inval;
j /= 8;
if (j < tp.skip_ofst) /* overlaps earlier pattern */
goto inval;
if (j - tp.skip_ofst > 31) /* skip too big */
goto inval;
tp.skip_len = j - tp.skip_ofst;
}
if (i % 8) {
*data <<= (8 - i % 8) * 4;
*mask <<= (8 - i % 8) * 4;
i = (i + 15) & ~15; /* 8-byte align */
}
}
if (tp.port == TRC_PORT_NONE)
goto inval;
apply:
i = t4_set_trace_filter(adap, &tp, trcidx, enable);
if (i)
count = i;
out:
kfree(s);
return count;
}
static const struct file_operations mps_trc_debugfs_fops = {
.owner = THIS_MODULE,
.open = mps_trc_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
.write = mps_trc_write
};
static ssize_t flash_read(struct file *file, char __user *buf, size_t count,
loff_t *ppos)
{
loff_t pos = *ppos;
loff_t avail = file_inode(file)->i_size;
struct adapter *adap = file->private_data;
if (pos < 0)
return -EINVAL;
if (pos >= avail)
return 0;
if (count > avail - pos)
count = avail - pos;
while (count) {
size_t len;
int ret, ofst;
u8 data[256];
ofst = pos & 3;
len = min(count + ofst, sizeof(data));
ret = t4_read_flash(adap, pos - ofst, (len + 3) / 4,
(u32 *)data, 1);
if (ret)
return ret;
len -= ofst;
if (copy_to_user(buf, data + ofst, len))
return -EFAULT;
buf += len;
pos += len;
count -= len;
}
count = pos - *ppos;
*ppos = pos;
return count;
}
static const struct file_operations flash_debugfs_fops = {
.owner = THIS_MODULE,
.open = mem_open,
.read = flash_read,
.llseek = default_llseek,
};
static inline void tcamxy2valmask(u64 x, u64 y, u8 *addr, u64 *mask)
{
*mask = x | y;
y = (__force u64)cpu_to_be64(y);
memcpy(addr, (char *)&y + 2, ETH_ALEN);
}
static int mps_tcam_show(struct seq_file *seq, void *v)
{
struct adapter *adap = seq->private;
unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
if (v == SEQ_START_TOKEN) {
if (chip_ver > CHELSIO_T5) {
seq_puts(seq, "Idx Ethernet address Mask "
" VNI Mask IVLAN Vld "
"DIP_Hit Lookup Port "
"Vld Ports PF VF "
"Replication "
" P0 P1 P2 P3 ML\n");
} else {
if (adap->params.arch.mps_rplc_size > 128)
seq_puts(seq, "Idx Ethernet address Mask "
"Vld Ports PF VF "
"Replication "
" P0 P1 P2 P3 ML\n");
else
seq_puts(seq, "Idx Ethernet address Mask "
"Vld Ports PF VF Replication"
" P0 P1 P2 P3 ML\n");
}
} else {
u64 mask;
u8 addr[ETH_ALEN];
bool replicate, dip_hit = false, vlan_vld = false;
unsigned int idx = (uintptr_t)v - 2;
u64 tcamy, tcamx, val;
u32 cls_lo, cls_hi, ctl, data2, vnix = 0, vniy = 0;
u32 rplc[8] = {0};
u8 lookup_type = 0, port_num = 0;
u16 ivlan = 0;
if (chip_ver > CHELSIO_T5) {
/* CtlCmdType - 0: Read, 1: Write
* CtlTcamSel - 0: TCAM0, 1: TCAM1
* CtlXYBitSel- 0: Y bit, 1: X bit
*/
/* Read tcamy */
ctl = CTLCMDTYPE_V(0) | CTLXYBITSEL_V(0);
if (idx < 256)
ctl |= CTLTCAMINDEX_V(idx) | CTLTCAMSEL_V(0);
else
ctl |= CTLTCAMINDEX_V(idx - 256) |
CTLTCAMSEL_V(1);
t4_write_reg(adap, MPS_CLS_TCAM_DATA2_CTL_A, ctl);
val = t4_read_reg(adap, MPS_CLS_TCAM_DATA1_A);
tcamy = DMACH_G(val) << 32;
tcamy |= t4_read_reg(adap, MPS_CLS_TCAM_DATA0_A);
data2 = t4_read_reg(adap, MPS_CLS_TCAM_DATA2_CTL_A);
lookup_type = DATALKPTYPE_G(data2);
/* 0 - Outer header, 1 - Inner header
* [71:48] bit locations are overloaded for
* outer vs. inner lookup types.
*/
if (lookup_type && (lookup_type != DATALKPTYPE_M)) {
/* Inner header VNI */
vniy = (data2 & DATAVIDH2_F) |
(DATAVIDH1_G(data2) << 16) | VIDL_G(val);
dip_hit = data2 & DATADIPHIT_F;
} else {
vlan_vld = data2 & DATAVIDH2_F;
ivlan = VIDL_G(val);
}
port_num = DATAPORTNUM_G(data2);
/* Read tcamx. Change the control param */
vnix = 0;
ctl |= CTLXYBITSEL_V(1);
t4_write_reg(adap, MPS_CLS_TCAM_DATA2_CTL_A, ctl);
val = t4_read_reg(adap, MPS_CLS_TCAM_DATA1_A);
tcamx = DMACH_G(val) << 32;
tcamx |= t4_read_reg(adap, MPS_CLS_TCAM_DATA0_A);
data2 = t4_read_reg(adap, MPS_CLS_TCAM_DATA2_CTL_A);
if (lookup_type && (lookup_type != DATALKPTYPE_M)) {
/* Inner header VNI mask */
vnix = (data2 & DATAVIDH2_F) |
(DATAVIDH1_G(data2) << 16) | VIDL_G(val);
}
} else {
tcamy = t4_read_reg64(adap, MPS_CLS_TCAM_Y_L(idx));
tcamx = t4_read_reg64(adap, MPS_CLS_TCAM_X_L(idx));
}
cls_lo = t4_read_reg(adap, MPS_CLS_SRAM_L(idx));
cls_hi = t4_read_reg(adap, MPS_CLS_SRAM_H(idx));
if (tcamx & tcamy) {
seq_printf(seq, "%3u -\n", idx);
goto out;
}
rplc[0] = rplc[1] = rplc[2] = rplc[3] = 0;
if (chip_ver > CHELSIO_T5)
replicate = (cls_lo & T6_REPLICATE_F);
else
replicate = (cls_lo & REPLICATE_F);
if (replicate) {
struct fw_ldst_cmd ldst_cmd;
int ret;
struct fw_ldst_mps_rplc mps_rplc;
u32 ldst_addrspc;
memset(&ldst_cmd, 0, sizeof(ldst_cmd));
ldst_addrspc =
FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MPS);
ldst_cmd.op_to_addrspace =
htonl(FW_CMD_OP_V(FW_LDST_CMD) |
FW_CMD_REQUEST_F |
FW_CMD_READ_F |
ldst_addrspc);
ldst_cmd.cycles_to_len16 = htonl(FW_LEN16(ldst_cmd));
ldst_cmd.u.mps.rplc.fid_idx =
htons(FW_LDST_CMD_FID_V(FW_LDST_MPS_RPLC) |
FW_LDST_CMD_IDX_V(idx));
ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd,
sizeof(ldst_cmd), &ldst_cmd);
if (ret)
dev_warn(adap->pdev_dev, "Can't read MPS "
"replication map for idx %d: %d\n",
idx, -ret);
else {
mps_rplc = ldst_cmd.u.mps.rplc;
rplc[0] = ntohl(mps_rplc.rplc31_0);
rplc[1] = ntohl(mps_rplc.rplc63_32);
rplc[2] = ntohl(mps_rplc.rplc95_64);
rplc[3] = ntohl(mps_rplc.rplc127_96);
if (adap->params.arch.mps_rplc_size > 128) {
rplc[4] = ntohl(mps_rplc.rplc159_128);
rplc[5] = ntohl(mps_rplc.rplc191_160);
rplc[6] = ntohl(mps_rplc.rplc223_192);
rplc[7] = ntohl(mps_rplc.rplc255_224);
}
}
}
tcamxy2valmask(tcamx, tcamy, addr, &mask);
if (chip_ver > CHELSIO_T5) {
/* Inner header lookup */
if (lookup_type && (lookup_type != DATALKPTYPE_M)) {
seq_printf(seq,
"%3u %pM %012llx %06x %06x - - %3c 'I' %4x %3c %#x%4u%4d",
idx, addr,
(unsigned long long)mask,
vniy, (vnix | vniy),
dip_hit ? 'Y' : 'N',
port_num,
(cls_lo & T6_SRAM_VLD_F) ? 'Y' : 'N',
PORTMAP_G(cls_hi),
T6_PF_G(cls_lo),
(cls_lo & T6_VF_VALID_F) ?
T6_VF_G(cls_lo) : -1);
} else {
seq_printf(seq,
"%3u %pM %012llx - - ",
idx, addr,
(unsigned long long)mask);
if (vlan_vld)
seq_printf(seq, "%4u Y ", ivlan);
else
seq_puts(seq, " - N ");
seq_printf(seq,
"- %3c %4x %3c %#x%4u%4d",
lookup_type ? 'I' : 'O', port_num,
(cls_lo & T6_SRAM_VLD_F) ? 'Y' : 'N',
PORTMAP_G(cls_hi),
T6_PF_G(cls_lo),
(cls_lo & T6_VF_VALID_F) ?
T6_VF_G(cls_lo) : -1);
}
} else
seq_printf(seq, "%3u %pM %012llx%3c %#x%4u%4d",
idx, addr, (unsigned long long)mask,
(cls_lo & SRAM_VLD_F) ? 'Y' : 'N',
PORTMAP_G(cls_hi),
PF_G(cls_lo),
(cls_lo & VF_VALID_F) ? VF_G(cls_lo) : -1);
if (replicate) {
if (adap->params.arch.mps_rplc_size > 128)
seq_printf(seq, " %08x %08x %08x %08x "
"%08x %08x %08x %08x",
rplc[7], rplc[6], rplc[5], rplc[4],
rplc[3], rplc[2], rplc[1], rplc[0]);
else
seq_printf(seq, " %08x %08x %08x %08x",
rplc[3], rplc[2], rplc[1], rplc[0]);
} else {
if (adap->params.arch.mps_rplc_size > 128)
seq_printf(seq, "%72c", ' ');
else
seq_printf(seq, "%36c", ' ');
}
if (chip_ver > CHELSIO_T5)
seq_printf(seq, "%4u%3u%3u%3u %#x\n",
T6_SRAM_PRIO0_G(cls_lo),
T6_SRAM_PRIO1_G(cls_lo),
T6_SRAM_PRIO2_G(cls_lo),
T6_SRAM_PRIO3_G(cls_lo),
(cls_lo >> T6_MULTILISTEN0_S) & 0xf);
else
seq_printf(seq, "%4u%3u%3u%3u %#x\n",
SRAM_PRIO0_G(cls_lo), SRAM_PRIO1_G(cls_lo),
SRAM_PRIO2_G(cls_lo), SRAM_PRIO3_G(cls_lo),
(cls_lo >> MULTILISTEN0_S) & 0xf);
}
out: return 0;
}
static inline void *mps_tcam_get_idx(struct seq_file *seq, loff_t pos)
{
struct adapter *adap = seq->private;
int max_mac_addr = is_t4(adap->params.chip) ?
NUM_MPS_CLS_SRAM_L_INSTANCES :
NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
return ((pos <= max_mac_addr) ? (void *)(uintptr_t)(pos + 1) : NULL);
}
static void *mps_tcam_start(struct seq_file *seq, loff_t *pos)
{
return *pos ? mps_tcam_get_idx(seq, *pos) : SEQ_START_TOKEN;
}
static void *mps_tcam_next(struct seq_file *seq, void *v, loff_t *pos)
{
++*pos;
return mps_tcam_get_idx(seq, *pos);
}
static void mps_tcam_stop(struct seq_file *seq, void *v)
{
}
static const struct seq_operations mps_tcam_seq_ops = {
.start = mps_tcam_start,
.next = mps_tcam_next,
.stop = mps_tcam_stop,
.show = mps_tcam_show
};
static int mps_tcam_open(struct inode *inode, struct file *file)
{
int res = seq_open(file, &mps_tcam_seq_ops);
if (!res) {
struct seq_file *seq = file->private_data;
seq->private = inode->i_private;
}
return res;
}
static const struct file_operations mps_tcam_debugfs_fops = {
.owner = THIS_MODULE,
.open = mps_tcam_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release,
};
/* Display various sensor information.
*/
static int sensors_show(struct seq_file *seq, void *v)
{
struct adapter *adap = seq->private;
u32 param[7], val[7];
int ret;
/* Note that if the sensors haven't been initialized and turned on
* we'll get values of 0, so treat those as "<unknown>" ...
*/
param[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DIAG) |
FW_PARAMS_PARAM_Y_V(FW_PARAM_DEV_DIAG_TMP));
param[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DIAG) |
FW_PARAMS_PARAM_Y_V(FW_PARAM_DEV_DIAG_VDD));
ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
param, val);
if (ret < 0 || val[0] == 0)
seq_puts(seq, "Temperature: <unknown>\n");
else
seq_printf(seq, "Temperature: %dC\n", val[0]);
if (ret < 0 || val[1] == 0)
seq_puts(seq, "Core VDD: <unknown>\n");
else
seq_printf(seq, "Core VDD: %dmV\n", val[1]);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(sensors);
#if IS_ENABLED(CONFIG_IPV6)
DEFINE_SHOW_ATTRIBUTE(clip_tbl);
#endif
/*RSS Table.
*/
static int rss_show(struct seq_file *seq, void *v, int idx)
{
u16 *entry = v;
seq_printf(seq, "%4d: %4u %4u %4u %4u %4u %4u %4u %4u\n",
idx * 8, entry[0], entry[1], entry[2], entry[3], entry[4],
entry[5], entry[6], entry[7]);
return 0;
}
static int rss_open(struct inode *inode, struct file *file)
{
struct adapter *adap = inode->i_private;
int ret, nentries;
struct seq_tab *p;
nentries = t4_chip_rss_size(adap);
p = seq_open_tab(file, nentries / 8, 8 * sizeof(u16), 0, rss_show);
if (!p)
return -ENOMEM;
ret = t4_read_rss(adap, (u16 *)p->data);
if (ret)
seq_release_private(inode, file);
return ret;
}
static const struct file_operations rss_debugfs_fops = {
.owner = THIS_MODULE,
.open = rss_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release_private
};
/* RSS Configuration.
*/
/* Small utility function to return the strings "yes" or "no" if the supplied
* argument is non-zero.
*/
static const char *yesno(int x)
{
static const char *yes = "yes";
static const char *no = "no";
return x ? yes : no;
}
static int rss_config_show(struct seq_file *seq, void *v)
{
struct adapter *adapter = seq->private;
static const char * const keymode[] = {
"global",
"global and per-VF scramble",
"per-PF and per-VF scramble",
"per-VF and per-VF scramble",
};
u32 rssconf;
rssconf = t4_read_reg(adapter, TP_RSS_CONFIG_A);
seq_printf(seq, "TP_RSS_CONFIG: %#x\n", rssconf);
seq_printf(seq, " Tnl4TupEnIpv6: %3s\n", yesno(rssconf &
TNL4TUPENIPV6_F));
seq_printf(seq, " Tnl2TupEnIpv6: %3s\n", yesno(rssconf &
TNL2TUPENIPV6_F));
seq_printf(seq, " Tnl4TupEnIpv4: %3s\n", yesno(rssconf &
TNL4TUPENIPV4_F));
seq_printf(seq, " Tnl2TupEnIpv4: %3s\n", yesno(rssconf &
TNL2TUPENIPV4_F));
seq_printf(seq, " TnlTcpSel: %3s\n", yesno(rssconf & TNLTCPSEL_F));
seq_printf(seq, " TnlIp6Sel: %3s\n", yesno(rssconf & TNLIP6SEL_F));
seq_printf(seq, " TnlVrtSel: %3s\n", yesno(rssconf & TNLVRTSEL_F));
seq_printf(seq, " TnlMapEn: %3s\n", yesno(rssconf & TNLMAPEN_F));
seq_printf(seq, " OfdHashSave: %3s\n", yesno(rssconf &
OFDHASHSAVE_F));
seq_printf(seq, " OfdVrtSel: %3s\n", yesno(rssconf & OFDVRTSEL_F));
seq_printf(seq, " OfdMapEn: %3s\n", yesno(rssconf & OFDMAPEN_F));
seq_printf(seq, " OfdLkpEn: %3s\n", yesno(rssconf & OFDLKPEN_F));
seq_printf(seq, " Syn4TupEnIpv6: %3s\n", yesno(rssconf &
SYN4TUPENIPV6_F));
seq_printf(seq, " Syn2TupEnIpv6: %3s\n", yesno(rssconf &
SYN2TUPENIPV6_F));
seq_printf(seq, " Syn4TupEnIpv4: %3s\n", yesno(rssconf &
SYN4TUPENIPV4_F));
seq_printf(seq, " Syn2TupEnIpv4: %3s\n", yesno(rssconf &
SYN2TUPENIPV4_F));
seq_printf(seq, " Syn4TupEnIpv6: %3s\n", yesno(rssconf &
SYN4TUPENIPV6_F));
seq_printf(seq, " SynIp6Sel: %3s\n", yesno(rssconf & SYNIP6SEL_F));
seq_printf(seq, " SynVrt6Sel: %3s\n", yesno(rssconf & SYNVRTSEL_F));
seq_printf(seq, " SynMapEn: %3s\n", yesno(rssconf & SYNMAPEN_F));
seq_printf(seq, " SynLkpEn: %3s\n", yesno(rssconf & SYNLKPEN_F));
seq_printf(seq, " ChnEn: %3s\n", yesno(rssconf &
CHANNELENABLE_F));
seq_printf(seq, " PrtEn: %3s\n", yesno(rssconf &
PORTENABLE_F));
seq_printf(seq, " TnlAllLkp: %3s\n", yesno(rssconf &
TNLALLLOOKUP_F));
seq_printf(seq, " VrtEn: %3s\n", yesno(rssconf &
VIRTENABLE_F));
seq_printf(seq, " CngEn: %3s\n", yesno(rssconf &
CONGESTIONENABLE_F));
seq_printf(seq, " HashToeplitz: %3s\n", yesno(rssconf &
HASHTOEPLITZ_F));
seq_printf(seq, " Udp4En: %3s\n", yesno(rssconf & UDPENABLE_F));
seq_printf(seq, " Disable: %3s\n", yesno(rssconf & DISABLE_F));
seq_puts(seq, "\n");
rssconf = t4_read_reg(adapter, TP_RSS_CONFIG_TNL_A);
seq_printf(seq, "TP_RSS_CONFIG_TNL: %#x\n", rssconf);
seq_printf(seq, " MaskSize: %3d\n", MASKSIZE_G(rssconf));
seq_printf(seq, " MaskFilter: %3d\n", MASKFILTER_G(rssconf));
if (CHELSIO_CHIP_VERSION(adapter->params.chip) > CHELSIO_T5) {
seq_printf(seq, " HashAll: %3s\n",
yesno(rssconf & HASHALL_F));
seq_printf(seq, " HashEth: %3s\n",
yesno(rssconf & HASHETH_F));
}
seq_printf(seq, " UseWireCh: %3s\n", yesno(rssconf & USEWIRECH_F));
seq_puts(seq, "\n");
rssconf = t4_read_reg(adapter, TP_RSS_CONFIG_OFD_A);
seq_printf(seq, "TP_RSS_CONFIG_OFD: %#x\n", rssconf);
seq_printf(seq, " MaskSize: %3d\n", MASKSIZE_G(rssconf));
seq_printf(seq, " RRCplMapEn: %3s\n", yesno(rssconf &
RRCPLMAPEN_F));
seq_printf(seq, " RRCplQueWidth: %3d\n", RRCPLQUEWIDTH_G(rssconf));
seq_puts(seq, "\n");
rssconf = t4_read_reg(adapter, TP_RSS_CONFIG_SYN_A);
seq_printf(seq, "TP_RSS_CONFIG_SYN: %#x\n", rssconf);
seq_printf(seq, " MaskSize: %3d\n", MASKSIZE_G(rssconf));
seq_printf(seq, " UseWireCh: %3s\n", yesno(rssconf & USEWIRECH_F));
seq_puts(seq, "\n");
rssconf = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
seq_printf(seq, "TP_RSS_CONFIG_VRT: %#x\n", rssconf);
if (CHELSIO_CHIP_VERSION(adapter->params.chip) > CHELSIO_T5) {
seq_printf(seq, " KeyWrAddrX: %3d\n",
KEYWRADDRX_G(rssconf));
seq_printf(seq, " KeyExtend: %3s\n",
yesno(rssconf & KEYEXTEND_F));
}
seq_printf(seq, " VfRdRg: %3s\n", yesno(rssconf & VFRDRG_F));
seq_printf(seq, " VfRdEn: %3s\n", yesno(rssconf & VFRDEN_F));
seq_printf(seq, " VfPerrEn: %3s\n", yesno(rssconf & VFPERREN_F));
seq_printf(seq, " KeyPerrEn: %3s\n", yesno(rssconf & KEYPERREN_F));
seq_printf(seq, " DisVfVlan: %3s\n", yesno(rssconf &
DISABLEVLAN_F));
seq_printf(seq, " EnUpSwt: %3s\n", yesno(rssconf & ENABLEUP0_F));
seq_printf(seq, " HashDelay: %3d\n", HASHDELAY_G(rssconf));
if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
seq_printf(seq, " VfWrAddr: %3d\n", VFWRADDR_G(rssconf));
else
seq_printf(seq, " VfWrAddr: %3d\n",
T6_VFWRADDR_G(rssconf));
seq_printf(seq, " KeyMode: %s\n", keymode[KEYMODE_G(rssconf)]);
seq_printf(seq, " VfWrEn: %3s\n", yesno(rssconf & VFWREN_F));
seq_printf(seq, " KeyWrEn: %3s\n", yesno(rssconf & KEYWREN_F));
seq_printf(seq, " KeyWrAddr: %3d\n", KEYWRADDR_G(rssconf));
seq_puts(seq, "\n");
rssconf = t4_read_reg(adapter, TP_RSS_CONFIG_CNG_A);
seq_printf(seq, "TP_RSS_CONFIG_CNG: %#x\n", rssconf);
seq_printf(seq, " ChnCount3: %3s\n", yesno(rssconf & CHNCOUNT3_F));
seq_printf(seq, " ChnCount2: %3s\n", yesno(rssconf & CHNCOUNT2_F));
seq_printf(seq, " ChnCount1: %3s\n", yesno(rssconf & CHNCOUNT1_F));
seq_printf(seq, " ChnCount0: %3s\n", yesno(rssconf & CHNCOUNT0_F));
seq_printf(seq, " ChnUndFlow3: %3s\n", yesno(rssconf &
CHNUNDFLOW3_F));
seq_printf(seq, " ChnUndFlow2: %3s\n", yesno(rssconf &
CHNUNDFLOW2_F));
seq_printf(seq, " ChnUndFlow1: %3s\n", yesno(rssconf &
CHNUNDFLOW1_F));
seq_printf(seq, " ChnUndFlow0: %3s\n", yesno(rssconf &
CHNUNDFLOW0_F));
seq_printf(seq, " RstChn3: %3s\n", yesno(rssconf & RSTCHN3_F));
seq_printf(seq, " RstChn2: %3s\n", yesno(rssconf & RSTCHN2_F));
seq_printf(seq, " RstChn1: %3s\n", yesno(rssconf & RSTCHN1_F));
seq_printf(seq, " RstChn0: %3s\n", yesno(rssconf & RSTCHN0_F));
seq_printf(seq, " UpdVld: %3s\n", yesno(rssconf & UPDVLD_F));
seq_printf(seq, " Xoff: %3s\n", yesno(rssconf & XOFF_F));
seq_printf(seq, " UpdChn3: %3s\n", yesno(rssconf & UPDCHN3_F));
seq_printf(seq, " UpdChn2: %3s\n", yesno(rssconf & UPDCHN2_F));
seq_printf(seq, " UpdChn1: %3s\n", yesno(rssconf & UPDCHN1_F));
seq_printf(seq, " UpdChn0: %3s\n", yesno(rssconf & UPDCHN0_F));
seq_printf(seq, " Queue: %3d\n", QUEUE_G(rssconf));
return 0;
}
DEFINE_SHOW_ATTRIBUTE(rss_config);
/* RSS Secret Key.
*/
static int rss_key_show(struct seq_file *seq, void *v)
{
u32 key[10];
t4_read_rss_key(seq->private, key, true);
seq_printf(seq, "%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x\n",
key[9], key[8], key[7], key[6], key[5], key[4], key[3],
key[2], key[1], key[0]);
return 0;
}
static int rss_key_open(struct inode *inode, struct file *file)
{
return single_open(file, rss_key_show, inode->i_private);
}
static ssize_t rss_key_write(struct file *file, const char __user *buf,
size_t count, loff_t *pos)
{
int i, j;
u32 key[10];
char s[100], *p;
struct adapter *adap = file_inode(file)->i_private;
if (count > sizeof(s) - 1)
return -EINVAL;
if (copy_from_user(s, buf, count))
return -EFAULT;
for (i = count; i > 0 && isspace(s[i - 1]); i--)
;
s[i] = '\0';
for (p = s, i = 9; i >= 0; i--) {
key[i] = 0;
for (j = 0; j < 8; j++, p++) {
if (!isxdigit(*p))
return -EINVAL;
key[i] = (key[i] << 4) | hex2val(*p);
}
}
t4_write_rss_key(adap, key, -1, true);
return count;
}
static const struct file_operations rss_key_debugfs_fops = {
.owner = THIS_MODULE,
.open = rss_key_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
.write = rss_key_write
};
/* PF RSS Configuration.
*/
struct rss_pf_conf {
u32 rss_pf_map;
u32 rss_pf_mask;
u32 rss_pf_config;
};
static int rss_pf_config_show(struct seq_file *seq, void *v, int idx)
{
struct rss_pf_conf *pfconf;
if (v == SEQ_START_TOKEN) {
/* use the 0th entry to dump the PF Map Index Size */
pfconf = seq->private + offsetof(struct seq_tab, data);
seq_printf(seq, "PF Map Index Size = %d\n\n",
LKPIDXSIZE_G(pfconf->rss_pf_map));
seq_puts(seq, " RSS PF VF Hash Tuple Enable Default\n");
seq_puts(seq, " Enable IPF Mask Mask IPv6 IPv4 UDP Queue\n");
seq_puts(seq, " PF Map Chn Prt Map Size Size Four Two Four Two Four Ch1 Ch0\n");
} else {
#define G_PFnLKPIDX(map, n) \
(((map) >> PF1LKPIDX_S*(n)) & PF0LKPIDX_M)
#define G_PFnMSKSIZE(mask, n) \
(((mask) >> PF1MSKSIZE_S*(n)) & PF1MSKSIZE_M)
pfconf = v;
seq_printf(seq, "%3d %3s %3s %3s %3d %3d %3d %3s %3s %3s %3s %3s %3d %3d\n",
idx,
yesno(pfconf->rss_pf_config & MAPENABLE_F),
yesno(pfconf->rss_pf_config & CHNENABLE_F),
yesno(pfconf->rss_pf_config & PRTENABLE_F),
G_PFnLKPIDX(pfconf->rss_pf_map, idx),
G_PFnMSKSIZE(pfconf->rss_pf_mask, idx),
IVFWIDTH_G(pfconf->rss_pf_config),
yesno(pfconf->rss_pf_config & IP6FOURTUPEN_F),
yesno(pfconf->rss_pf_config & IP6TWOTUPEN_F),
yesno(pfconf->rss_pf_config & IP4FOURTUPEN_F),
yesno(pfconf->rss_pf_config & IP4TWOTUPEN_F),
yesno(pfconf->rss_pf_config & UDPFOURTUPEN_F),
CH1DEFAULTQUEUE_G(pfconf->rss_pf_config),
CH0DEFAULTQUEUE_G(pfconf->rss_pf_config));
#undef G_PFnLKPIDX
#undef G_PFnMSKSIZE
}
return 0;
}
static int rss_pf_config_open(struct inode *inode, struct file *file)
{
struct adapter *adapter = inode->i_private;
struct seq_tab *p;
u32 rss_pf_map, rss_pf_mask;
struct rss_pf_conf *pfconf;
int pf;
p = seq_open_tab(file, 8, sizeof(*pfconf), 1, rss_pf_config_show);
if (!p)
return -ENOMEM;
pfconf = (struct rss_pf_conf *)p->data;
rss_pf_map = t4_read_rss_pf_map(adapter, true);
rss_pf_mask = t4_read_rss_pf_mask(adapter, true);
for (pf = 0; pf < 8; pf++) {
pfconf[pf].rss_pf_map = rss_pf_map;
pfconf[pf].rss_pf_mask = rss_pf_mask;
t4_read_rss_pf_config(adapter, pf, &pfconf[pf].rss_pf_config,
true);
}
return 0;
}
static const struct file_operations rss_pf_config_debugfs_fops = {
.owner = THIS_MODULE,
.open = rss_pf_config_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release_private
};
/* VF RSS Configuration.
*/
struct rss_vf_conf {
u32 rss_vf_vfl;
u32 rss_vf_vfh;
};
static int rss_vf_config_show(struct seq_file *seq, void *v, int idx)
{
if (v == SEQ_START_TOKEN) {
seq_puts(seq, " RSS Hash Tuple Enable\n");
seq_puts(seq, " Enable IVF Dis Enb IPv6 IPv4 UDP Def Secret Key\n");
seq_puts(seq, " VF Chn Prt Map VLAN uP Four Two Four Two Four Que Idx Hash\n");
} else {
struct rss_vf_conf *vfconf = v;
seq_printf(seq, "%3d %3s %3s %3d %3s %3s %3s %3s %3s %3s %3s %4d %3d %#10x\n",
idx,
yesno(vfconf->rss_vf_vfh & VFCHNEN_F),
yesno(vfconf->rss_vf_vfh & VFPRTEN_F),
VFLKPIDX_G(vfconf->rss_vf_vfh),
yesno(vfconf->rss_vf_vfh & VFVLNEX_F),
yesno(vfconf->rss_vf_vfh & VFUPEN_F),
yesno(vfconf->rss_vf_vfh & VFIP4FOURTUPEN_F),
yesno(vfconf->rss_vf_vfh & VFIP6TWOTUPEN_F),
yesno(vfconf->rss_vf_vfh & VFIP4FOURTUPEN_F),
yesno(vfconf->rss_vf_vfh & VFIP4TWOTUPEN_F),
yesno(vfconf->rss_vf_vfh & ENABLEUDPHASH_F),
DEFAULTQUEUE_G(vfconf->rss_vf_vfh),
KEYINDEX_G(vfconf->rss_vf_vfh),
vfconf->rss_vf_vfl);
}
return 0;
}
static int rss_vf_config_open(struct inode *inode, struct file *file)
{
struct adapter *adapter = inode->i_private;
struct seq_tab *p;
struct rss_vf_conf *vfconf;
int vf, vfcount = adapter->params.arch.vfcount;
p = seq_open_tab(file, vfcount, sizeof(*vfconf), 1, rss_vf_config_show);
if (!p)
return -ENOMEM;
vfconf = (struct rss_vf_conf *)p->data;
for (vf = 0; vf < vfcount; vf++) {
t4_read_rss_vf_config(adapter, vf, &vfconf[vf].rss_vf_vfl,
&vfconf[vf].rss_vf_vfh, true);
}
return 0;
}
static const struct file_operations rss_vf_config_debugfs_fops = {
.owner = THIS_MODULE,
.open = rss_vf_config_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release_private
};
#ifdef CONFIG_CHELSIO_T4_DCB
/* Data Center Briging information for each port.
*/
static int dcb_info_show(struct seq_file *seq, void *v)
{
struct adapter *adap = seq->private;
if (v == SEQ_START_TOKEN) {
seq_puts(seq, "Data Center Bridging Information\n");
} else {
int port = (uintptr_t)v - 2;
struct net_device *dev = adap->port[port];
struct port_info *pi = netdev2pinfo(dev);
struct port_dcb_info *dcb = &pi->dcb;
seq_puts(seq, "\n");
seq_printf(seq, "Port: %d (DCB negotiated: %s)\n",
port,
cxgb4_dcb_enabled(dev) ? "yes" : "no");
if (cxgb4_dcb_enabled(dev))
seq_printf(seq, "[ DCBx Version %s ]\n",
dcb_ver_array[dcb->dcb_version]);
if (dcb->msgs) {
int i;
seq_puts(seq, "\n Index\t\t\t :\t");
for (i = 0; i < 8; i++)
seq_printf(seq, " %3d", i);
seq_puts(seq, "\n\n");
}
if (dcb->msgs & CXGB4_DCB_FW_PGID) {
int prio, pgid;
seq_puts(seq, " Priority Group IDs\t :\t");
for (prio = 0; prio < 8; prio++) {
pgid = (dcb->pgid >> 4 * (7 - prio)) & 0xf;
seq_printf(seq, " %3d", pgid);
}
seq_puts(seq, "\n");
}
if (dcb->msgs & CXGB4_DCB_FW_PGRATE) {
int pg;
seq_puts(seq, " Priority Group BW(%)\t :\t");
for (pg = 0; pg < 8; pg++)
seq_printf(seq, " %3d", dcb->pgrate[pg]);
seq_puts(seq, "\n");
if (dcb->dcb_version == FW_PORT_DCB_VER_IEEE) {
seq_puts(seq, " TSA Algorithm\t\t :\t");
for (pg = 0; pg < 8; pg++)
seq_printf(seq, " %3d", dcb->tsa[pg]);
seq_puts(seq, "\n");
}
seq_printf(seq, " Max PG Traffic Classes [%3d ]\n",
dcb->pg_num_tcs_supported);
seq_puts(seq, "\n");
}
if (dcb->msgs & CXGB4_DCB_FW_PRIORATE) {
int prio;
seq_puts(seq, " Priority Rate\t:\t");
for (prio = 0; prio < 8; prio++)
seq_printf(seq, " %3d", dcb->priorate[prio]);
seq_puts(seq, "\n");
}
if (dcb->msgs & CXGB4_DCB_FW_PFC) {
int prio;
seq_puts(seq, " Priority Flow Control :\t");
for (prio = 0; prio < 8; prio++) {
int pfcen = (dcb->pfcen >> 1 * (7 - prio))
& 0x1;
seq_printf(seq, " %3d", pfcen);
}
seq_puts(seq, "\n");
seq_printf(seq, " Max PFC Traffic Classes [%3d ]\n",
dcb->pfc_num_tcs_supported);
seq_puts(seq, "\n");
}
if (dcb->msgs & CXGB4_DCB_FW_APP_ID) {
int app, napps;
seq_puts(seq, " Application Information:\n");
seq_puts(seq, " App Priority Selection Protocol\n");
seq_puts(seq, " Index Map Field ID\n");
for (app = 0, napps = 0;
app < CXGB4_MAX_DCBX_APP_SUPPORTED; app++) {
struct app_priority *ap;
static const char * const sel_names[] = {
"Ethertype",
"Socket TCP",
"Socket UDP",
"Socket All",
};
const char *sel_name;
ap = &dcb->app_priority[app];
/* skip empty slots */
if (ap->protocolid == 0)
continue;
napps++;
if (ap->sel_field < ARRAY_SIZE(sel_names))
sel_name = sel_names[ap->sel_field];
else
sel_name = "UNKNOWN";
seq_printf(seq, " %3d %#04x %-10s (%d) %#06x (%d)\n",
app,
ap->user_prio_map,
sel_name, ap->sel_field,
ap->protocolid, ap->protocolid);
}
if (napps == 0)
seq_puts(seq, " --- None ---\n");
}
}
return 0;
}
static inline void *dcb_info_get_idx(struct adapter *adap, loff_t pos)
{
return (pos <= adap->params.nports
? (void *)((uintptr_t)pos + 1)
: NULL);
}
static void *dcb_info_start(struct seq_file *seq, loff_t *pos)
{
struct adapter *adap = seq->private;
return (*pos
? dcb_info_get_idx(adap, *pos)
: SEQ_START_TOKEN);
}
static void dcb_info_stop(struct seq_file *seq, void *v)
{
}
static void *dcb_info_next(struct seq_file *seq, void *v, loff_t *pos)
{
struct adapter *adap = seq->private;
(*pos)++;
return dcb_info_get_idx(adap, *pos);
}
static const struct seq_operations dcb_info_seq_ops = {
.start = dcb_info_start,
.next = dcb_info_next,
.stop = dcb_info_stop,
.show = dcb_info_show
};
static int dcb_info_open(struct inode *inode, struct file *file)
{
int res = seq_open(file, &dcb_info_seq_ops);
if (!res) {
struct seq_file *seq = file->private_data;
seq->private = inode->i_private;
}
return res;
}
static const struct file_operations dcb_info_debugfs_fops = {
.owner = THIS_MODULE,
.open = dcb_info_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release,
};
#endif /* CONFIG_CHELSIO_T4_DCB */
static int resources_show(struct seq_file *seq, void *v)
{
struct adapter *adapter = seq->private;
struct pf_resources *pfres = &adapter->params.pfres;
#define S(desc, fmt, var) \
seq_printf(seq, "%-60s " fmt "\n", \
desc " (" #var "):", pfres->var)
S("Virtual Interfaces", "%d", nvi);
S("Egress Queues", "%d", neq);
S("Ethernet Control", "%d", nethctrl);
S("Ingress Queues/w Free Lists/Interrupts", "%d", niqflint);
S("Ingress Queues", "%d", niq);
S("Traffic Class", "%d", tc);
S("Port Access Rights Mask", "%#x", pmask);
S("MAC Address Filters", "%d", nexactf);
S("Firmware Command Read Capabilities", "%#x", r_caps);
S("Firmware Command Write/Execute Capabilities", "%#x", wx_caps);
#undef S
return 0;
}
DEFINE_SHOW_ATTRIBUTE(resources);
/**
* ethqset2pinfo - return port_info of an Ethernet Queue Set
* @adap: the adapter
* @qset: Ethernet Queue Set
*/
static inline struct port_info *ethqset2pinfo(struct adapter *adap, int qset)
{
int pidx;
for_each_port(adap, pidx) {
struct port_info *pi = adap2pinfo(adap, pidx);
if (qset >= pi->first_qset &&
qset < pi->first_qset + pi->nqsets)
return pi;
}
/* should never happen! */
BUG();
return NULL;
}
static int sge_qinfo_uld_txq_entries(const struct adapter *adap, int uld)
{
const struct sge_uld_txq_info *utxq_info = adap->sge.uld_txq_info[uld];
if (!utxq_info)
return 0;
return DIV_ROUND_UP(utxq_info->ntxq, 4);
}
static int sge_qinfo_uld_rspq_entries(const struct adapter *adap, int uld,
bool ciq)
{
const struct sge_uld_rxq_info *urxq_info = adap->sge.uld_rxq_info[uld];
if (!urxq_info)
return 0;
return ciq ? DIV_ROUND_UP(urxq_info->nciq, 4) :
DIV_ROUND_UP(urxq_info->nrxq, 4);
}
static int sge_qinfo_uld_rxq_entries(const struct adapter *adap, int uld)
{
return sge_qinfo_uld_rspq_entries(adap, uld, false);
}
static int sge_qinfo_uld_ciq_entries(const struct adapter *adap, int uld)
{
return sge_qinfo_uld_rspq_entries(adap, uld, true);
}
static int sge_qinfo_show(struct seq_file *seq, void *v)
{
int eth_entries, ctrl_entries, eohw_entries = 0, eosw_entries = 0;
int uld_rxq_entries[CXGB4_ULD_MAX] = { 0 };
int uld_ciq_entries[CXGB4_ULD_MAX] = { 0 };
int uld_txq_entries[CXGB4_TX_MAX] = { 0 };
const struct sge_uld_txq_info *utxq_info;
const struct sge_uld_rxq_info *urxq_info;
struct cxgb4_tc_port_mqprio *port_mqprio;
struct adapter *adap = seq->private;
int i, j, n, r = (uintptr_t)v - 1;
struct sge *s = &adap->sge;
eth_entries = DIV_ROUND_UP(adap->sge.ethqsets, 4);
ctrl_entries = DIV_ROUND_UP(MAX_CTRL_QUEUES, 4);
if (r)
seq_putc(seq, '\n');
#define S3(fmt_spec, s, v) \
do { \
seq_printf(seq, "%-12s", s); \
for (i = 0; i < n; ++i) \
seq_printf(seq, " %16" fmt_spec, v); \
seq_putc(seq, '\n'); \
} while (0)
#define S(s, v) S3("s", s, v)
#define T3(fmt_spec, s, v) S3(fmt_spec, s, tx[i].v)
#define T(s, v) S3("u", s, tx[i].v)
#define TL(s, v) T3("lu", s, v)
#define R3(fmt_spec, s, v) S3(fmt_spec, s, rx[i].v)
#define R(s, v) S3("u", s, rx[i].v)
#define RL(s, v) R3("lu", s, v)
if (r < eth_entries) {
int base_qset = r * 4;
const struct sge_eth_rxq *rx = &s->ethrxq[base_qset];
const struct sge_eth_txq *tx = &s->ethtxq[base_qset];
n = min(4, s->ethqsets - 4 * r);
S("QType:", "Ethernet");
S("Interface:",
rx[i].rspq.netdev ? rx[i].rspq.netdev->name : "N/A");
T("TxQ ID:", q.cntxt_id);
T("TxQ size:", q.size);
T("TxQ inuse:", q.in_use);
T("TxQ CIDX:", q.cidx);
T("TxQ PIDX:", q.pidx);
#ifdef CONFIG_CHELSIO_T4_DCB
T("DCB Prio:", dcb_prio);
S3("u", "DCB PGID:",
(ethqset2pinfo(adap, base_qset + i)->dcb.pgid >>
4*(7-tx[i].dcb_prio)) & 0xf);
S3("u", "DCB PFC:",
(ethqset2pinfo(adap, base_qset + i)->dcb.pfcen >>
1*(7-tx[i].dcb_prio)) & 0x1);
#endif
R("RspQ ID:", rspq.abs_id);
R("RspQ size:", rspq.size);
R("RspQE size:", rspq.iqe_len);
R("RspQ CIDX:", rspq.cidx);
R("RspQ Gen:", rspq.gen);
S3("u", "Intr delay:", qtimer_val(adap, &rx[i].rspq));
S3("u", "Intr pktcnt:", s->counter_val[rx[i].rspq.pktcnt_idx]);
R("FL ID:", fl.cntxt_id);
R("FL size:", fl.size - 8);
R("FL pend:", fl.pend_cred);
R("FL avail:", fl.avail);
R("FL PIDX:", fl.pidx);
R("FL CIDX:", fl.cidx);
RL("RxPackets:", stats.pkts);
RL("RxCSO:", stats.rx_cso);
RL("VLANxtract:", stats.vlan_ex);
RL("LROmerged:", stats.lro_merged);
RL("LROpackets:", stats.lro_pkts);
RL("RxDrops:", stats.rx_drops);
RL("RxBadPkts:", stats.bad_rx_pkts);
TL("TSO:", tso);
TL("USO:", uso);
TL("TxCSO:", tx_cso);
TL("VLANins:", vlan_ins);
TL("TxQFull:", q.stops);
TL("TxQRestarts:", q.restarts);
TL("TxMapErr:", mapping_err);
RL("FLAllocErr:", fl.alloc_failed);
RL("FLLrgAlcErr:", fl.large_alloc_failed);
RL("FLMapErr:", fl.mapping_err);
RL("FLLow:", fl.low);
RL("FLStarving:", fl.starving);
goto out;
}
r -= eth_entries;
for_each_port(adap, j) {
struct port_info *pi = adap2pinfo(adap, j);
const struct sge_eth_rxq *rx;
mutex_lock(&pi->vi_mirror_mutex);
if (!pi->vi_mirror_count) {
mutex_unlock(&pi->vi_mirror_mutex);
continue;
}
if (r >= DIV_ROUND_UP(pi->nmirrorqsets, 4)) {
r -= DIV_ROUND_UP(pi->nmirrorqsets, 4);
mutex_unlock(&pi->vi_mirror_mutex);
continue;
}
rx = &s->mirror_rxq[j][r * 4];
n = min(4, pi->nmirrorqsets - 4 * r);
S("QType:", "Mirror-Rxq");
S("Interface:",
rx[i].rspq.netdev ? rx[i].rspq.netdev->name : "N/A");
R("RspQ ID:", rspq.abs_id);
R("RspQ size:", rspq.size);
R("RspQE size:", rspq.iqe_len);
R("RspQ CIDX:", rspq.cidx);
R("RspQ Gen:", rspq.gen);
S3("u", "Intr delay:", qtimer_val(adap, &rx[i].rspq));
S3("u", "Intr pktcnt:", s->counter_val[rx[i].rspq.pktcnt_idx]);
R("FL ID:", fl.cntxt_id);
R("FL size:", fl.size - 8);
R("FL pend:", fl.pend_cred);
R("FL avail:", fl.avail);
R("FL PIDX:", fl.pidx);
R("FL CIDX:", fl.cidx);
RL("RxPackets:", stats.pkts);
RL("RxCSO:", stats.rx_cso);
RL("VLANxtract:", stats.vlan_ex);
RL("LROmerged:", stats.lro_merged);
RL("LROpackets:", stats.lro_pkts);
RL("RxDrops:", stats.rx_drops);
RL("RxBadPkts:", stats.bad_rx_pkts);
RL("FLAllocErr:", fl.alloc_failed);
RL("FLLrgAlcErr:", fl.large_alloc_failed);
RL("FLMapErr:", fl.mapping_err);
RL("FLLow:", fl.low);
RL("FLStarving:", fl.starving);
mutex_unlock(&pi->vi_mirror_mutex);
goto out;
}
if (!adap->tc_mqprio)
goto skip_mqprio;
mutex_lock(&adap->tc_mqprio->mqprio_mutex);
if (!refcount_read(&adap->tc_mqprio->refcnt)) {
mutex_unlock(&adap->tc_mqprio->mqprio_mutex);
goto skip_mqprio;
}
eohw_entries = DIV_ROUND_UP(adap->sge.eoqsets, 4);
if (r < eohw_entries) {
int base_qset = r * 4;
const struct sge_ofld_rxq *rx = &s->eohw_rxq[base_qset];
const struct sge_eohw_txq *tx = &s->eohw_txq[base_qset];
n = min(4, s->eoqsets - 4 * r);
S("QType:", "ETHOFLD");
S("Interface:",
rx[i].rspq.netdev ? rx[i].rspq.netdev->name : "N/A");
T("TxQ ID:", q.cntxt_id);
T("TxQ size:", q.size);
T("TxQ inuse:", q.in_use);
T("TxQ CIDX:", q.cidx);
T("TxQ PIDX:", q.pidx);
R("RspQ ID:", rspq.abs_id);
R("RspQ size:", rspq.size);
R("RspQE size:", rspq.iqe_len);
R("RspQ CIDX:", rspq.cidx);
R("RspQ Gen:", rspq.gen);
S3("u", "Intr delay:", qtimer_val(adap, &rx[i].rspq));
S3("u", "Intr pktcnt:", s->counter_val[rx[i].rspq.pktcnt_idx]);
R("FL ID:", fl.cntxt_id);
S3("u", "FL size:", rx->fl.size ? rx->fl.size - 8 : 0);
R("FL pend:", fl.pend_cred);
R("FL avail:", fl.avail);
R("FL PIDX:", fl.pidx);
R("FL CIDX:", fl.cidx);
RL("RxPackets:", stats.pkts);
RL("RxImm:", stats.imm);
RL("RxAN", stats.an);
RL("RxNoMem", stats.nomem);
TL("TSO:", tso);
TL("USO:", uso);
TL("TxCSO:", tx_cso);
TL("VLANins:", vlan_ins);
TL("TxQFull:", q.stops);
TL("TxQRestarts:", q.restarts);
TL("TxMapErr:", mapping_err);
RL("FLAllocErr:", fl.alloc_failed);
RL("FLLrgAlcErr:", fl.large_alloc_failed);
RL("FLMapErr:", fl.mapping_err);
RL("FLLow:", fl.low);
RL("FLStarving:", fl.starving);
mutex_unlock(&adap->tc_mqprio->mqprio_mutex);
goto out;
}
r -= eohw_entries;
for (j = 0; j < adap->params.nports; j++) {
int entries;
u8 tc;
port_mqprio = &adap->tc_mqprio->port_mqprio[j];
entries = 0;
for (tc = 0; tc < port_mqprio->mqprio.qopt.num_tc; tc++)
entries += port_mqprio->mqprio.qopt.count[tc];
if (!entries)
continue;
eosw_entries = DIV_ROUND_UP(entries, 4);
if (r < eosw_entries) {
const struct sge_eosw_txq *tx;
n = min(4, entries - 4 * r);
tx = &port_mqprio->eosw_txq[4 * r];
S("QType:", "EOSW-TXQ");
S("Interface:",
adap->port[j] ? adap->port[j]->name : "N/A");
T("EOTID:", hwtid);
T("HWQID:", hwqid);
T("State:", state);
T("Size:", ndesc);
T("In-Use:", inuse);
T("Credits:", cred);
T("Compl:", ncompl);
T("Last-Compl:", last_compl);
T("PIDX:", pidx);
T("Last-PIDX:", last_pidx);
T("CIDX:", cidx);
T("Last-CIDX:", last_cidx);
T("FLOWC-IDX:", flowc_idx);
mutex_unlock(&adap->tc_mqprio->mqprio_mutex);
goto out;
}
r -= eosw_entries;
}
mutex_unlock(&adap->tc_mqprio->mqprio_mutex);
skip_mqprio:
if (!is_uld(adap))
goto skip_uld;
mutex_lock(&uld_mutex);
if (s->uld_txq_info)
for (i = 0; i < ARRAY_SIZE(uld_txq_entries); i++)
uld_txq_entries[i] = sge_qinfo_uld_txq_entries(adap, i);
if (s->uld_rxq_info) {
for (i = 0; i < ARRAY_SIZE(uld_rxq_entries); i++) {
uld_rxq_entries[i] = sge_qinfo_uld_rxq_entries(adap, i);
uld_ciq_entries[i] = sge_qinfo_uld_ciq_entries(adap, i);
}
}
if (r < uld_txq_entries[CXGB4_TX_OFLD]) {
const struct sge_uld_txq *tx;
utxq_info = s->uld_txq_info[CXGB4_TX_OFLD];
tx = &utxq_info->uldtxq[r * 4];
n = min(4, utxq_info->ntxq - 4 * r);
S("QType:", "OFLD-TXQ");
T("TxQ ID:", q.cntxt_id);
T("TxQ size:", q.size);
T("TxQ inuse:", q.in_use);
T("TxQ CIDX:", q.cidx);
T("TxQ PIDX:", q.pidx);
goto unlock;
}
r -= uld_txq_entries[CXGB4_TX_OFLD];
if (r < uld_rxq_entries[CXGB4_ULD_RDMA]) {
const struct sge_ofld_rxq *rx;
urxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA];
rx = &urxq_info->uldrxq[r * 4];
n = min(4, urxq_info->nrxq - 4 * r);
S("QType:", "RDMA-CPL");
S("Interface:",
rx[i].rspq.netdev ? rx[i].rspq.netdev->name : "N/A");
R("RspQ ID:", rspq.abs_id);
R("RspQ size:", rspq.size);
R("RspQE size:", rspq.iqe_len);
R("RspQ CIDX:", rspq.cidx);
R("RspQ Gen:", rspq.gen);
S3("u", "Intr delay:", qtimer_val(adap, &rx[i].rspq));
S3("u", "Intr pktcnt:", s->counter_val[rx[i].rspq.pktcnt_idx]);
R("FL ID:", fl.cntxt_id);
R("FL size:", fl.size - 8);
R("FL pend:", fl.pend_cred);
R("FL avail:", fl.avail);
R("FL PIDX:", fl.pidx);
R("FL CIDX:", fl.cidx);
goto unlock;
}
r -= uld_rxq_entries[CXGB4_ULD_RDMA];
if (r < uld_ciq_entries[CXGB4_ULD_RDMA]) {
const struct sge_ofld_rxq *rx;
int ciq_idx = 0;
urxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA];
ciq_idx = urxq_info->nrxq + (r * 4);
rx = &urxq_info->uldrxq[ciq_idx];
n = min(4, urxq_info->nciq - 4 * r);
S("QType:", "RDMA-CIQ");
S("Interface:",
rx[i].rspq.netdev ? rx[i].rspq.netdev->name : "N/A");
R("RspQ ID:", rspq.abs_id);
R("RspQ size:", rspq.size);
R("RspQE size:", rspq.iqe_len);
R("RspQ CIDX:", rspq.cidx);
R("RspQ Gen:", rspq.gen);
S3("u", "Intr delay:", qtimer_val(adap, &rx[i].rspq));
S3("u", "Intr pktcnt:", s->counter_val[rx[i].rspq.pktcnt_idx]);
goto unlock;
}
r -= uld_ciq_entries[CXGB4_ULD_RDMA];
if (r < uld_rxq_entries[CXGB4_ULD_ISCSI]) {
const struct sge_ofld_rxq *rx;
urxq_info = s->uld_rxq_info[CXGB4_ULD_ISCSI];
rx = &urxq_info->uldrxq[r * 4];
n = min(4, urxq_info->nrxq - 4 * r);
S("QType:", "iSCSI");
R("RspQ ID:", rspq.abs_id);
R("RspQ size:", rspq.size);
R("RspQE size:", rspq.iqe_len);
R("RspQ CIDX:", rspq.cidx);
R("RspQ Gen:", rspq.gen);
S3("u", "Intr delay:", qtimer_val(adap, &rx[i].rspq));
S3("u", "Intr pktcnt:", s->counter_val[rx[i].rspq.pktcnt_idx]);
R("FL ID:", fl.cntxt_id);
R("FL size:", fl.size - 8);
R("FL pend:", fl.pend_cred);
R("FL avail:", fl.avail);
R("FL PIDX:", fl.pidx);
R("FL CIDX:", fl.cidx);
goto unlock;
}
r -= uld_rxq_entries[CXGB4_ULD_ISCSI];
if (r < uld_rxq_entries[CXGB4_ULD_ISCSIT]) {
const struct sge_ofld_rxq *rx;
urxq_info = s->uld_rxq_info[CXGB4_ULD_ISCSIT];
rx = &urxq_info->uldrxq[r * 4];
n = min(4, urxq_info->nrxq - 4 * r);
S("QType:", "iSCSIT");
R("RspQ ID:", rspq.abs_id);
R("RspQ size:", rspq.size);
R("RspQE size:", rspq.iqe_len);
R("RspQ CIDX:", rspq.cidx);
R("RspQ Gen:", rspq.gen);
S3("u", "Intr delay:", qtimer_val(adap, &rx[i].rspq));
S3("u", "Intr pktcnt:", s->counter_val[rx[i].rspq.pktcnt_idx]);
R("FL ID:", fl.cntxt_id);
R("FL size:", fl.size - 8);
R("FL pend:", fl.pend_cred);
R("FL avail:", fl.avail);
R("FL PIDX:", fl.pidx);
R("FL CIDX:", fl.cidx);
goto unlock;
}
r -= uld_rxq_entries[CXGB4_ULD_ISCSIT];
if (r < uld_rxq_entries[CXGB4_ULD_TLS]) {
const struct sge_ofld_rxq *rx;
urxq_info = s->uld_rxq_info[CXGB4_ULD_TLS];
rx = &urxq_info->uldrxq[r * 4];
n = min(4, urxq_info->nrxq - 4 * r);
S("QType:", "TLS");
R("RspQ ID:", rspq.abs_id);
R("RspQ size:", rspq.size);
R("RspQE size:", rspq.iqe_len);
R("RspQ CIDX:", rspq.cidx);
R("RspQ Gen:", rspq.gen);
S3("u", "Intr delay:", qtimer_val(adap, &rx[i].rspq));
S3("u", "Intr pktcnt:", s->counter_val[rx[i].rspq.pktcnt_idx]);
R("FL ID:", fl.cntxt_id);
R("FL size:", fl.size - 8);
R("FL pend:", fl.pend_cred);
R("FL avail:", fl.avail);
R("FL PIDX:", fl.pidx);
R("FL CIDX:", fl.cidx);
goto unlock;
}
r -= uld_rxq_entries[CXGB4_ULD_TLS];
if (r < uld_txq_entries[CXGB4_TX_CRYPTO]) {
const struct sge_ofld_rxq *rx;
const struct sge_uld_txq *tx;
utxq_info = s->uld_txq_info[CXGB4_TX_CRYPTO];
urxq_info = s->uld_rxq_info[CXGB4_ULD_CRYPTO];
tx = &utxq_info->uldtxq[r * 4];
rx = &urxq_info->uldrxq[r * 4];
n = min(4, utxq_info->ntxq - 4 * r);
S("QType:", "Crypto");
T("TxQ ID:", q.cntxt_id);
T("TxQ size:", q.size);
T("TxQ inuse:", q.in_use);
T("TxQ CIDX:", q.cidx);
T("TxQ PIDX:", q.pidx);
R("RspQ ID:", rspq.abs_id);
R("RspQ size:", rspq.size);
R("RspQE size:", rspq.iqe_len);
R("RspQ CIDX:", rspq.cidx);
R("RspQ Gen:", rspq.gen);
S3("u", "Intr delay:", qtimer_val(adap, &rx[i].rspq));
S3("u", "Intr pktcnt:", s->counter_val[rx[i].rspq.pktcnt_idx]);
R("FL ID:", fl.cntxt_id);
R("FL size:", fl.size - 8);
R("FL pend:", fl.pend_cred);
R("FL avail:", fl.avail);
R("FL PIDX:", fl.pidx);
R("FL CIDX:", fl.cidx);
goto unlock;
}
r -= uld_txq_entries[CXGB4_TX_CRYPTO];
mutex_unlock(&uld_mutex);
skip_uld:
if (r < ctrl_entries) {
const struct sge_ctrl_txq *tx = &s->ctrlq[r * 4];
n = min(4, adap->params.nports - 4 * r);
S("QType:", "Control");
T("TxQ ID:", q.cntxt_id);
T("TxQ size:", q.size);
T("TxQ inuse:", q.in_use);
T("TxQ CIDX:", q.cidx);
T("TxQ PIDX:", q.pidx);
TL("TxQFull:", q.stops);
TL("TxQRestarts:", q.restarts);
goto out;
}
r -= ctrl_entries;
if (r < 1) {
const struct sge_rspq *evtq = &s->fw_evtq;
seq_printf(seq, "%-12s %16s\n", "QType:", "FW event queue");
seq_printf(seq, "%-12s %16u\n", "RspQ ID:", evtq->abs_id);
seq_printf(seq, "%-12s %16u\n", "RspQ size:", evtq->size);
seq_printf(seq, "%-12s %16u\n", "RspQE size:", evtq->iqe_len);
seq_printf(seq, "%-12s %16u\n", "RspQ CIDX:", evtq->cidx);
seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", evtq->gen);
seq_printf(seq, "%-12s %16u\n", "Intr delay:",
qtimer_val(adap, evtq));
seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
s->counter_val[evtq->pktcnt_idx]);
goto out;
}
#undef R
#undef RL
#undef T
#undef TL
#undef S
#undef R3
#undef T3
#undef S3
out:
return 0;
unlock:
mutex_unlock(&uld_mutex);
return 0;
}
static int sge_queue_entries(struct adapter *adap)
{
int i, tot_uld_entries = 0, eohw_entries = 0, eosw_entries = 0;
int mirror_rxq_entries = 0;
if (adap->tc_mqprio) {
struct cxgb4_tc_port_mqprio *port_mqprio;
u8 tc;
mutex_lock(&adap->tc_mqprio->mqprio_mutex);
if (adap->sge.eohw_txq)
eohw_entries = DIV_ROUND_UP(adap->sge.eoqsets, 4);
for (i = 0; i < adap->params.nports; i++) {
u32 entries = 0;
port_mqprio = &adap->tc_mqprio->port_mqprio[i];
for (tc = 0; tc < port_mqprio->mqprio.qopt.num_tc; tc++)
entries += port_mqprio->mqprio.qopt.count[tc];
if (entries)
eosw_entries += DIV_ROUND_UP(entries, 4);
}
mutex_unlock(&adap->tc_mqprio->mqprio_mutex);
}
for_each_port(adap, i) {
struct port_info *pi = adap2pinfo(adap, i);
mutex_lock(&pi->vi_mirror_mutex);
if (pi->vi_mirror_count)
mirror_rxq_entries += DIV_ROUND_UP(pi->nmirrorqsets, 4);
mutex_unlock(&pi->vi_mirror_mutex);
}
if (!is_uld(adap))
goto lld_only;
mutex_lock(&uld_mutex);
for (i = 0; i < CXGB4_TX_MAX; i++)
tot_uld_entries += sge_qinfo_uld_txq_entries(adap, i);
for (i = 0; i < CXGB4_ULD_MAX; i++) {
tot_uld_entries += sge_qinfo_uld_rxq_entries(adap, i);
tot_uld_entries += sge_qinfo_uld_ciq_entries(adap, i);
}
mutex_unlock(&uld_mutex);
lld_only:
return DIV_ROUND_UP(adap->sge.ethqsets, 4) + mirror_rxq_entries +
eohw_entries + eosw_entries + tot_uld_entries +
DIV_ROUND_UP(MAX_CTRL_QUEUES, 4) + 1;
}
static void *sge_queue_start(struct seq_file *seq, loff_t *pos)
{
int entries = sge_queue_entries(seq->private);
return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
}
static void sge_queue_stop(struct seq_file *seq, void *v)
{
}
static void *sge_queue_next(struct seq_file *seq, void *v, loff_t *pos)
{
int entries = sge_queue_entries(seq->private);
++*pos;
return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
}
static const struct seq_operations sge_qinfo_seq_ops = {
.start = sge_queue_start,
.next = sge_queue_next,
.stop = sge_queue_stop,
.show = sge_qinfo_show
};
static int sge_qinfo_open(struct inode *inode, struct file *file)
{
int res = seq_open(file, &sge_qinfo_seq_ops);
if (!res) {
struct seq_file *seq = file->private_data;
seq->private = inode->i_private;
}
return res;
}
static const struct file_operations sge_qinfo_debugfs_fops = {
.owner = THIS_MODULE,
.open = sge_qinfo_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release,
};
int mem_open(struct inode *inode, struct file *file)
{
unsigned int mem;
struct adapter *adap;
file->private_data = inode->i_private;
mem = (uintptr_t)file->private_data & 0x7;
adap = file->private_data - mem;
(void)t4_fwcache(adap, FW_PARAM_DEV_FWCACHE_FLUSH);
return 0;
}
static ssize_t mem_read(struct file *file, char __user *buf, size_t count,
loff_t *ppos)
{
loff_t pos = *ppos;
loff_t avail = file_inode(file)->i_size;
unsigned int mem = (uintptr_t)file->private_data & 0x7;
struct adapter *adap = file->private_data - mem;
__be32 *data;
int ret;
if (pos < 0)
return -EINVAL;
if (pos >= avail)
return 0;
if (count > avail - pos)
count = avail - pos;
data = kvzalloc(count, GFP_KERNEL);
if (!data)
return -ENOMEM;
spin_lock(&adap->win0_lock);
ret = t4_memory_rw(adap, 0, mem, pos, count, data, T4_MEMORY_READ);
spin_unlock(&adap->win0_lock);
if (ret) {
kvfree(data);
return ret;
}
ret = copy_to_user(buf, data, count);
kvfree(data);
if (ret)
return -EFAULT;
*ppos = pos + count;
return count;
}
static const struct file_operations mem_debugfs_fops = {
.owner = THIS_MODULE,
.open = simple_open,
.read = mem_read,
.llseek = default_llseek,
};
static int tid_info_show(struct seq_file *seq, void *v)
{
struct adapter *adap = seq->private;
const struct tid_info *t;
enum chip_type chip;
t = &adap->tids;
chip = CHELSIO_CHIP_VERSION(adap->params.chip);
if (t4_read_reg(adap, LE_DB_CONFIG_A) & HASHEN_F) {
unsigned int sb;
seq_printf(seq, "Connections in use: %u\n",
atomic_read(&t->conns_in_use));
if (chip <= CHELSIO_T5)
sb = t4_read_reg(adap, LE_DB_SERVER_INDEX_A) / 4;
else
sb = t4_read_reg(adap, LE_DB_SRVR_START_INDEX_A);
if (sb) {
seq_printf(seq, "TID range: %u..%u/%u..%u", t->tid_base,
sb - 1, adap->tids.hash_base,
t->tid_base + t->ntids - 1);
seq_printf(seq, ", in use: %u/%u\n",
atomic_read(&t->tids_in_use),
atomic_read(&t->hash_tids_in_use));
} else if (adap->flags & CXGB4_FW_OFLD_CONN) {
seq_printf(seq, "TID range: %u..%u/%u..%u",
t->aftid_base,
t->aftid_end,
adap->tids.hash_base,
t->tid_base + t->ntids - 1);
seq_printf(seq, ", in use: %u/%u\n",
atomic_read(&t->tids_in_use),
atomic_read(&t->hash_tids_in_use));
} else {
seq_printf(seq, "TID range: %u..%u",
adap->tids.hash_base,
t->tid_base + t->ntids - 1);
seq_printf(seq, ", in use: %u\n",
atomic_read(&t->hash_tids_in_use));
}
} else if (t->ntids) {
seq_printf(seq, "Connections in use: %u\n",
atomic_read(&t->conns_in_use));
seq_printf(seq, "TID range: %u..%u", t->tid_base,
t->tid_base + t->ntids - 1);
seq_printf(seq, ", in use: %u\n",
atomic_read(&t->tids_in_use));
}
if (t->nstids)
seq_printf(seq, "STID range: %u..%u, in use-IPv4/IPv6: %u/%u\n",
(!t->stid_base &&
(chip <= CHELSIO_T5)) ?
t->stid_base + 1 : t->stid_base,
t->stid_base + t->nstids - 1,
t->stids_in_use - t->v6_stids_in_use,
t->v6_stids_in_use);
if (t->natids)
seq_printf(seq, "ATID range: 0..%u, in use: %u\n",
t->natids - 1, t->atids_in_use);
seq_printf(seq, "FTID range: %u..%u\n", t->ftid_base,
t->ftid_base + t->nftids - 1);
if (t->nsftids)
seq_printf(seq, "SFTID range: %u..%u in use: %u\n",
t->sftid_base, t->sftid_base + t->nsftids - 2,
t->sftids_in_use);
if (t->nhpftids)
seq_printf(seq, "HPFTID range: %u..%u\n", t->hpftid_base,
t->hpftid_base + t->nhpftids - 1);
if (t->neotids)
seq_printf(seq, "EOTID range: %u..%u, in use: %u\n",
t->eotid_base, t->eotid_base + t->neotids - 1,
atomic_read(&t->eotids_in_use));
if (t->ntids)
seq_printf(seq, "HW TID usage: %u IP users, %u IPv6 users\n",
t4_read_reg(adap, LE_DB_ACT_CNT_IPV4_A),
t4_read_reg(adap, LE_DB_ACT_CNT_IPV6_A));
return 0;
}
DEFINE_SHOW_ATTRIBUTE(tid_info);
static void add_debugfs_mem(struct adapter *adap, const char *name,
unsigned int idx, unsigned int size_mb)
{
debugfs_create_file_size(name, 0400, adap->debugfs_root,
(void *)adap + idx, &mem_debugfs_fops,
size_mb << 20);
}
static ssize_t blocked_fl_read(struct file *filp, char __user *ubuf,
size_t count, loff_t *ppos)
{
int len;
const struct adapter *adap = filp->private_data;
char *buf;
ssize_t size = (adap->sge.egr_sz + 3) / 4 +
adap->sge.egr_sz / 32 + 2; /* includes ,/\n/\0 */
buf = kzalloc(size, GFP_KERNEL);
if (!buf)
return -ENOMEM;
len = snprintf(buf, size - 1, "%*pb\n",
adap->sge.egr_sz, adap->sge.blocked_fl);
len += sprintf(buf + len, "\n");
size = simple_read_from_buffer(ubuf, count, ppos, buf, len);
kfree(buf);
return size;
}
static ssize_t blocked_fl_write(struct file *filp, const char __user *ubuf,
size_t count, loff_t *ppos)
{
int err;
unsigned long *t;
struct adapter *adap = filp->private_data;
t = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), sizeof(long), GFP_KERNEL);
if (!t)
return -ENOMEM;
err = bitmap_parse_user(ubuf, count, t, adap->sge.egr_sz);
if (err) {
kfree(t);
return err;
}
bitmap_copy(adap->sge.blocked_fl, t, adap->sge.egr_sz);
kfree(t);
return count;
}
static const struct file_operations blocked_fl_fops = {
.owner = THIS_MODULE,
.open = simple_open,
.read = blocked_fl_read,
.write = blocked_fl_write,
.llseek = generic_file_llseek,
};
static void mem_region_show(struct seq_file *seq, const char *name,
unsigned int from, unsigned int to)
{
char buf[40];
string_get_size((u64)to - from + 1, 1, STRING_UNITS_2, buf,
sizeof(buf));
seq_printf(seq, "%-15s %#x-%#x [%s]\n", name, from, to, buf);
}
static int meminfo_show(struct seq_file *seq, void *v)
{
static const char * const memory[] = { "EDC0:", "EDC1:", "MC:",
"MC0:", "MC1:", "HMA:"};
struct adapter *adap = seq->private;
struct cudbg_meminfo meminfo;
int i, rc;
memset(&meminfo, 0, sizeof(struct cudbg_meminfo));
rc = cudbg_fill_meminfo(adap, &meminfo);
if (rc)
return -ENXIO;
for (i = 0; i < meminfo.avail_c; i++)
mem_region_show(seq, memory[meminfo.avail[i].idx],
meminfo.avail[i].base,
meminfo.avail[i].limit - 1);
seq_putc(seq, '\n');
for (i = 0; i < meminfo.mem_c; i++) {
if (meminfo.mem[i].idx >= ARRAY_SIZE(cudbg_region))
continue; /* skip holes */
if (!meminfo.mem[i].limit)
meminfo.mem[i].limit =
i < meminfo.mem_c - 1 ?
meminfo.mem[i + 1].base - 1 : ~0;
mem_region_show(seq, cudbg_region[meminfo.mem[i].idx],
meminfo.mem[i].base, meminfo.mem[i].limit);
}
seq_putc(seq, '\n');
mem_region_show(seq, "uP RAM:", meminfo.up_ram_lo, meminfo.up_ram_hi);
mem_region_show(seq, "uP Extmem2:", meminfo.up_extmem2_lo,
meminfo.up_extmem2_hi);
seq_printf(seq, "\n%u Rx pages (%u free) of size %uKiB for %u channels\n",
meminfo.rx_pages_data[0], meminfo.free_rx_cnt,
meminfo.rx_pages_data[1], meminfo.rx_pages_data[2]);
seq_printf(seq, "%u Tx pages (%u free) of size %u%ciB for %u channels\n",
meminfo.tx_pages_data[0], meminfo.free_tx_cnt,
meminfo.tx_pages_data[1], meminfo.tx_pages_data[2],
meminfo.tx_pages_data[3]);
seq_printf(seq, "%u p-structs (%u free)\n\n",
meminfo.p_structs, meminfo.p_structs_free_cnt);
for (i = 0; i < 4; i++)
/* For T6 these are MAC buffer groups */
seq_printf(seq, "Port %d using %u pages out of %u allocated\n",
i, meminfo.port_used[i], meminfo.port_alloc[i]);
for (i = 0; i < adap->params.arch.nchan; i++)
/* For T6 these are MAC buffer groups */
seq_printf(seq,
"Loopback %d using %u pages out of %u allocated\n",
i, meminfo.loopback_used[i],
meminfo.loopback_alloc[i]);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(meminfo);
static int chcr_stats_show(struct seq_file *seq, void *v)
{
struct adapter *adap = seq->private;
seq_puts(seq, "Chelsio Crypto Accelerator Stats \n");
seq_printf(seq, "Cipher Ops: %10u \n",
atomic_read(&adap->chcr_stats.cipher_rqst));
seq_printf(seq, "Digest Ops: %10u \n",
atomic_read(&adap->chcr_stats.digest_rqst));
seq_printf(seq, "Aead Ops: %10u \n",
atomic_read(&adap->chcr_stats.aead_rqst));
seq_printf(seq, "Completion: %10u \n",
atomic_read(&adap->chcr_stats.complete));
seq_printf(seq, "Error: %10u \n",
atomic_read(&adap->chcr_stats.error));
seq_printf(seq, "Fallback: %10u \n",
atomic_read(&adap->chcr_stats.fallback));
seq_printf(seq, "TLS PDU Tx: %10u\n",
atomic_read(&adap->chcr_stats.tls_pdu_tx));
seq_printf(seq, "TLS PDU Rx: %10u\n",
atomic_read(&adap->chcr_stats.tls_pdu_rx));
seq_printf(seq, "TLS Keys (DDR) Count: %10u\n",
atomic_read(&adap->chcr_stats.tls_key));
#if IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE)
seq_puts(seq, "\nChelsio Inline IPsec Crypto Accelerator Stats\n");
seq_printf(seq, "IPSec PDU: %10u\n",
atomic_read(&adap->ch_ipsec_stats.ipsec_cnt));
#endif
#if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE)
seq_puts(seq, "\nChelsio KTLS Crypto Accelerator Stats\n");
seq_printf(seq, "Tx TLS offload refcount: %20u\n",
refcount_read(&adap->chcr_ktls.ktls_refcount));
seq_printf(seq, "Tx HW offload contexts added: %20llu\n",
atomic64_read(&adap->ch_ktls_stats.ktls_tx_ctx));
seq_printf(seq, "Tx connection created: %20llu\n",
atomic64_read(&adap->ch_ktls_stats.ktls_tx_connection_open));
seq_printf(seq, "Tx connection failed: %20llu\n",
atomic64_read(&adap->ch_ktls_stats.ktls_tx_connection_fail));
seq_printf(seq, "Tx connection closed: %20llu\n",
atomic64_read(&adap->ch_ktls_stats.ktls_tx_connection_close));
seq_printf(seq, "Packets passed for encryption : %20llu\n",
atomic64_read(&adap->ch_ktls_stats.ktls_tx_encrypted_packets));
seq_printf(seq, "Bytes passed for encryption : %20llu\n",
atomic64_read(&adap->ch_ktls_stats.ktls_tx_encrypted_bytes));
seq_printf(seq, "Tx records send: %20llu\n",
atomic64_read(&adap->ch_ktls_stats.ktls_tx_send_records));
seq_printf(seq, "Tx partial start of records: %20llu\n",
atomic64_read(&adap->ch_ktls_stats.ktls_tx_start_pkts));
seq_printf(seq, "Tx partial middle of records: %20llu\n",
atomic64_read(&adap->ch_ktls_stats.ktls_tx_middle_pkts));
seq_printf(seq, "Tx partial end of record: %20llu\n",
atomic64_read(&adap->ch_ktls_stats.ktls_tx_end_pkts));
seq_printf(seq, "Tx complete records: %20llu\n",
atomic64_read(&adap->ch_ktls_stats.ktls_tx_complete_pkts));
seq_printf(seq, "TX trim pkts : %20llu\n",
atomic64_read(&adap->ch_ktls_stats.ktls_tx_trimmed_pkts));
seq_printf(seq, "Tx out of order packets: %20llu\n",
atomic64_read(&adap->ch_ktls_stats.ktls_tx_ooo));
seq_printf(seq, "Tx drop pkts before HW offload: %20llu\n",
atomic64_read(&adap->ch_ktls_stats.ktls_tx_skip_no_sync_data));
seq_printf(seq, "Tx drop not synced packets: %20llu\n",
atomic64_read(&adap->ch_ktls_stats.ktls_tx_drop_no_sync_data));
seq_printf(seq, "Tx drop bypass req: %20llu\n",
atomic64_read(&adap->ch_ktls_stats.ktls_tx_drop_bypass_req));
#endif
return 0;
}
DEFINE_SHOW_ATTRIBUTE(chcr_stats);
#define PRINT_ADAP_STATS(string, value) \
seq_printf(seq, "%-25s %-20llu\n", (string), \
(unsigned long long)(value))
#define PRINT_CH_STATS(string, value) \
do { \
seq_printf(seq, "%-25s ", (string)); \
for (i = 0; i < adap->params.arch.nchan; i++) \
seq_printf(seq, "%-20llu ", \
(unsigned long long)stats.value[i]); \
seq_printf(seq, "\n"); \
} while (0)
#define PRINT_CH_STATS2(string, value) \
do { \
seq_printf(seq, "%-25s ", (string)); \
for (i = 0; i < adap->params.arch.nchan; i++) \
seq_printf(seq, "%-20llu ", \
(unsigned long long)stats[i].value); \
seq_printf(seq, "\n"); \
} while (0)
static void show_tcp_stats(struct seq_file *seq)
{
struct adapter *adap = seq->private;
struct tp_tcp_stats v4, v6;
spin_lock(&adap->stats_lock);
t4_tp_get_tcp_stats(adap, &v4, &v6, false);
spin_unlock(&adap->stats_lock);
PRINT_ADAP_STATS("tcp_ipv4_out_rsts:", v4.tcp_out_rsts);
PRINT_ADAP_STATS("tcp_ipv4_in_segs:", v4.tcp_in_segs);
PRINT_ADAP_STATS("tcp_ipv4_out_segs:", v4.tcp_out_segs);
PRINT_ADAP_STATS("tcp_ipv4_retrans_segs:", v4.tcp_retrans_segs);
PRINT_ADAP_STATS("tcp_ipv6_out_rsts:", v6.tcp_out_rsts);
PRINT_ADAP_STATS("tcp_ipv6_in_segs:", v6.tcp_in_segs);
PRINT_ADAP_STATS("tcp_ipv6_out_segs:", v6.tcp_out_segs);
PRINT_ADAP_STATS("tcp_ipv6_retrans_segs:", v6.tcp_retrans_segs);
}
static void show_ddp_stats(struct seq_file *seq)
{
struct adapter *adap = seq->private;
struct tp_usm_stats stats;
spin_lock(&adap->stats_lock);
t4_get_usm_stats(adap, &stats, false);
spin_unlock(&adap->stats_lock);
PRINT_ADAP_STATS("usm_ddp_frames:", stats.frames);
PRINT_ADAP_STATS("usm_ddp_octets:", stats.octets);
PRINT_ADAP_STATS("usm_ddp_drops:", stats.drops);
}
static void show_rdma_stats(struct seq_file *seq)
{
struct adapter *adap = seq->private;
struct tp_rdma_stats stats;
spin_lock(&adap->stats_lock);
t4_tp_get_rdma_stats(adap, &stats, false);
spin_unlock(&adap->stats_lock);
PRINT_ADAP_STATS("rdma_no_rqe_mod_defer:", stats.rqe_dfr_mod);
PRINT_ADAP_STATS("rdma_no_rqe_pkt_defer:", stats.rqe_dfr_pkt);
}
static void show_tp_err_adapter_stats(struct seq_file *seq)
{
struct adapter *adap = seq->private;
struct tp_err_stats stats;
spin_lock(&adap->stats_lock);
t4_tp_get_err_stats(adap, &stats, false);
spin_unlock(&adap->stats_lock);
PRINT_ADAP_STATS("tp_err_ofld_no_neigh:", stats.ofld_no_neigh);
PRINT_ADAP_STATS("tp_err_ofld_cong_defer:", stats.ofld_cong_defer);
}
static void show_cpl_stats(struct seq_file *seq)
{
struct adapter *adap = seq->private;
struct tp_cpl_stats stats;
u8 i;
spin_lock(&adap->stats_lock);
t4_tp_get_cpl_stats(adap, &stats, false);
spin_unlock(&adap->stats_lock);
PRINT_CH_STATS("tp_cpl_requests:", req);
PRINT_CH_STATS("tp_cpl_responses:", rsp);
}
static void show_tp_err_channel_stats(struct seq_file *seq)
{
struct adapter *adap = seq->private;
struct tp_err_stats stats;
u8 i;
spin_lock(&adap->stats_lock);
t4_tp_get_err_stats(adap, &stats, false);
spin_unlock(&adap->stats_lock);
PRINT_CH_STATS("tp_mac_in_errs:", mac_in_errs);
PRINT_CH_STATS("tp_hdr_in_errs:", hdr_in_errs);
PRINT_CH_STATS("tp_tcp_in_errs:", tcp_in_errs);
PRINT_CH_STATS("tp_tcp6_in_errs:", tcp6_in_errs);
PRINT_CH_STATS("tp_tnl_cong_drops:", tnl_cong_drops);
PRINT_CH_STATS("tp_tnl_tx_drops:", tnl_tx_drops);
PRINT_CH_STATS("tp_ofld_vlan_drops:", ofld_vlan_drops);
PRINT_CH_STATS("tp_ofld_chan_drops:", ofld_chan_drops);
}
static void show_fcoe_stats(struct seq_file *seq)
{
struct adapter *adap = seq->private;
struct tp_fcoe_stats stats[NCHAN];
u8 i;
spin_lock(&adap->stats_lock);
for (i = 0; i < adap->params.arch.nchan; i++)
t4_get_fcoe_stats(adap, i, &stats[i], false);
spin_unlock(&adap->stats_lock);
PRINT_CH_STATS2("fcoe_octets_ddp", octets_ddp);
PRINT_CH_STATS2("fcoe_frames_ddp", frames_ddp);
PRINT_CH_STATS2("fcoe_frames_drop", frames_drop);
}
#undef PRINT_CH_STATS2
#undef PRINT_CH_STATS
#undef PRINT_ADAP_STATS
static int tp_stats_show(struct seq_file *seq, void *v)
{
struct adapter *adap = seq->private;
seq_puts(seq, "\n--------Adapter Stats--------\n");
show_tcp_stats(seq);
show_ddp_stats(seq);
show_rdma_stats(seq);
show_tp_err_adapter_stats(seq);
seq_puts(seq, "\n-------- Channel Stats --------\n");
if (adap->params.arch.nchan == NCHAN)
seq_printf(seq, "%-25s %-20s %-20s %-20s %-20s\n",
" ", "channel 0", "channel 1",
"channel 2", "channel 3");
else
seq_printf(seq, "%-25s %-20s %-20s\n",
" ", "channel 0", "channel 1");
show_cpl_stats(seq);
show_tp_err_channel_stats(seq);
show_fcoe_stats(seq);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(tp_stats);
/* Add an array of Debug FS files.
*/
void add_debugfs_files(struct adapter *adap,
struct t4_debugfs_entry *files,
unsigned int nfiles)
{
int i;
/* debugfs support is best effort */
for (i = 0; i < nfiles; i++)
debugfs_create_file(files[i].name, files[i].mode,
adap->debugfs_root,
(void *)adap + files[i].data,
files[i].ops);
}
int t4_setup_debugfs(struct adapter *adap)
{
int i;
u32 size = 0;
static struct t4_debugfs_entry t4_debugfs_files[] = {
{ "cim_la", &cim_la_fops, 0400, 0 },
{ "cim_pif_la", &cim_pif_la_fops, 0400, 0 },
{ "cim_ma_la", &cim_ma_la_fops, 0400, 0 },
{ "cim_qcfg", &cim_qcfg_fops, 0400, 0 },
{ "clk", &clk_fops, 0400, 0 },
{ "devlog", &devlog_fops, 0400, 0 },
{ "mboxlog", &mboxlog_fops, 0400, 0 },
{ "mbox0", &mbox_debugfs_fops, 0600, 0 },
{ "mbox1", &mbox_debugfs_fops, 0600, 1 },
{ "mbox2", &mbox_debugfs_fops, 0600, 2 },
{ "mbox3", &mbox_debugfs_fops, 0600, 3 },
{ "mbox4", &mbox_debugfs_fops, 0600, 4 },
{ "mbox5", &mbox_debugfs_fops, 0600, 5 },
{ "mbox6", &mbox_debugfs_fops, 0600, 6 },
{ "mbox7", &mbox_debugfs_fops, 0600, 7 },
{ "trace0", &mps_trc_debugfs_fops, 0600, 0 },
{ "trace1", &mps_trc_debugfs_fops, 0600, 1 },
{ "trace2", &mps_trc_debugfs_fops, 0600, 2 },
{ "trace3", &mps_trc_debugfs_fops, 0600, 3 },
{ "l2t", &t4_l2t_fops, 0400, 0},
{ "mps_tcam", &mps_tcam_debugfs_fops, 0400, 0 },
{ "rss", &rss_debugfs_fops, 0400, 0 },
{ "rss_config", &rss_config_fops, 0400, 0 },
{ "rss_key", &rss_key_debugfs_fops, 0400, 0 },
{ "rss_pf_config", &rss_pf_config_debugfs_fops, 0400, 0 },
{ "rss_vf_config", &rss_vf_config_debugfs_fops, 0400, 0 },
{ "resources", &resources_fops, 0400, 0 },
#ifdef CONFIG_CHELSIO_T4_DCB
{ "dcb_info", &dcb_info_debugfs_fops, 0400, 0 },
#endif
{ "sge_qinfo", &sge_qinfo_debugfs_fops, 0400, 0 },
{ "ibq_tp0", &cim_ibq_fops, 0400, 0 },
{ "ibq_tp1", &cim_ibq_fops, 0400, 1 },
{ "ibq_ulp", &cim_ibq_fops, 0400, 2 },
{ "ibq_sge0", &cim_ibq_fops, 0400, 3 },
{ "ibq_sge1", &cim_ibq_fops, 0400, 4 },
{ "ibq_ncsi", &cim_ibq_fops, 0400, 5 },
{ "obq_ulp0", &cim_obq_fops, 0400, 0 },
{ "obq_ulp1", &cim_obq_fops, 0400, 1 },
{ "obq_ulp2", &cim_obq_fops, 0400, 2 },
{ "obq_ulp3", &cim_obq_fops, 0400, 3 },
{ "obq_sge", &cim_obq_fops, 0400, 4 },
{ "obq_ncsi", &cim_obq_fops, 0400, 5 },
{ "tp_la", &tp_la_fops, 0400, 0 },
{ "ulprx_la", &ulprx_la_fops, 0400, 0 },
{ "sensors", &sensors_fops, 0400, 0 },
{ "pm_stats", &pm_stats_debugfs_fops, 0400, 0 },
{ "tx_rate", &tx_rate_fops, 0400, 0 },
{ "cctrl", &cctrl_tbl_fops, 0400, 0 },
#if IS_ENABLED(CONFIG_IPV6)
{ "clip_tbl", &clip_tbl_fops, 0400, 0 },
#endif
{ "tids", &tid_info_fops, 0400, 0},
{ "blocked_fl", &blocked_fl_fops, 0600, 0 },
{ "meminfo", &meminfo_fops, 0400, 0 },
{ "crypto", &chcr_stats_fops, 0400, 0 },
{ "tp_stats", &tp_stats_fops, 0400, 0 },
};
/* Debug FS nodes common to all T5 and later adapters.
*/
static struct t4_debugfs_entry t5_debugfs_files[] = {
{ "obq_sge_rx_q0", &cim_obq_fops, 0400, 6 },
{ "obq_sge_rx_q1", &cim_obq_fops, 0400, 7 },
};
add_debugfs_files(adap,
t4_debugfs_files,
ARRAY_SIZE(t4_debugfs_files));
if (!is_t4(adap->params.chip))
add_debugfs_files(adap,
t5_debugfs_files,
ARRAY_SIZE(t5_debugfs_files));
i = t4_read_reg(adap, MA_TARGET_MEM_ENABLE_A);
if (i & EDRAM0_ENABLE_F) {
size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
add_debugfs_mem(adap, "edc0", MEM_EDC0, EDRAM0_SIZE_G(size));
}
if (i & EDRAM1_ENABLE_F) {
size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
add_debugfs_mem(adap, "edc1", MEM_EDC1, EDRAM1_SIZE_G(size));
}
if (is_t5(adap->params.chip)) {
if (i & EXT_MEM0_ENABLE_F) {
size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
add_debugfs_mem(adap, "mc0", MEM_MC0,
EXT_MEM0_SIZE_G(size));
}
if (i & EXT_MEM1_ENABLE_F) {
size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
add_debugfs_mem(adap, "mc1", MEM_MC1,
EXT_MEM1_SIZE_G(size));
}
} else {
if (i & EXT_MEM_ENABLE_F) {
size = t4_read_reg(adap, MA_EXT_MEMORY_BAR_A);
add_debugfs_mem(adap, "mc", MEM_MC,
EXT_MEM_SIZE_G(size));
}
if (i & HMA_MUX_F) {
size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
add_debugfs_mem(adap, "hma", MEM_HMA,
EXT_MEM1_SIZE_G(size));
}
}
debugfs_create_file_size("flash", 0400, adap->debugfs_root, adap,
&flash_debugfs_fops, adap->params.sf_size);
debugfs_create_bool("use_backdoor", 0600,
adap->debugfs_root, &adap->use_bd);
debugfs_create_bool("trace_rss", 0600,
adap->debugfs_root, &adap->trace_rss);
return 0;
}