330 lines
14 KiB
C++
330 lines
14 KiB
C++
/*
|
|
* Copyright (C) 2015 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "VectorDrawableUtils.h"
|
|
|
|
#include "PathParser.h"
|
|
|
|
#include <math.h>
|
|
#include <utils/Log.h>
|
|
|
|
namespace android {
|
|
namespace uirenderer {
|
|
|
|
class PathResolver {
|
|
public:
|
|
float currentX = 0;
|
|
float currentY = 0;
|
|
float ctrlPointX = 0;
|
|
float ctrlPointY = 0;
|
|
float currentSegmentStartX = 0;
|
|
float currentSegmentStartY = 0;
|
|
void addCommand(SkPath* outPath, char previousCmd, char cmd, const std::vector<float>* points,
|
|
size_t start, size_t end);
|
|
};
|
|
|
|
bool VectorDrawableUtils::canMorph(const PathData& morphFrom, const PathData& morphTo) {
|
|
if (morphFrom.verbs.size() != morphTo.verbs.size()) {
|
|
return false;
|
|
}
|
|
|
|
for (unsigned int i = 0; i < morphFrom.verbs.size(); i++) {
|
|
if (morphFrom.verbs[i] != morphTo.verbs[i] ||
|
|
morphFrom.verbSizes[i] != morphTo.verbSizes[i]) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool VectorDrawableUtils::interpolatePathData(PathData* outData, const PathData& morphFrom,
|
|
const PathData& morphTo, float fraction) {
|
|
if (!canMorph(morphFrom, morphTo)) {
|
|
return false;
|
|
}
|
|
interpolatePaths(outData, morphFrom, morphTo, fraction);
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* Convert an array of PathVerb to Path.
|
|
*/
|
|
void VectorDrawableUtils::verbsToPath(SkPath* outPath, const PathData& data) {
|
|
PathResolver resolver;
|
|
char previousCommand = 'm';
|
|
size_t start = 0;
|
|
outPath->reset();
|
|
for (unsigned int i = 0; i < data.verbs.size(); i++) {
|
|
size_t verbSize = data.verbSizes[i];
|
|
resolver.addCommand(outPath, previousCommand, data.verbs[i], &data.points, start,
|
|
start + verbSize);
|
|
previousCommand = data.verbs[i];
|
|
start += verbSize;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* The current PathVerb will be interpolated between the
|
|
* <code>nodeFrom</code> and <code>nodeTo</code> according to the
|
|
* <code>fraction</code>.
|
|
*
|
|
* @param nodeFrom The start value as a PathVerb.
|
|
* @param nodeTo The end value as a PathVerb
|
|
* @param fraction The fraction to interpolate.
|
|
*/
|
|
void VectorDrawableUtils::interpolatePaths(PathData* outData, const PathData& from,
|
|
const PathData& to, float fraction) {
|
|
outData->points.resize(from.points.size());
|
|
outData->verbSizes = from.verbSizes;
|
|
outData->verbs = from.verbs;
|
|
|
|
for (size_t i = 0; i < from.points.size(); i++) {
|
|
outData->points[i] = from.points[i] * (1 - fraction) + to.points[i] * fraction;
|
|
}
|
|
}
|
|
|
|
// Use the given verb, and points in the range [start, end) to insert a command into the SkPath.
|
|
void PathResolver::addCommand(SkPath* outPath, char previousCmd, char cmd,
|
|
const std::vector<float>* points, size_t start, size_t end) {
|
|
int incr = 2;
|
|
float reflectiveCtrlPointX;
|
|
float reflectiveCtrlPointY;
|
|
|
|
switch (cmd) {
|
|
case 'z':
|
|
case 'Z':
|
|
outPath->close();
|
|
// Path is closed here, but we need to move the pen to the
|
|
// closed position. So we cache the segment's starting position,
|
|
// and restore it here.
|
|
currentX = currentSegmentStartX;
|
|
currentY = currentSegmentStartY;
|
|
ctrlPointX = currentSegmentStartX;
|
|
ctrlPointY = currentSegmentStartY;
|
|
outPath->moveTo(currentX, currentY);
|
|
break;
|
|
case 'm':
|
|
case 'M':
|
|
case 'l':
|
|
case 'L':
|
|
case 't':
|
|
case 'T':
|
|
incr = 2;
|
|
break;
|
|
case 'h':
|
|
case 'H':
|
|
case 'v':
|
|
case 'V':
|
|
incr = 1;
|
|
break;
|
|
case 'c':
|
|
case 'C':
|
|
incr = 6;
|
|
break;
|
|
case 's':
|
|
case 'S':
|
|
case 'q':
|
|
case 'Q':
|
|
incr = 4;
|
|
break;
|
|
case 'a':
|
|
case 'A':
|
|
incr = 7;
|
|
break;
|
|
}
|
|
|
|
for (unsigned int k = start; k < end; k += incr) {
|
|
switch (cmd) {
|
|
case 'm': // moveto - Start a new sub-path (relative)
|
|
currentX += points->at(k + 0);
|
|
currentY += points->at(k + 1);
|
|
if (k > start) {
|
|
// According to the spec, if a moveto is followed by multiple
|
|
// pairs of coordinates, the subsequent pairs are treated as
|
|
// implicit lineto commands.
|
|
outPath->rLineTo(points->at(k + 0), points->at(k + 1));
|
|
} else {
|
|
outPath->rMoveTo(points->at(k + 0), points->at(k + 1));
|
|
currentSegmentStartX = currentX;
|
|
currentSegmentStartY = currentY;
|
|
}
|
|
break;
|
|
case 'M': // moveto - Start a new sub-path
|
|
currentX = points->at(k + 0);
|
|
currentY = points->at(k + 1);
|
|
if (k > start) {
|
|
// According to the spec, if a moveto is followed by multiple
|
|
// pairs of coordinates, the subsequent pairs are treated as
|
|
// implicit lineto commands.
|
|
outPath->lineTo(points->at(k + 0), points->at(k + 1));
|
|
} else {
|
|
outPath->moveTo(points->at(k + 0), points->at(k + 1));
|
|
currentSegmentStartX = currentX;
|
|
currentSegmentStartY = currentY;
|
|
}
|
|
break;
|
|
case 'l': // lineto - Draw a line from the current point (relative)
|
|
outPath->rLineTo(points->at(k + 0), points->at(k + 1));
|
|
currentX += points->at(k + 0);
|
|
currentY += points->at(k + 1);
|
|
break;
|
|
case 'L': // lineto - Draw a line from the current point
|
|
outPath->lineTo(points->at(k + 0), points->at(k + 1));
|
|
currentX = points->at(k + 0);
|
|
currentY = points->at(k + 1);
|
|
break;
|
|
case 'h': // horizontal lineto - Draws a horizontal line (relative)
|
|
outPath->rLineTo(points->at(k + 0), 0);
|
|
currentX += points->at(k + 0);
|
|
break;
|
|
case 'H': // horizontal lineto - Draws a horizontal line
|
|
outPath->lineTo(points->at(k + 0), currentY);
|
|
currentX = points->at(k + 0);
|
|
break;
|
|
case 'v': // vertical lineto - Draws a vertical line from the current point (r)
|
|
outPath->rLineTo(0, points->at(k + 0));
|
|
currentY += points->at(k + 0);
|
|
break;
|
|
case 'V': // vertical lineto - Draws a vertical line from the current point
|
|
outPath->lineTo(currentX, points->at(k + 0));
|
|
currentY = points->at(k + 0);
|
|
break;
|
|
case 'c': // curveto - Draws a cubic Bézier curve (relative)
|
|
outPath->rCubicTo(points->at(k + 0), points->at(k + 1), points->at(k + 2),
|
|
points->at(k + 3), points->at(k + 4), points->at(k + 5));
|
|
|
|
ctrlPointX = currentX + points->at(k + 2);
|
|
ctrlPointY = currentY + points->at(k + 3);
|
|
currentX += points->at(k + 4);
|
|
currentY += points->at(k + 5);
|
|
|
|
break;
|
|
case 'C': // curveto - Draws a cubic Bézier curve
|
|
outPath->cubicTo(points->at(k + 0), points->at(k + 1), points->at(k + 2),
|
|
points->at(k + 3), points->at(k + 4), points->at(k + 5));
|
|
currentX = points->at(k + 4);
|
|
currentY = points->at(k + 5);
|
|
ctrlPointX = points->at(k + 2);
|
|
ctrlPointY = points->at(k + 3);
|
|
break;
|
|
case 's': // smooth curveto - Draws a cubic Bézier curve (reflective cp)
|
|
reflectiveCtrlPointX = 0;
|
|
reflectiveCtrlPointY = 0;
|
|
if (previousCmd == 'c' || previousCmd == 's' || previousCmd == 'C' ||
|
|
previousCmd == 'S') {
|
|
reflectiveCtrlPointX = currentX - ctrlPointX;
|
|
reflectiveCtrlPointY = currentY - ctrlPointY;
|
|
}
|
|
outPath->rCubicTo(reflectiveCtrlPointX, reflectiveCtrlPointY, points->at(k + 0),
|
|
points->at(k + 1), points->at(k + 2), points->at(k + 3));
|
|
ctrlPointX = currentX + points->at(k + 0);
|
|
ctrlPointY = currentY + points->at(k + 1);
|
|
currentX += points->at(k + 2);
|
|
currentY += points->at(k + 3);
|
|
break;
|
|
case 'S': // shorthand/smooth curveto Draws a cubic Bézier curve(reflective cp)
|
|
reflectiveCtrlPointX = currentX;
|
|
reflectiveCtrlPointY = currentY;
|
|
if (previousCmd == 'c' || previousCmd == 's' || previousCmd == 'C' ||
|
|
previousCmd == 'S') {
|
|
reflectiveCtrlPointX = 2 * currentX - ctrlPointX;
|
|
reflectiveCtrlPointY = 2 * currentY - ctrlPointY;
|
|
}
|
|
outPath->cubicTo(reflectiveCtrlPointX, reflectiveCtrlPointY, points->at(k + 0),
|
|
points->at(k + 1), points->at(k + 2), points->at(k + 3));
|
|
ctrlPointX = points->at(k + 0);
|
|
ctrlPointY = points->at(k + 1);
|
|
currentX = points->at(k + 2);
|
|
currentY = points->at(k + 3);
|
|
break;
|
|
case 'q': // Draws a quadratic Bézier (relative)
|
|
outPath->rQuadTo(points->at(k + 0), points->at(k + 1), points->at(k + 2),
|
|
points->at(k + 3));
|
|
ctrlPointX = currentX + points->at(k + 0);
|
|
ctrlPointY = currentY + points->at(k + 1);
|
|
currentX += points->at(k + 2);
|
|
currentY += points->at(k + 3);
|
|
break;
|
|
case 'Q': // Draws a quadratic Bézier
|
|
outPath->quadTo(points->at(k + 0), points->at(k + 1), points->at(k + 2),
|
|
points->at(k + 3));
|
|
ctrlPointX = points->at(k + 0);
|
|
ctrlPointY = points->at(k + 1);
|
|
currentX = points->at(k + 2);
|
|
currentY = points->at(k + 3);
|
|
break;
|
|
case 't': // Draws a quadratic Bézier curve(reflective control point)(relative)
|
|
reflectiveCtrlPointX = 0;
|
|
reflectiveCtrlPointY = 0;
|
|
if (previousCmd == 'q' || previousCmd == 't' || previousCmd == 'Q' ||
|
|
previousCmd == 'T') {
|
|
reflectiveCtrlPointX = currentX - ctrlPointX;
|
|
reflectiveCtrlPointY = currentY - ctrlPointY;
|
|
}
|
|
outPath->rQuadTo(reflectiveCtrlPointX, reflectiveCtrlPointY, points->at(k + 0),
|
|
points->at(k + 1));
|
|
ctrlPointX = currentX + reflectiveCtrlPointX;
|
|
ctrlPointY = currentY + reflectiveCtrlPointY;
|
|
currentX += points->at(k + 0);
|
|
currentY += points->at(k + 1);
|
|
break;
|
|
case 'T': // Draws a quadratic Bézier curve (reflective control point)
|
|
reflectiveCtrlPointX = currentX;
|
|
reflectiveCtrlPointY = currentY;
|
|
if (previousCmd == 'q' || previousCmd == 't' || previousCmd == 'Q' ||
|
|
previousCmd == 'T') {
|
|
reflectiveCtrlPointX = 2 * currentX - ctrlPointX;
|
|
reflectiveCtrlPointY = 2 * currentY - ctrlPointY;
|
|
}
|
|
outPath->quadTo(reflectiveCtrlPointX, reflectiveCtrlPointY, points->at(k + 0),
|
|
points->at(k + 1));
|
|
ctrlPointX = reflectiveCtrlPointX;
|
|
ctrlPointY = reflectiveCtrlPointY;
|
|
currentX = points->at(k + 0);
|
|
currentY = points->at(k + 1);
|
|
break;
|
|
case 'a': // Draws an elliptical arc
|
|
// (rx ry x-axis-rotation large-arc-flag sweep-flag x y)
|
|
outPath->arcTo(points->at(k + 0), points->at(k + 1), points->at(k + 2),
|
|
(SkPath::ArcSize) (points->at(k + 3) != 0),
|
|
(SkPathDirection) (points->at(k + 4) == 0),
|
|
points->at(k + 5) + currentX, points->at(k + 6) + currentY);
|
|
currentX += points->at(k + 5);
|
|
currentY += points->at(k + 6);
|
|
ctrlPointX = currentX;
|
|
ctrlPointY = currentY;
|
|
break;
|
|
case 'A': // Draws an elliptical arc
|
|
outPath->arcTo(points->at(k + 0), points->at(k + 1), points->at(k + 2),
|
|
(SkPath::ArcSize) (points->at(k + 3) != 0),
|
|
(SkPathDirection) (points->at(k + 4) == 0),
|
|
points->at(k + 5), points->at(k + 6));
|
|
currentX = points->at(k + 5);
|
|
currentY = points->at(k + 6);
|
|
ctrlPointX = currentX;
|
|
ctrlPointY = currentY;
|
|
break;
|
|
default:
|
|
LOG_ALWAYS_FATAL("Unsupported command: %c", cmd);
|
|
break;
|
|
}
|
|
previousCmd = cmd;
|
|
}
|
|
}
|
|
|
|
} // namespace uirenderer
|
|
} // namespace android
|