qemu/tcg/sparc/tcg-target.c.inc

1864 lines
58 KiB
PHP
Raw Normal View History

/*
* Tiny Code Generator for QEMU
*
* Copyright (c) 2008 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "../tcg-pool.c.inc"
#ifdef CONFIG_DEBUG_TCG
static const char * const tcg_target_reg_names[TCG_TARGET_NB_REGS] = {
"%g0",
"%g1",
"%g2",
"%g3",
"%g4",
"%g5",
"%g6",
"%g7",
"%o0",
"%o1",
"%o2",
"%o3",
"%o4",
"%o5",
"%o6",
"%o7",
"%l0",
"%l1",
"%l2",
"%l3",
"%l4",
"%l5",
"%l6",
"%l7",
"%i0",
"%i1",
"%i2",
"%i3",
"%i4",
"%i5",
"%i6",
"%i7",
};
#endif
#ifdef __arch64__
# define SPARC64 1
#else
# define SPARC64 0
#endif
/* Note that sparcv8plus can only hold 64 bit quantities in %g and %o
registers. These are saved manually by the kernel in full 64-bit
slots. The %i and %l registers are saved by the register window
mechanism, which only allocates space for 32 bits. Given that this
window spill/fill can happen on any signal, we must consider the
high bits of the %i and %l registers garbage at all times. */
#if SPARC64
# define ALL_64 0xffffffffu
#else
# define ALL_64 0xffffu
#endif
/* Define some temporary registers. T2 is used for constant generation. */
#define TCG_REG_T1 TCG_REG_G1
#define TCG_REG_T2 TCG_REG_O7
#ifndef CONFIG_SOFTMMU
# define TCG_GUEST_BASE_REG TCG_REG_I5
#endif
#define TCG_REG_TB TCG_REG_I1
#define USE_REG_TB (sizeof(void *) > 4)
static const int tcg_target_reg_alloc_order[] = {
TCG_REG_L0,
TCG_REG_L1,
TCG_REG_L2,
TCG_REG_L3,
TCG_REG_L4,
TCG_REG_L5,
TCG_REG_L6,
TCG_REG_L7,
TCG_REG_I0,
TCG_REG_I1,
TCG_REG_I2,
TCG_REG_I3,
TCG_REG_I4,
TCG_REG_I5,
TCG_REG_G2,
TCG_REG_G3,
TCG_REG_G4,
TCG_REG_G5,
TCG_REG_O0,
TCG_REG_O1,
TCG_REG_O2,
TCG_REG_O3,
TCG_REG_O4,
TCG_REG_O5,
};
static const int tcg_target_call_iarg_regs[6] = {
TCG_REG_O0,
TCG_REG_O1,
TCG_REG_O2,
TCG_REG_O3,
TCG_REG_O4,
TCG_REG_O5,
};
static const int tcg_target_call_oarg_regs[] = {
TCG_REG_O0,
TCG_REG_O1,
TCG_REG_O2,
TCG_REG_O3,
};
#define INSN_OP(x) ((x) << 30)
#define INSN_OP2(x) ((x) << 22)
#define INSN_OP3(x) ((x) << 19)
#define INSN_OPF(x) ((x) << 5)
#define INSN_RD(x) ((x) << 25)
#define INSN_RS1(x) ((x) << 14)
#define INSN_RS2(x) (x)
#define INSN_ASI(x) ((x) << 5)
#define INSN_IMM10(x) ((1 << 13) | ((x) & 0x3ff))
#define INSN_IMM11(x) ((1 << 13) | ((x) & 0x7ff))
#define INSN_IMM13(x) ((1 << 13) | ((x) & 0x1fff))
#define INSN_OFF16(x) ((((x) >> 2) & 0x3fff) | ((((x) >> 16) & 3) << 20))
#define INSN_OFF19(x) (((x) >> 2) & 0x07ffff)
#define INSN_COND(x) ((x) << 25)
#define COND_N 0x0
#define COND_E 0x1
#define COND_LE 0x2
#define COND_L 0x3
#define COND_LEU 0x4
#define COND_CS 0x5
#define COND_NEG 0x6
#define COND_VS 0x7
#define COND_A 0x8
#define COND_NE 0x9
#define COND_G 0xa
#define COND_GE 0xb
#define COND_GU 0xc
#define COND_CC 0xd
#define COND_POS 0xe
#define COND_VC 0xf
#define BA (INSN_OP(0) | INSN_COND(COND_A) | INSN_OP2(0x2))
#define RCOND_Z 1
#define RCOND_LEZ 2
#define RCOND_LZ 3
#define RCOND_NZ 5
#define RCOND_GZ 6
#define RCOND_GEZ 7
#define MOVCC_ICC (1 << 18)
#define MOVCC_XCC (1 << 18 | 1 << 12)
#define BPCC_ICC 0
#define BPCC_XCC (2 << 20)
#define BPCC_PT (1 << 19)
#define BPCC_PN 0
#define BPCC_A (1 << 29)
#define BPR_PT BPCC_PT
#define ARITH_ADD (INSN_OP(2) | INSN_OP3(0x00))
#define ARITH_ADDCC (INSN_OP(2) | INSN_OP3(0x10))
#define ARITH_AND (INSN_OP(2) | INSN_OP3(0x01))
#define ARITH_ANDN (INSN_OP(2) | INSN_OP3(0x05))
#define ARITH_OR (INSN_OP(2) | INSN_OP3(0x02))
#define ARITH_ORCC (INSN_OP(2) | INSN_OP3(0x12))
#define ARITH_ORN (INSN_OP(2) | INSN_OP3(0x06))
#define ARITH_XOR (INSN_OP(2) | INSN_OP3(0x03))
#define ARITH_SUB (INSN_OP(2) | INSN_OP3(0x04))
#define ARITH_SUBCC (INSN_OP(2) | INSN_OP3(0x14))
#define ARITH_ADDC (INSN_OP(2) | INSN_OP3(0x08))
#define ARITH_SUBC (INSN_OP(2) | INSN_OP3(0x0c))
#define ARITH_UMUL (INSN_OP(2) | INSN_OP3(0x0a))
#define ARITH_SMUL (INSN_OP(2) | INSN_OP3(0x0b))
#define ARITH_UDIV (INSN_OP(2) | INSN_OP3(0x0e))
#define ARITH_SDIV (INSN_OP(2) | INSN_OP3(0x0f))
#define ARITH_MULX (INSN_OP(2) | INSN_OP3(0x09))
#define ARITH_UDIVX (INSN_OP(2) | INSN_OP3(0x0d))
#define ARITH_SDIVX (INSN_OP(2) | INSN_OP3(0x2d))
#define ARITH_MOVCC (INSN_OP(2) | INSN_OP3(0x2c))
#define ARITH_MOVR (INSN_OP(2) | INSN_OP3(0x2f))
#define ARITH_ADDXC (INSN_OP(2) | INSN_OP3(0x36) | INSN_OPF(0x11))
#define ARITH_UMULXHI (INSN_OP(2) | INSN_OP3(0x36) | INSN_OPF(0x16))
#define SHIFT_SLL (INSN_OP(2) | INSN_OP3(0x25))
#define SHIFT_SRL (INSN_OP(2) | INSN_OP3(0x26))
#define SHIFT_SRA (INSN_OP(2) | INSN_OP3(0x27))
#define SHIFT_SLLX (INSN_OP(2) | INSN_OP3(0x25) | (1 << 12))
#define SHIFT_SRLX (INSN_OP(2) | INSN_OP3(0x26) | (1 << 12))
#define SHIFT_SRAX (INSN_OP(2) | INSN_OP3(0x27) | (1 << 12))
#define RDY (INSN_OP(2) | INSN_OP3(0x28) | INSN_RS1(0))
#define WRY (INSN_OP(2) | INSN_OP3(0x30) | INSN_RD(0))
#define JMPL (INSN_OP(2) | INSN_OP3(0x38))
#define RETURN (INSN_OP(2) | INSN_OP3(0x39))
#define SAVE (INSN_OP(2) | INSN_OP3(0x3c))
#define RESTORE (INSN_OP(2) | INSN_OP3(0x3d))
#define SETHI (INSN_OP(0) | INSN_OP2(0x4))
#define CALL INSN_OP(1)
#define LDUB (INSN_OP(3) | INSN_OP3(0x01))
#define LDSB (INSN_OP(3) | INSN_OP3(0x09))
#define LDUH (INSN_OP(3) | INSN_OP3(0x02))
#define LDSH (INSN_OP(3) | INSN_OP3(0x0a))
#define LDUW (INSN_OP(3) | INSN_OP3(0x00))
#define LDSW (INSN_OP(3) | INSN_OP3(0x08))
#define LDX (INSN_OP(3) | INSN_OP3(0x0b))
#define STB (INSN_OP(3) | INSN_OP3(0x05))
#define STH (INSN_OP(3) | INSN_OP3(0x06))
#define STW (INSN_OP(3) | INSN_OP3(0x04))
#define STX (INSN_OP(3) | INSN_OP3(0x0e))
#define LDUBA (INSN_OP(3) | INSN_OP3(0x11))
#define LDSBA (INSN_OP(3) | INSN_OP3(0x19))
#define LDUHA (INSN_OP(3) | INSN_OP3(0x12))
#define LDSHA (INSN_OP(3) | INSN_OP3(0x1a))
#define LDUWA (INSN_OP(3) | INSN_OP3(0x10))
#define LDSWA (INSN_OP(3) | INSN_OP3(0x18))
#define LDXA (INSN_OP(3) | INSN_OP3(0x1b))
#define STBA (INSN_OP(3) | INSN_OP3(0x15))
#define STHA (INSN_OP(3) | INSN_OP3(0x16))
#define STWA (INSN_OP(3) | INSN_OP3(0x14))
#define STXA (INSN_OP(3) | INSN_OP3(0x1e))
#define MEMBAR (INSN_OP(2) | INSN_OP3(0x28) | INSN_RS1(15) | (1 << 13))
#define NOP (SETHI | INSN_RD(TCG_REG_G0) | 0)
#ifndef ASI_PRIMARY_LITTLE
#define ASI_PRIMARY_LITTLE 0x88
#endif
#define LDUH_LE (LDUHA | INSN_ASI(ASI_PRIMARY_LITTLE))
#define LDSH_LE (LDSHA | INSN_ASI(ASI_PRIMARY_LITTLE))
#define LDUW_LE (LDUWA | INSN_ASI(ASI_PRIMARY_LITTLE))
#define LDSW_LE (LDSWA | INSN_ASI(ASI_PRIMARY_LITTLE))
#define LDX_LE (LDXA | INSN_ASI(ASI_PRIMARY_LITTLE))
#define STH_LE (STHA | INSN_ASI(ASI_PRIMARY_LITTLE))
#define STW_LE (STWA | INSN_ASI(ASI_PRIMARY_LITTLE))
#define STX_LE (STXA | INSN_ASI(ASI_PRIMARY_LITTLE))
#ifndef use_vis3_instructions
bool use_vis3_instructions;
#endif
static inline int check_fit_i64(int64_t val, unsigned int bits)
{
return val == sextract64(val, 0, bits);
}
static inline int check_fit_i32(int32_t val, unsigned int bits)
{
return val == sextract32(val, 0, bits);
}
#define check_fit_tl check_fit_i64
#if SPARC64
# define check_fit_ptr check_fit_i64
#else
# define check_fit_ptr check_fit_i32
#endif
static bool patch_reloc(tcg_insn_unit *code_ptr, int type,
intptr_t value, intptr_t addend)
{
uint32_t insn = *code_ptr;
intptr_t pcrel;
value += addend;
pcrel = tcg_ptr_byte_diff((tcg_insn_unit *)value, code_ptr);
switch (type) {
case R_SPARC_WDISP16:
assert(check_fit_ptr(pcrel >> 2, 16));
insn &= ~INSN_OFF16(-1);
insn |= INSN_OFF16(pcrel);
break;
case R_SPARC_WDISP19:
assert(check_fit_ptr(pcrel >> 2, 19));
insn &= ~INSN_OFF19(-1);
insn |= INSN_OFF19(pcrel);
break;
default:
g_assert_not_reached();
}
*code_ptr = insn;
return true;
}
/* parse target specific constraints */
static const char *target_parse_constraint(TCGArgConstraint *ct,
const char *ct_str, TCGType type)
{
switch (*ct_str++) {
case 'r':
ct->regs = 0xffffffff;
break;
case 'R':
ct->regs = ALL_64;
break;
case 'A': /* qemu_ld/st address constraint */
ct->regs = TARGET_LONG_BITS == 64 ? ALL_64 : 0xffffffff;
reserve_helpers:
tcg_regset_reset_reg(ct->regs, TCG_REG_O0);
tcg_regset_reset_reg(ct->regs, TCG_REG_O1);
tcg_regset_reset_reg(ct->regs, TCG_REG_O2);
break;
case 's': /* qemu_st data 32-bit constraint */
ct->regs = 0xffffffff;
goto reserve_helpers;
case 'S': /* qemu_st data 64-bit constraint */
ct->regs = ALL_64;
goto reserve_helpers;
case 'I':
ct->ct |= TCG_CT_CONST_S11;
break;
case 'J':
ct->ct |= TCG_CT_CONST_S13;
break;
case 'Z':
ct->ct |= TCG_CT_CONST_ZERO;
break;
default:
return NULL;
}
return ct_str;
}
/* test if a constant matches the constraint */
static inline int tcg_target_const_match(tcg_target_long val, TCGType type,
const TCGArgConstraint *arg_ct)
{
int ct = arg_ct->ct;
if (ct & TCG_CT_CONST) {
return 1;
}
if (type == TCG_TYPE_I32) {
val = (int32_t)val;
}
if ((ct & TCG_CT_CONST_ZERO) && val == 0) {
return 1;
} else if ((ct & TCG_CT_CONST_S11) && check_fit_tl(val, 11)) {
return 1;
} else if ((ct & TCG_CT_CONST_S13) && check_fit_tl(val, 13)) {
return 1;
} else {
return 0;
}
}
static inline void tcg_out_arith(TCGContext *s, TCGReg rd, TCGReg rs1,
TCGReg rs2, int op)
{
tcg_out32(s, op | INSN_RD(rd) | INSN_RS1(rs1) | INSN_RS2(rs2));
}
static inline void tcg_out_arithi(TCGContext *s, TCGReg rd, TCGReg rs1,
int32_t offset, int op)
{
tcg_out32(s, op | INSN_RD(rd) | INSN_RS1(rs1) | INSN_IMM13(offset));
}
static void tcg_out_arithc(TCGContext *s, TCGReg rd, TCGReg rs1,
int32_t val2, int val2const, int op)
{
tcg_out32(s, op | INSN_RD(rd) | INSN_RS1(rs1)
| (val2const ? INSN_IMM13(val2) : INSN_RS2(val2)));
}
static inline bool tcg_out_mov(TCGContext *s, TCGType type,
TCGReg ret, TCGReg arg)
{
if (ret != arg) {
tcg_out_arith(s, ret, arg, TCG_REG_G0, ARITH_OR);
}
return true;
}
static inline void tcg_out_sethi(TCGContext *s, TCGReg ret, uint32_t arg)
{
tcg_out32(s, SETHI | INSN_RD(ret) | ((arg & 0xfffffc00) >> 10));
}
static inline void tcg_out_movi_imm13(TCGContext *s, TCGReg ret, int32_t arg)
{
tcg_out_arithi(s, ret, TCG_REG_G0, arg, ARITH_OR);
}
static void tcg_out_movi_int(TCGContext *s, TCGType type, TCGReg ret,
tcg_target_long arg, bool in_prologue)
{
tcg_target_long hi, lo = (int32_t)arg;
tcg_target_long test, lsb;
/* Make sure we test 32-bit constants for imm13 properly. */
if (type == TCG_TYPE_I32) {
arg = lo;
}
/* A 13-bit constant sign-extended to 64-bits. */
if (check_fit_tl(arg, 13)) {
tcg_out_movi_imm13(s, ret, arg);
return;
}
/* A 13-bit constant relative to the TB. */
if (!in_prologue && USE_REG_TB) {
test = tcg_tbrel_diff(s, (void *)arg);
if (check_fit_ptr(test, 13)) {
tcg_out_arithi(s, ret, TCG_REG_TB, test, ARITH_ADD);
return;
}
}
/* A 32-bit constant, or 32-bit zero-extended to 64-bits. */
if (type == TCG_TYPE_I32 || arg == (uint32_t)arg) {
tcg_out_sethi(s, ret, arg);
if (arg & 0x3ff) {
tcg_out_arithi(s, ret, ret, arg & 0x3ff, ARITH_OR);
}
return;
}
/* A 32-bit constant sign-extended to 64-bits. */
if (arg == lo) {
tcg_out_sethi(s, ret, ~arg);
tcg_out_arithi(s, ret, ret, (arg & 0x3ff) | -0x400, ARITH_XOR);
return;
}
/* A 21-bit constant, shifted. */
lsb = ctz64(arg);
test = (tcg_target_long)arg >> lsb;
if (check_fit_tl(test, 13)) {
tcg_out_movi_imm13(s, ret, test);
tcg_out_arithi(s, ret, ret, lsb, SHIFT_SLLX);
return;
} else if (lsb > 10 && test == extract64(test, 0, 21)) {
tcg_out_sethi(s, ret, test << 10);
tcg_out_arithi(s, ret, ret, lsb - 10, SHIFT_SLLX);
return;
}
/* A 64-bit constant decomposed into 2 32-bit pieces. */
if (check_fit_i32(lo, 13)) {
hi = (arg - lo) >> 32;
tcg_out_movi(s, TCG_TYPE_I32, ret, hi);
tcg_out_arithi(s, ret, ret, 32, SHIFT_SLLX);
tcg_out_arithi(s, ret, ret, lo, ARITH_ADD);
} else {
hi = arg >> 32;
tcg_out_movi(s, TCG_TYPE_I32, ret, hi);
tcg_out_movi(s, TCG_TYPE_I32, TCG_REG_T2, lo);
tcg_out_arithi(s, ret, ret, 32, SHIFT_SLLX);
tcg_out_arith(s, ret, ret, TCG_REG_T2, ARITH_OR);
}
}
static inline void tcg_out_movi(TCGContext *s, TCGType type,
TCGReg ret, tcg_target_long arg)
{
tcg_out_movi_int(s, type, ret, arg, false);
}
static inline void tcg_out_ldst_rr(TCGContext *s, TCGReg data, TCGReg a1,
TCGReg a2, int op)
{
tcg_out32(s, op | INSN_RD(data) | INSN_RS1(a1) | INSN_RS2(a2));
}
static void tcg_out_ldst(TCGContext *s, TCGReg ret, TCGReg addr,
intptr_t offset, int op)
{
if (check_fit_ptr(offset, 13)) {
tcg_out32(s, op | INSN_RD(ret) | INSN_RS1(addr) |
INSN_IMM13(offset));
} else {
tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_T1, offset);
tcg_out_ldst_rr(s, ret, addr, TCG_REG_T1, op);
}
}
static inline void tcg_out_ld(TCGContext *s, TCGType type, TCGReg ret,
TCGReg arg1, intptr_t arg2)
{
tcg_out_ldst(s, ret, arg1, arg2, (type == TCG_TYPE_I32 ? LDUW : LDX));
}
static inline void tcg_out_st(TCGContext *s, TCGType type, TCGReg arg,
TCGReg arg1, intptr_t arg2)
{
tcg_out_ldst(s, arg, arg1, arg2, (type == TCG_TYPE_I32 ? STW : STX));
}
static inline bool tcg_out_sti(TCGContext *s, TCGType type, TCGArg val,
TCGReg base, intptr_t ofs)
{
if (val == 0) {
tcg_out_st(s, type, TCG_REG_G0, base, ofs);
return true;
}
return false;
}
static void tcg_out_ld_ptr(TCGContext *s, TCGReg ret, const void *arg)
{
intptr_t diff = tcg_tbrel_diff(s, arg);
if (USE_REG_TB && check_fit_ptr(diff, 13)) {
tcg_out_ld(s, TCG_TYPE_PTR, ret, TCG_REG_TB, diff);
return;
}
tcg_out_movi(s, TCG_TYPE_PTR, ret, (uintptr_t)arg & ~0x3ff);
tcg_out_ld(s, TCG_TYPE_PTR, ret, ret, (uintptr_t)arg & 0x3ff);
}
static inline void tcg_out_sety(TCGContext *s, TCGReg rs)
{
tcg_out32(s, WRY | INSN_RS1(TCG_REG_G0) | INSN_RS2(rs));
}
static inline void tcg_out_rdy(TCGContext *s, TCGReg rd)
{
tcg_out32(s, RDY | INSN_RD(rd));
}
static void tcg_out_div32(TCGContext *s, TCGReg rd, TCGReg rs1,
int32_t val2, int val2const, int uns)
{
/* Load Y with the sign/zero extension of RS1 to 64-bits. */
if (uns) {
tcg_out_sety(s, TCG_REG_G0);
} else {
tcg_out_arithi(s, TCG_REG_T1, rs1, 31, SHIFT_SRA);
tcg_out_sety(s, TCG_REG_T1);
}
tcg_out_arithc(s, rd, rs1, val2, val2const,
uns ? ARITH_UDIV : ARITH_SDIV);
}
static inline void tcg_out_nop(TCGContext *s)
{
tcg_out32(s, NOP);
}
static const uint8_t tcg_cond_to_bcond[] = {
[TCG_COND_EQ] = COND_E,
[TCG_COND_NE] = COND_NE,
[TCG_COND_LT] = COND_L,
[TCG_COND_GE] = COND_GE,
[TCG_COND_LE] = COND_LE,
[TCG_COND_GT] = COND_G,
[TCG_COND_LTU] = COND_CS,
[TCG_COND_GEU] = COND_CC,
[TCG_COND_LEU] = COND_LEU,
[TCG_COND_GTU] = COND_GU,
};
static const uint8_t tcg_cond_to_rcond[] = {
[TCG_COND_EQ] = RCOND_Z,
[TCG_COND_NE] = RCOND_NZ,
[TCG_COND_LT] = RCOND_LZ,
[TCG_COND_GT] = RCOND_GZ,
[TCG_COND_LE] = RCOND_LEZ,
[TCG_COND_GE] = RCOND_GEZ
};
static void tcg_out_bpcc0(TCGContext *s, int scond, int flags, int off19)
{
tcg_out32(s, INSN_OP(0) | INSN_OP2(1) | INSN_COND(scond) | flags | off19);
}
static void tcg_out_bpcc(TCGContext *s, int scond, int flags, TCGLabel *l)
{
int off19 = 0;
if (l->has_value) {
off19 = INSN_OFF19(tcg_pcrel_diff(s, l->u.value_ptr));
} else {
tcg_out_reloc(s, s->code_ptr, R_SPARC_WDISP19, l, 0);
}
tcg_out_bpcc0(s, scond, flags, off19);
}
static void tcg_out_cmp(TCGContext *s, TCGReg c1, int32_t c2, int c2const)
{
tcg_out_arithc(s, TCG_REG_G0, c1, c2, c2const, ARITH_SUBCC);
}
static void tcg_out_brcond_i32(TCGContext *s, TCGCond cond, TCGReg arg1,
int32_t arg2, int const_arg2, TCGLabel *l)
{
tcg_out_cmp(s, arg1, arg2, const_arg2);
tcg_out_bpcc(s, tcg_cond_to_bcond[cond], BPCC_ICC | BPCC_PT, l);
tcg_out_nop(s);
}
static void tcg_out_movcc(TCGContext *s, TCGCond cond, int cc, TCGReg ret,
int32_t v1, int v1const)
{
tcg_out32(s, ARITH_MOVCC | cc | INSN_RD(ret)
| INSN_RS1(tcg_cond_to_bcond[cond])
| (v1const ? INSN_IMM11(v1) : INSN_RS2(v1)));
}
static void tcg_out_movcond_i32(TCGContext *s, TCGCond cond, TCGReg ret,
TCGReg c1, int32_t c2, int c2const,
int32_t v1, int v1const)
{
tcg_out_cmp(s, c1, c2, c2const);
tcg_out_movcc(s, cond, MOVCC_ICC, ret, v1, v1const);
}
static void tcg_out_brcond_i64(TCGContext *s, TCGCond cond, TCGReg arg1,
int32_t arg2, int const_arg2, TCGLabel *l)
{
/* For 64-bit signed comparisons vs zero, we can avoid the compare. */
if (arg2 == 0 && !is_unsigned_cond(cond)) {
int off16 = 0;
if (l->has_value) {
off16 = INSN_OFF16(tcg_pcrel_diff(s, l->u.value_ptr));
} else {
tcg_out_reloc(s, s->code_ptr, R_SPARC_WDISP16, l, 0);
}
tcg_out32(s, INSN_OP(0) | INSN_OP2(3) | BPR_PT | INSN_RS1(arg1)
| INSN_COND(tcg_cond_to_rcond[cond]) | off16);
} else {
tcg_out_cmp(s, arg1, arg2, const_arg2);
tcg_out_bpcc(s, tcg_cond_to_bcond[cond], BPCC_XCC | BPCC_PT, l);
}
tcg_out_nop(s);
}
static void tcg_out_movr(TCGContext *s, TCGCond cond, TCGReg ret, TCGReg c1,
int32_t v1, int v1const)
{
tcg_out32(s, ARITH_MOVR | INSN_RD(ret) | INSN_RS1(c1)
| (tcg_cond_to_rcond[cond] << 10)
| (v1const ? INSN_IMM10(v1) : INSN_RS2(v1)));
}
static void tcg_out_movcond_i64(TCGContext *s, TCGCond cond, TCGReg ret,
TCGReg c1, int32_t c2, int c2const,
int32_t v1, int v1const)
{
/* For 64-bit signed comparisons vs zero, we can avoid the compare.
Note that the immediate range is one bit smaller, so we must check
for that as well. */
if (c2 == 0 && !is_unsigned_cond(cond)
&& (!v1const || check_fit_i32(v1, 10))) {
tcg_out_movr(s, cond, ret, c1, v1, v1const);
} else {
tcg_out_cmp(s, c1, c2, c2const);
tcg_out_movcc(s, cond, MOVCC_XCC, ret, v1, v1const);
}
}
static void tcg_out_setcond_i32(TCGContext *s, TCGCond cond, TCGReg ret,
TCGReg c1, int32_t c2, int c2const)
{
/* For 32-bit comparisons, we can play games with ADDC/SUBC. */
switch (cond) {
case TCG_COND_LTU:
case TCG_COND_GEU:
/* The result of the comparison is in the carry bit. */
break;
case TCG_COND_EQ:
case TCG_COND_NE:
/* For equality, we can transform to inequality vs zero. */
if (c2 != 0) {
tcg_out_arithc(s, TCG_REG_T1, c1, c2, c2const, ARITH_XOR);
c2 = TCG_REG_T1;
} else {
c2 = c1;
}
c1 = TCG_REG_G0, c2const = 0;
cond = (cond == TCG_COND_EQ ? TCG_COND_GEU : TCG_COND_LTU);
break;
case TCG_COND_GTU:
case TCG_COND_LEU:
/* If we don't need to load a constant into a register, we can
swap the operands on GTU/LEU. There's no benefit to loading
the constant into a temporary register. */
if (!c2const || c2 == 0) {
TCGReg t = c1;
c1 = c2;
c2 = t;
c2const = 0;
cond = tcg_swap_cond(cond);
break;
}
/* FALLTHRU */
default:
tcg_out_cmp(s, c1, c2, c2const);
tcg_out_movi_imm13(s, ret, 0);
tcg_out_movcc(s, cond, MOVCC_ICC, ret, 1, 1);
return;
}
tcg_out_cmp(s, c1, c2, c2const);
if (cond == TCG_COND_LTU) {
tcg_out_arithi(s, ret, TCG_REG_G0, 0, ARITH_ADDC);
} else {
tcg_out_arithi(s, ret, TCG_REG_G0, -1, ARITH_SUBC);
}
}
static void tcg_out_setcond_i64(TCGContext *s, TCGCond cond, TCGReg ret,
TCGReg c1, int32_t c2, int c2const)
{
if (use_vis3_instructions) {
switch (cond) {
case TCG_COND_NE:
if (c2 != 0) {
break;
}
c2 = c1, c2const = 0, c1 = TCG_REG_G0;
/* FALLTHRU */
case TCG_COND_LTU:
tcg_out_cmp(s, c1, c2, c2const);
tcg_out_arith(s, ret, TCG_REG_G0, TCG_REG_G0, ARITH_ADDXC);
return;
default:
break;
}
}
/* For 64-bit signed comparisons vs zero, we can avoid the compare
if the input does not overlap the output. */
if (c2 == 0 && !is_unsigned_cond(cond) && c1 != ret) {
tcg_out_movi_imm13(s, ret, 0);
tcg_out_movr(s, cond, ret, c1, 1, 1);
} else {
tcg_out_cmp(s, c1, c2, c2const);
tcg_out_movi_imm13(s, ret, 0);
tcg_out_movcc(s, cond, MOVCC_XCC, ret, 1, 1);
}
}
static void tcg_out_addsub2_i32(TCGContext *s, TCGReg rl, TCGReg rh,
TCGReg al, TCGReg ah, int32_t bl, int blconst,
int32_t bh, int bhconst, int opl, int oph)
{
TCGReg tmp = TCG_REG_T1;
/* Note that the low parts are fully consumed before tmp is set. */
if (rl != ah && (bhconst || rl != bh)) {
tmp = rl;
}
tcg_out_arithc(s, tmp, al, bl, blconst, opl);
tcg_out_arithc(s, rh, ah, bh, bhconst, oph);
tcg_out_mov(s, TCG_TYPE_I32, rl, tmp);
}
static void tcg_out_addsub2_i64(TCGContext *s, TCGReg rl, TCGReg rh,
TCGReg al, TCGReg ah, int32_t bl, int blconst,
int32_t bh, int bhconst, bool is_sub)
{
TCGReg tmp = TCG_REG_T1;
/* Note that the low parts are fully consumed before tmp is set. */
if (rl != ah && (bhconst || rl != bh)) {
tmp = rl;
}
tcg_out_arithc(s, tmp, al, bl, blconst, is_sub ? ARITH_SUBCC : ARITH_ADDCC);
if (use_vis3_instructions && !is_sub) {
/* Note that ADDXC doesn't accept immediates. */
if (bhconst && bh != 0) {
tcg_out_movi(s, TCG_TYPE_I64, TCG_REG_T2, bh);
bh = TCG_REG_T2;
}
tcg_out_arith(s, rh, ah, bh, ARITH_ADDXC);
} else if (bh == TCG_REG_G0) {
/* If we have a zero, we can perform the operation in two insns,
with the arithmetic first, and a conditional move into place. */
if (rh == ah) {
tcg_out_arithi(s, TCG_REG_T2, ah, 1,
is_sub ? ARITH_SUB : ARITH_ADD);
tcg_out_movcc(s, TCG_COND_LTU, MOVCC_XCC, rh, TCG_REG_T2, 0);
} else {
tcg_out_arithi(s, rh, ah, 1, is_sub ? ARITH_SUB : ARITH_ADD);
tcg_out_movcc(s, TCG_COND_GEU, MOVCC_XCC, rh, ah, 0);
}
} else {
/* Otherwise adjust BH as if there is carry into T2 ... */
if (bhconst) {
tcg_out_movi(s, TCG_TYPE_I64, TCG_REG_T2, bh + (is_sub ? -1 : 1));
} else {
tcg_out_arithi(s, TCG_REG_T2, bh, 1,
is_sub ? ARITH_SUB : ARITH_ADD);
}
/* ... smoosh T2 back to original BH if carry is clear ... */
tcg_out_movcc(s, TCG_COND_GEU, MOVCC_XCC, TCG_REG_T2, bh, bhconst);
/* ... and finally perform the arithmetic with the new operand. */
tcg_out_arith(s, rh, ah, TCG_REG_T2, is_sub ? ARITH_SUB : ARITH_ADD);
}
tcg_out_mov(s, TCG_TYPE_I64, rl, tmp);
}
static void tcg_out_call_nodelay(TCGContext *s, const tcg_insn_unit *dest,
bool in_prologue)
{
ptrdiff_t disp = tcg_pcrel_diff(s, dest);
if (disp == (int32_t)disp) {
tcg_out32(s, CALL | (uint32_t)disp >> 2);
} else {
uintptr_t desti = (uintptr_t)dest;
tcg_out_movi_int(s, TCG_TYPE_PTR, TCG_REG_T1,
desti & ~0xfff, in_prologue);
tcg_out_arithi(s, TCG_REG_O7, TCG_REG_T1, desti & 0xfff, JMPL);
}
}
static void tcg_out_call(TCGContext *s, const tcg_insn_unit *dest)
{
tcg_out_call_nodelay(s, dest, false);
tcg_out_nop(s);
}
static void tcg_out_mb(TCGContext *s, TCGArg a0)
{
/* Note that the TCG memory order constants mirror the Sparc MEMBAR. */
tcg_out32(s, MEMBAR | (a0 & TCG_MO_ALL));
}
#ifdef CONFIG_SOFTMMU
static tcg_insn_unit *qemu_ld_trampoline[16];
static tcg_insn_unit *qemu_st_trampoline[16];
static void emit_extend(TCGContext *s, TCGReg r, int op)
{
/* Emit zero extend of 8, 16 or 32 bit data as
* required by the MO_* value op; do nothing for 64 bit.
*/
switch (op & MO_SIZE) {
case MO_8:
tcg_out_arithi(s, r, r, 0xff, ARITH_AND);
break;
case MO_16:
tcg_out_arithi(s, r, r, 16, SHIFT_SLL);
tcg_out_arithi(s, r, r, 16, SHIFT_SRL);
break;
case MO_32:
if (SPARC64) {
tcg_out_arith(s, r, r, 0, SHIFT_SRL);
}
break;
case MO_64:
break;
}
}
static void build_trampolines(TCGContext *s)
{
static void * const qemu_ld_helpers[16] = {
[MO_UB] = helper_ret_ldub_mmu,
[MO_SB] = helper_ret_ldsb_mmu,
[MO_LEUW] = helper_le_lduw_mmu,
[MO_LESW] = helper_le_ldsw_mmu,
[MO_LEUL] = helper_le_ldul_mmu,
[MO_LEQ] = helper_le_ldq_mmu,
[MO_BEUW] = helper_be_lduw_mmu,
[MO_BESW] = helper_be_ldsw_mmu,
[MO_BEUL] = helper_be_ldul_mmu,
[MO_BEQ] = helper_be_ldq_mmu,
};
static void * const qemu_st_helpers[16] = {
[MO_UB] = helper_ret_stb_mmu,
[MO_LEUW] = helper_le_stw_mmu,
[MO_LEUL] = helper_le_stl_mmu,
[MO_LEQ] = helper_le_stq_mmu,
[MO_BEUW] = helper_be_stw_mmu,
[MO_BEUL] = helper_be_stl_mmu,
[MO_BEQ] = helper_be_stq_mmu,
};
int i;
TCGReg ra;
for (i = 0; i < 16; ++i) {
if (qemu_ld_helpers[i] == NULL) {
continue;
}
/* May as well align the trampoline. */
while ((uintptr_t)s->code_ptr & 15) {
tcg_out_nop(s);
}
qemu_ld_trampoline[i] = s->code_ptr;
if (SPARC64 || TARGET_LONG_BITS == 32) {
ra = TCG_REG_O3;
} else {
/* Install the high part of the address. */
tcg_out_arithi(s, TCG_REG_O1, TCG_REG_O2, 32, SHIFT_SRLX);
ra = TCG_REG_O4;
}
/* Set the retaddr operand. */
tcg_out_mov(s, TCG_TYPE_PTR, ra, TCG_REG_O7);
/* Set the env operand. */
tcg_out_mov(s, TCG_TYPE_PTR, TCG_REG_O0, TCG_AREG0);
/* Tail call. */
tcg_out_call_nodelay(s, qemu_ld_helpers[i], true);
tcg_out_mov(s, TCG_TYPE_PTR, TCG_REG_O7, ra);
}
for (i = 0; i < 16; ++i) {
if (qemu_st_helpers[i] == NULL) {
continue;
}
/* May as well align the trampoline. */
while ((uintptr_t)s->code_ptr & 15) {
tcg_out_nop(s);
}
qemu_st_trampoline[i] = s->code_ptr;
if (SPARC64) {
emit_extend(s, TCG_REG_O2, i);
ra = TCG_REG_O4;
} else {
ra = TCG_REG_O1;
if (TARGET_LONG_BITS == 64) {
/* Install the high part of the address. */
tcg_out_arithi(s, ra, ra + 1, 32, SHIFT_SRLX);
ra += 2;
} else {
ra += 1;
}
if ((i & MO_SIZE) == MO_64) {
/* Install the high part of the data. */
tcg_out_arithi(s, ra, ra + 1, 32, SHIFT_SRLX);
ra += 2;
} else {
emit_extend(s, ra, i);
ra += 1;
}
/* Skip the oi argument. */
ra += 1;
}
/* Set the retaddr operand. */
if (ra >= TCG_REG_O6) {
tcg_out_st(s, TCG_TYPE_PTR, TCG_REG_O7, TCG_REG_CALL_STACK,
TCG_TARGET_CALL_STACK_OFFSET);
ra = TCG_REG_G1;
}
tcg_out_mov(s, TCG_TYPE_PTR, ra, TCG_REG_O7);
/* Set the env operand. */
tcg_out_mov(s, TCG_TYPE_PTR, TCG_REG_O0, TCG_AREG0);
/* Tail call. */
tcg_out_call_nodelay(s, qemu_st_helpers[i], true);
tcg_out_mov(s, TCG_TYPE_PTR, TCG_REG_O7, ra);
}
}
#endif
/* Generate global QEMU prologue and epilogue code */
static void tcg_target_qemu_prologue(TCGContext *s)
{
int tmp_buf_size, frame_size;
/* The TCG temp buffer is at the top of the frame, immediately
below the frame pointer. */
tmp_buf_size = CPU_TEMP_BUF_NLONGS * (int)sizeof(long);
tcg_set_frame(s, TCG_REG_I6, TCG_TARGET_STACK_BIAS - tmp_buf_size,
tmp_buf_size);
/* TCG_TARGET_CALL_STACK_OFFSET includes the stack bias, but is
otherwise the minimal frame usable by callees. */
frame_size = TCG_TARGET_CALL_STACK_OFFSET - TCG_TARGET_STACK_BIAS;
frame_size += TCG_STATIC_CALL_ARGS_SIZE + tmp_buf_size;
frame_size += TCG_TARGET_STACK_ALIGN - 1;
frame_size &= -TCG_TARGET_STACK_ALIGN;
tcg_out32(s, SAVE | INSN_RD(TCG_REG_O6) | INSN_RS1(TCG_REG_O6) |
INSN_IMM13(-frame_size));
#ifndef CONFIG_SOFTMMU
if (guest_base != 0) {
tcg_out_movi_int(s, TCG_TYPE_PTR, TCG_GUEST_BASE_REG, guest_base, true);
tcg_regset_set_reg(s->reserved_regs, TCG_GUEST_BASE_REG);
}
#endif
/* We choose TCG_REG_TB such that no move is required. */
if (USE_REG_TB) {
QEMU_BUILD_BUG_ON(TCG_REG_TB != TCG_REG_I1);
tcg_regset_set_reg(s->reserved_regs, TCG_REG_TB);
}
tcg_out_arithi(s, TCG_REG_G0, TCG_REG_I1, 0, JMPL);
/* delay slot */
tcg_out_nop(s);
/* Epilogue for goto_ptr. */
tcg_code_gen_epilogue = s->code_ptr;
tcg_out_arithi(s, TCG_REG_G0, TCG_REG_I7, 8, RETURN);
/* delay slot */
tcg_out_movi_imm13(s, TCG_REG_O0, 0);
#ifdef CONFIG_SOFTMMU
build_trampolines(s);
#endif
}
static void tcg_out_nop_fill(tcg_insn_unit *p, int count)
{
int i;
for (i = 0; i < count; ++i) {
p[i] = NOP;
}
}
#if defined(CONFIG_SOFTMMU)
/* We expect to use a 13-bit negative offset from ENV. */
QEMU_BUILD_BUG_ON(TLB_MASK_TABLE_OFS(0) > 0);
QEMU_BUILD_BUG_ON(TLB_MASK_TABLE_OFS(0) < -(1 << 12));
/* Perform the TLB load and compare.
Inputs:
ADDRLO and ADDRHI contain the possible two parts of the address.
MEM_INDEX and S_BITS are the memory context and log2 size of the load.
WHICH is the offset into the CPUTLBEntry structure of the slot to read.
This should be offsetof addr_read or addr_write.
The result of the TLB comparison is in %[ix]cc. The sanitized address
is in the returned register, maybe %o0. The TLB addend is in %o1. */
static TCGReg tcg_out_tlb_load(TCGContext *s, TCGReg addr, int mem_index,
MemOp opc, int which)
{
int fast_off = TLB_MASK_TABLE_OFS(mem_index);
int mask_off = fast_off + offsetof(CPUTLBDescFast, mask);
int table_off = fast_off + offsetof(CPUTLBDescFast, table);
const TCGReg r0 = TCG_REG_O0;
const TCGReg r1 = TCG_REG_O1;
const TCGReg r2 = TCG_REG_O2;
unsigned s_bits = opc & MO_SIZE;
unsigned a_bits = get_alignment_bits(opc);
tcg_target_long compare_mask;
/* Load tlb_mask[mmu_idx] and tlb_table[mmu_idx]. */
tcg_out_ld(s, TCG_TYPE_PTR, r0, TCG_AREG0, mask_off);
tcg_out_ld(s, TCG_TYPE_PTR, r1, TCG_AREG0, table_off);
/* Extract the page index, shifted into place for tlb index. */
tcg_out_arithi(s, r2, addr, TARGET_PAGE_BITS - CPU_TLB_ENTRY_BITS,
SHIFT_SRL);
tcg_out_arith(s, r2, r2, r0, ARITH_AND);
/* Add the tlb_table pointer, creating the CPUTLBEntry address into R2. */
tcg_out_arith(s, r2, r2, r1, ARITH_ADD);
/* Load the tlb comparator and the addend. */
tcg_out_ld(s, TCG_TYPE_TL, r0, r2, which);
tcg_out_ld(s, TCG_TYPE_PTR, r1, r2, offsetof(CPUTLBEntry, addend));
/* Mask out the page offset, except for the required alignment.
We don't support unaligned accesses. */
if (a_bits < s_bits) {
a_bits = s_bits;
}
compare_mask = (tcg_target_ulong)TARGET_PAGE_MASK | ((1 << a_bits) - 1);
if (check_fit_tl(compare_mask, 13)) {
tcg_out_arithi(s, r2, addr, compare_mask, ARITH_AND);
} else {
tcg_out_movi(s, TCG_TYPE_TL, r2, compare_mask);
tcg_out_arith(s, r2, addr, r2, ARITH_AND);
}
tcg_out_cmp(s, r0, r2, 0);
/* If the guest address must be zero-extended, do so now. */
if (SPARC64 && TARGET_LONG_BITS == 32) {
tcg_out_arithi(s, r0, addr, 0, SHIFT_SRL);
return r0;
}
return addr;
}
#endif /* CONFIG_SOFTMMU */
static const int qemu_ld_opc[16] = {
[MO_UB] = LDUB,
[MO_SB] = LDSB,
[MO_BEUW] = LDUH,
[MO_BESW] = LDSH,
[MO_BEUL] = LDUW,
[MO_BESL] = LDSW,
[MO_BEQ] = LDX,
[MO_LEUW] = LDUH_LE,
[MO_LESW] = LDSH_LE,
[MO_LEUL] = LDUW_LE,
[MO_LESL] = LDSW_LE,
[MO_LEQ] = LDX_LE,
};
static const int qemu_st_opc[16] = {
[MO_UB] = STB,
[MO_BEUW] = STH,
[MO_BEUL] = STW,
[MO_BEQ] = STX,
[MO_LEUW] = STH_LE,
[MO_LEUL] = STW_LE,
[MO_LEQ] = STX_LE,
};
static void tcg_out_qemu_ld(TCGContext *s, TCGReg data, TCGReg addr,
TCGMemOpIdx oi, bool is_64)
{
MemOp memop = get_memop(oi);
#ifdef CONFIG_SOFTMMU
unsigned memi = get_mmuidx(oi);
TCGReg addrz, param;
tcg_insn_unit *func;
tcg_insn_unit *label_ptr;
addrz = tcg_out_tlb_load(s, addr, memi, memop,
offsetof(CPUTLBEntry, addr_read));
/* The fast path is exactly one insn. Thus we can perform the
entire TLB Hit in the (annulled) delay slot of the branch
over the TLB Miss case. */
/* beq,a,pt %[xi]cc, label0 */
label_ptr = s->code_ptr;
tcg_out_bpcc0(s, COND_E, BPCC_A | BPCC_PT
| (TARGET_LONG_BITS == 64 ? BPCC_XCC : BPCC_ICC), 0);
/* delay slot */
tcg_out_ldst_rr(s, data, addrz, TCG_REG_O1,
qemu_ld_opc[memop & (MO_BSWAP | MO_SSIZE)]);
/* TLB Miss. */
param = TCG_REG_O1;
if (!SPARC64 && TARGET_LONG_BITS == 64) {
/* Skip the high-part; we'll perform the extract in the trampoline. */
param++;
}
tcg_out_mov(s, TCG_TYPE_REG, param++, addrz);
/* We use the helpers to extend SB and SW data, leaving the case
of SL needing explicit extending below. */
if ((memop & MO_SSIZE) == MO_SL) {
func = qemu_ld_trampoline[memop & (MO_BSWAP | MO_SIZE)];
} else {
func = qemu_ld_trampoline[memop & (MO_BSWAP | MO_SSIZE)];
}
tcg_debug_assert(func != NULL);
tcg_out_call_nodelay(s, func, false);
/* delay slot */
tcg_out_movi(s, TCG_TYPE_I32, param, oi);
/* Recall that all of the helpers return 64-bit results.
Which complicates things for sparcv8plus. */
if (SPARC64) {
/* We let the helper sign-extend SB and SW, but leave SL for here. */
if (is_64 && (memop & MO_SSIZE) == MO_SL) {
tcg_out_arithi(s, data, TCG_REG_O0, 0, SHIFT_SRA);
} else {
tcg_out_mov(s, TCG_TYPE_REG, data, TCG_REG_O0);
}
} else {
if ((memop & MO_SIZE) == MO_64) {
tcg_out_arithi(s, TCG_REG_O0, TCG_REG_O0, 32, SHIFT_SLLX);
tcg_out_arithi(s, TCG_REG_O1, TCG_REG_O1, 0, SHIFT_SRL);
tcg_out_arith(s, data, TCG_REG_O0, TCG_REG_O1, ARITH_OR);
} else if (is_64) {
/* Re-extend from 32-bit rather than reassembling when we
know the high register must be an extension. */
tcg_out_arithi(s, data, TCG_REG_O1, 0,
memop & MO_SIGN ? SHIFT_SRA : SHIFT_SRL);
} else {
tcg_out_mov(s, TCG_TYPE_I32, data, TCG_REG_O1);
}
}
*label_ptr |= INSN_OFF19(tcg_ptr_byte_diff(s->code_ptr, label_ptr));
#else
if (SPARC64 && TARGET_LONG_BITS == 32) {
tcg_out_arithi(s, TCG_REG_T1, addr, 0, SHIFT_SRL);
addr = TCG_REG_T1;
}
tcg_out_ldst_rr(s, data, addr,
(guest_base ? TCG_GUEST_BASE_REG : TCG_REG_G0),
qemu_ld_opc[memop & (MO_BSWAP | MO_SSIZE)]);
#endif /* CONFIG_SOFTMMU */
}
static void tcg_out_qemu_st(TCGContext *s, TCGReg data, TCGReg addr,
TCGMemOpIdx oi)
{
MemOp memop = get_memop(oi);
#ifdef CONFIG_SOFTMMU
unsigned memi = get_mmuidx(oi);
TCGReg addrz, param;
tcg_insn_unit *func;
tcg_insn_unit *label_ptr;
addrz = tcg_out_tlb_load(s, addr, memi, memop,
offsetof(CPUTLBEntry, addr_write));
/* The fast path is exactly one insn. Thus we can perform the entire
TLB Hit in the (annulled) delay slot of the branch over TLB Miss. */
/* beq,a,pt %[xi]cc, label0 */
label_ptr = s->code_ptr;
tcg_out_bpcc0(s, COND_E, BPCC_A | BPCC_PT
| (TARGET_LONG_BITS == 64 ? BPCC_XCC : BPCC_ICC), 0);
/* delay slot */
tcg_out_ldst_rr(s, data, addrz, TCG_REG_O1,
qemu_st_opc[memop & (MO_BSWAP | MO_SIZE)]);
/* TLB Miss. */
param = TCG_REG_O1;
if (!SPARC64 && TARGET_LONG_BITS == 64) {
/* Skip the high-part; we'll perform the extract in the trampoline. */
param++;
}
tcg_out_mov(s, TCG_TYPE_REG, param++, addrz);
if (!SPARC64 && (memop & MO_SIZE) == MO_64) {
/* Skip the high-part; we'll perform the extract in the trampoline. */
param++;
}
tcg_out_mov(s, TCG_TYPE_REG, param++, data);
func = qemu_st_trampoline[memop & (MO_BSWAP | MO_SIZE)];
tcg_debug_assert(func != NULL);
tcg_out_call_nodelay(s, func, false);
/* delay slot */
tcg_out_movi(s, TCG_TYPE_I32, param, oi);
*label_ptr |= INSN_OFF19(tcg_ptr_byte_diff(s->code_ptr, label_ptr));
#else
if (SPARC64 && TARGET_LONG_BITS == 32) {
tcg_out_arithi(s, TCG_REG_T1, addr, 0, SHIFT_SRL);
addr = TCG_REG_T1;
}
tcg_out_ldst_rr(s, data, addr,
(guest_base ? TCG_GUEST_BASE_REG : TCG_REG_G0),
qemu_st_opc[memop & (MO_BSWAP | MO_SIZE)]);
#endif /* CONFIG_SOFTMMU */
}
static void tcg_out_op(TCGContext *s, TCGOpcode opc,
const TCGArg args[TCG_MAX_OP_ARGS],
const int const_args[TCG_MAX_OP_ARGS])
{
TCGArg a0, a1, a2;
int c, c2;
/* Hoist the loads of the most common arguments. */
a0 = args[0];
a1 = args[1];
a2 = args[2];
c2 = const_args[2];
switch (opc) {
case INDEX_op_exit_tb:
if (check_fit_ptr(a0, 13)) {
tcg_out_arithi(s, TCG_REG_G0, TCG_REG_I7, 8, RETURN);
tcg_out_movi_imm13(s, TCG_REG_O0, a0);
break;
} else if (USE_REG_TB) {
intptr_t tb_diff = tcg_tbrel_diff(s, (void *)a0);
if (check_fit_ptr(tb_diff, 13)) {
tcg_out_arithi(s, TCG_REG_G0, TCG_REG_I7, 8, RETURN);
/* Note that TCG_REG_TB has been unwound to O1. */
tcg_out_arithi(s, TCG_REG_O0, TCG_REG_O1, tb_diff, ARITH_ADD);
break;
}
}
tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_I0, a0 & ~0x3ff);
tcg_out_arithi(s, TCG_REG_G0, TCG_REG_I7, 8, RETURN);
tcg_out_arithi(s, TCG_REG_O0, TCG_REG_O0, a0 & 0x3ff, ARITH_OR);
break;
case INDEX_op_goto_tb:
if (s->tb_jmp_insn_offset) {
/* direct jump method */
if (USE_REG_TB) {
/* make sure the patch is 8-byte aligned. */
if ((intptr_t)s->code_ptr & 4) {
tcg_out_nop(s);
}
s->tb_jmp_insn_offset[a0] = tcg_current_code_size(s);
tcg_out_sethi(s, TCG_REG_T1, 0);
tcg_out_arithi(s, TCG_REG_T1, TCG_REG_T1, 0, ARITH_OR);
tcg_out_arith(s, TCG_REG_G0, TCG_REG_TB, TCG_REG_T1, JMPL);
tcg_out_arith(s, TCG_REG_TB, TCG_REG_TB, TCG_REG_T1, ARITH_ADD);
} else {
s->tb_jmp_insn_offset[a0] = tcg_current_code_size(s);
tcg_out32(s, CALL);
tcg_out_nop(s);
}
} else {
/* indirect jump method */
tcg_out_ld_ptr(s, TCG_REG_TB, s->tb_jmp_target_addr + a0);
tcg_out_arithi(s, TCG_REG_G0, TCG_REG_TB, 0, JMPL);
tcg_out_nop(s);
}
set_jmp_reset_offset(s, a0);
/* For the unlinked path of goto_tb, we need to reset
TCG_REG_TB to the beginning of this TB. */
if (USE_REG_TB) {
c = -tcg_current_code_size(s);
if (check_fit_i32(c, 13)) {
tcg_out_arithi(s, TCG_REG_TB, TCG_REG_TB, c, ARITH_ADD);
} else {
tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_T1, c);
tcg_out_arith(s, TCG_REG_TB, TCG_REG_TB,
TCG_REG_T1, ARITH_ADD);
}
}
break;
case INDEX_op_goto_ptr:
tcg_out_arithi(s, TCG_REG_G0, a0, 0, JMPL);
if (USE_REG_TB) {
tcg_out_arith(s, TCG_REG_TB, a0, TCG_REG_G0, ARITH_OR);
} else {
tcg_out_nop(s);
}
break;
case INDEX_op_br:
tcg_out_bpcc(s, COND_A, BPCC_PT, arg_label(a0));
tcg_out_nop(s);
break;
#define OP_32_64(x) \
glue(glue(case INDEX_op_, x), _i32): \
glue(glue(case INDEX_op_, x), _i64)
OP_32_64(ld8u):
tcg_out_ldst(s, a0, a1, a2, LDUB);
break;
OP_32_64(ld8s):
tcg_out_ldst(s, a0, a1, a2, LDSB);
break;
OP_32_64(ld16u):
tcg_out_ldst(s, a0, a1, a2, LDUH);
break;
OP_32_64(ld16s):
tcg_out_ldst(s, a0, a1, a2, LDSH);
break;
case INDEX_op_ld_i32:
case INDEX_op_ld32u_i64:
tcg_out_ldst(s, a0, a1, a2, LDUW);
break;
OP_32_64(st8):
tcg_out_ldst(s, a0, a1, a2, STB);
break;
OP_32_64(st16):
tcg_out_ldst(s, a0, a1, a2, STH);
break;
case INDEX_op_st_i32:
case INDEX_op_st32_i64:
tcg_out_ldst(s, a0, a1, a2, STW);
break;
OP_32_64(add):
c = ARITH_ADD;
goto gen_arith;
OP_32_64(sub):
c = ARITH_SUB;
goto gen_arith;
OP_32_64(and):
c = ARITH_AND;
goto gen_arith;
OP_32_64(andc):
c = ARITH_ANDN;
goto gen_arith;
OP_32_64(or):
c = ARITH_OR;
goto gen_arith;
OP_32_64(orc):
c = ARITH_ORN;
goto gen_arith;
OP_32_64(xor):
c = ARITH_XOR;
goto gen_arith;
case INDEX_op_shl_i32:
c = SHIFT_SLL;
do_shift32:
/* Limit immediate shift count lest we create an illegal insn. */
tcg_out_arithc(s, a0, a1, a2 & 31, c2, c);
break;
case INDEX_op_shr_i32:
c = SHIFT_SRL;
goto do_shift32;
case INDEX_op_sar_i32:
c = SHIFT_SRA;
goto do_shift32;
case INDEX_op_mul_i32:
c = ARITH_UMUL;
goto gen_arith;
OP_32_64(neg):
c = ARITH_SUB;
goto gen_arith1;
OP_32_64(not):
c = ARITH_ORN;
goto gen_arith1;
case INDEX_op_div_i32:
tcg_out_div32(s, a0, a1, a2, c2, 0);
break;
case INDEX_op_divu_i32:
tcg_out_div32(s, a0, a1, a2, c2, 1);
break;
case INDEX_op_brcond_i32:
tcg_out_brcond_i32(s, a2, a0, a1, const_args[1], arg_label(args[3]));
break;
case INDEX_op_setcond_i32:
tcg_out_setcond_i32(s, args[3], a0, a1, a2, c2);
break;
case INDEX_op_movcond_i32:
tcg_out_movcond_i32(s, args[5], a0, a1, a2, c2, args[3], const_args[3]);
break;
case INDEX_op_add2_i32:
tcg_out_addsub2_i32(s, args[0], args[1], args[2], args[3],
args[4], const_args[4], args[5], const_args[5],
ARITH_ADDCC, ARITH_ADDC);
break;
case INDEX_op_sub2_i32:
tcg_out_addsub2_i32(s, args[0], args[1], args[2], args[3],
args[4], const_args[4], args[5], const_args[5],
ARITH_SUBCC, ARITH_SUBC);
break;
case INDEX_op_mulu2_i32:
c = ARITH_UMUL;
goto do_mul2;
case INDEX_op_muls2_i32:
c = ARITH_SMUL;
do_mul2:
/* The 32-bit multiply insns produce a full 64-bit result. If the
destination register can hold it, we can avoid the slower RDY. */
tcg_out_arithc(s, a0, a2, args[3], const_args[3], c);
if (SPARC64 || a0 <= TCG_REG_O7) {
tcg_out_arithi(s, a1, a0, 32, SHIFT_SRLX);
} else {
tcg_out_rdy(s, a1);
}
break;
case INDEX_op_qemu_ld_i32:
tcg_out_qemu_ld(s, a0, a1, a2, false);
break;
case INDEX_op_qemu_ld_i64:
tcg_out_qemu_ld(s, a0, a1, a2, true);
break;
case INDEX_op_qemu_st_i32:
case INDEX_op_qemu_st_i64:
tcg_out_qemu_st(s, a0, a1, a2);
break;
case INDEX_op_ld32s_i64:
tcg_out_ldst(s, a0, a1, a2, LDSW);
break;
case INDEX_op_ld_i64:
tcg_out_ldst(s, a0, a1, a2, LDX);
break;
case INDEX_op_st_i64:
tcg_out_ldst(s, a0, a1, a2, STX);
break;
case INDEX_op_shl_i64:
c = SHIFT_SLLX;
do_shift64:
/* Limit immediate shift count lest we create an illegal insn. */
tcg_out_arithc(s, a0, a1, a2 & 63, c2, c);
break;
case INDEX_op_shr_i64:
c = SHIFT_SRLX;
goto do_shift64;
case INDEX_op_sar_i64:
c = SHIFT_SRAX;
goto do_shift64;
case INDEX_op_mul_i64:
c = ARITH_MULX;
goto gen_arith;
case INDEX_op_div_i64:
c = ARITH_SDIVX;
goto gen_arith;
case INDEX_op_divu_i64:
c = ARITH_UDIVX;
goto gen_arith;
case INDEX_op_ext_i32_i64:
case INDEX_op_ext32s_i64:
tcg_out_arithi(s, a0, a1, 0, SHIFT_SRA);
break;
case INDEX_op_extu_i32_i64:
case INDEX_op_ext32u_i64:
tcg_out_arithi(s, a0, a1, 0, SHIFT_SRL);
break;
case INDEX_op_extrl_i64_i32:
tcg_out_mov(s, TCG_TYPE_I32, a0, a1);
break;
case INDEX_op_extrh_i64_i32:
tcg_out_arithi(s, a0, a1, 32, SHIFT_SRLX);
break;
case INDEX_op_brcond_i64:
tcg_out_brcond_i64(s, a2, a0, a1, const_args[1], arg_label(args[3]));
break;
case INDEX_op_setcond_i64:
tcg_out_setcond_i64(s, args[3], a0, a1, a2, c2);
break;
case INDEX_op_movcond_i64:
tcg_out_movcond_i64(s, args[5], a0, a1, a2, c2, args[3], const_args[3]);
break;
case INDEX_op_add2_i64:
tcg_out_addsub2_i64(s, args[0], args[1], args[2], args[3], args[4],
const_args[4], args[5], const_args[5], false);
break;
case INDEX_op_sub2_i64:
tcg_out_addsub2_i64(s, args[0], args[1], args[2], args[3], args[4],
const_args[4], args[5], const_args[5], true);
break;
case INDEX_op_muluh_i64:
tcg_out_arith(s, args[0], args[1], args[2], ARITH_UMULXHI);
break;
gen_arith:
tcg_out_arithc(s, a0, a1, a2, c2, c);
break;
gen_arith1:
tcg_out_arithc(s, a0, TCG_REG_G0, a1, const_args[1], c);
break;
case INDEX_op_mb:
tcg_out_mb(s, a0);
break;
case INDEX_op_mov_i32: /* Always emitted via tcg_out_mov. */
case INDEX_op_mov_i64:
case INDEX_op_movi_i32: /* Always emitted via tcg_out_movi. */
case INDEX_op_movi_i64:
case INDEX_op_call: /* Always emitted via tcg_out_call. */
default:
tcg_abort();
}
}
static const TCGTargetOpDef *tcg_target_op_def(TCGOpcode op)
{
static const TCGTargetOpDef r = { .args_ct_str = { "r" } };
static const TCGTargetOpDef r_r = { .args_ct_str = { "r", "r" } };
static const TCGTargetOpDef R_r = { .args_ct_str = { "R", "r" } };
static const TCGTargetOpDef r_R = { .args_ct_str = { "r", "R" } };
static const TCGTargetOpDef R_R = { .args_ct_str = { "R", "R" } };
static const TCGTargetOpDef r_A = { .args_ct_str = { "r", "A" } };
static const TCGTargetOpDef R_A = { .args_ct_str = { "R", "A" } };
static const TCGTargetOpDef rZ_r = { .args_ct_str = { "rZ", "r" } };
static const TCGTargetOpDef RZ_r = { .args_ct_str = { "RZ", "r" } };
static const TCGTargetOpDef sZ_A = { .args_ct_str = { "sZ", "A" } };
static const TCGTargetOpDef SZ_A = { .args_ct_str = { "SZ", "A" } };
static const TCGTargetOpDef rZ_rJ = { .args_ct_str = { "rZ", "rJ" } };
static const TCGTargetOpDef RZ_RJ = { .args_ct_str = { "RZ", "RJ" } };
static const TCGTargetOpDef R_R_R = { .args_ct_str = { "R", "R", "R" } };
static const TCGTargetOpDef r_rZ_rJ
= { .args_ct_str = { "r", "rZ", "rJ" } };
static const TCGTargetOpDef R_RZ_RJ
= { .args_ct_str = { "R", "RZ", "RJ" } };
static const TCGTargetOpDef r_r_rZ_rJ
= { .args_ct_str = { "r", "r", "rZ", "rJ" } };
static const TCGTargetOpDef movc_32
= { .args_ct_str = { "r", "rZ", "rJ", "rI", "0" } };
static const TCGTargetOpDef movc_64
= { .args_ct_str = { "R", "RZ", "RJ", "RI", "0" } };
static const TCGTargetOpDef add2_32
= { .args_ct_str = { "r", "r", "rZ", "rZ", "rJ", "rJ" } };
static const TCGTargetOpDef add2_64
= { .args_ct_str = { "R", "R", "RZ", "RZ", "RJ", "RI" } };
switch (op) {
case INDEX_op_goto_ptr:
return &r;
case INDEX_op_ld8u_i32:
case INDEX_op_ld8s_i32:
case INDEX_op_ld16u_i32:
case INDEX_op_ld16s_i32:
case INDEX_op_ld_i32:
case INDEX_op_neg_i32:
case INDEX_op_not_i32:
return &r_r;
case INDEX_op_st8_i32:
case INDEX_op_st16_i32:
case INDEX_op_st_i32:
return &rZ_r;
case INDEX_op_add_i32:
case INDEX_op_mul_i32:
case INDEX_op_div_i32:
case INDEX_op_divu_i32:
case INDEX_op_sub_i32:
case INDEX_op_and_i32:
case INDEX_op_andc_i32:
case INDEX_op_or_i32:
case INDEX_op_orc_i32:
case INDEX_op_xor_i32:
case INDEX_op_shl_i32:
case INDEX_op_shr_i32:
case INDEX_op_sar_i32:
case INDEX_op_setcond_i32:
return &r_rZ_rJ;
case INDEX_op_brcond_i32:
return &rZ_rJ;
case INDEX_op_movcond_i32:
return &movc_32;
case INDEX_op_add2_i32:
case INDEX_op_sub2_i32:
return &add2_32;
case INDEX_op_mulu2_i32:
case INDEX_op_muls2_i32:
return &r_r_rZ_rJ;
case INDEX_op_ld8u_i64:
case INDEX_op_ld8s_i64:
case INDEX_op_ld16u_i64:
case INDEX_op_ld16s_i64:
case INDEX_op_ld32u_i64:
case INDEX_op_ld32s_i64:
case INDEX_op_ld_i64:
case INDEX_op_ext_i32_i64:
case INDEX_op_extu_i32_i64:
return &R_r;
case INDEX_op_st8_i64:
case INDEX_op_st16_i64:
case INDEX_op_st32_i64:
case INDEX_op_st_i64:
return &RZ_r;
case INDEX_op_add_i64:
case INDEX_op_mul_i64:
case INDEX_op_div_i64:
case INDEX_op_divu_i64:
case INDEX_op_sub_i64:
case INDEX_op_and_i64:
case INDEX_op_andc_i64:
case INDEX_op_or_i64:
case INDEX_op_orc_i64:
case INDEX_op_xor_i64:
case INDEX_op_shl_i64:
case INDEX_op_shr_i64:
case INDEX_op_sar_i64:
case INDEX_op_setcond_i64:
return &R_RZ_RJ;
case INDEX_op_neg_i64:
case INDEX_op_not_i64:
case INDEX_op_ext32s_i64:
case INDEX_op_ext32u_i64:
return &R_R;
case INDEX_op_extrl_i64_i32:
case INDEX_op_extrh_i64_i32:
return &r_R;
case INDEX_op_brcond_i64:
return &RZ_RJ;
case INDEX_op_movcond_i64:
return &movc_64;
case INDEX_op_add2_i64:
case INDEX_op_sub2_i64:
return &add2_64;
case INDEX_op_muluh_i64:
return &R_R_R;
case INDEX_op_qemu_ld_i32:
return &r_A;
case INDEX_op_qemu_ld_i64:
return &R_A;
case INDEX_op_qemu_st_i32:
return &sZ_A;
case INDEX_op_qemu_st_i64:
return &SZ_A;
default:
return NULL;
}
}
static void tcg_target_init(TCGContext *s)
{
/* Only probe for the platform and capabilities if we havn't already
determined maximum values at compile time. */
#ifndef use_vis3_instructions
{
unsigned long hwcap = qemu_getauxval(AT_HWCAP);
use_vis3_instructions = (hwcap & HWCAP_SPARC_VIS3) != 0;
}
#endif
tcg_target_available_regs[TCG_TYPE_I32] = 0xffffffff;
tcg_target_available_regs[TCG_TYPE_I64] = ALL_64;
tcg_target_call_clobber_regs = 0;
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_G1);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_G2);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_G3);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_G4);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_G5);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_G6);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_G7);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_O0);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_O1);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_O2);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_O3);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_O4);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_O5);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_O6);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_O7);
s->reserved_regs = 0;
tcg_regset_set_reg(s->reserved_regs, TCG_REG_G0); /* zero */
tcg_regset_set_reg(s->reserved_regs, TCG_REG_G6); /* reserved for os */
tcg_regset_set_reg(s->reserved_regs, TCG_REG_G7); /* thread pointer */
tcg_regset_set_reg(s->reserved_regs, TCG_REG_I6); /* frame pointer */
tcg_regset_set_reg(s->reserved_regs, TCG_REG_I7); /* return address */
tcg_regset_set_reg(s->reserved_regs, TCG_REG_O6); /* stack pointer */
tcg_regset_set_reg(s->reserved_regs, TCG_REG_T1); /* for internal use */
tcg_regset_set_reg(s->reserved_regs, TCG_REG_T2); /* for internal use */
}
#if SPARC64
# define ELF_HOST_MACHINE EM_SPARCV9
#else
# define ELF_HOST_MACHINE EM_SPARC32PLUS
# define ELF_HOST_FLAGS EF_SPARC_32PLUS
#endif
typedef struct {
DebugFrameHeader h;
uint8_t fde_def_cfa[SPARC64 ? 4 : 2];
uint8_t fde_win_save;
uint8_t fde_ret_save[3];
} DebugFrame;
static const DebugFrame debug_frame = {
.h.cie.len = sizeof(DebugFrameCIE)-4, /* length after .len member */
.h.cie.id = -1,
.h.cie.version = 1,
.h.cie.code_align = 1,
.h.cie.data_align = -sizeof(void *) & 0x7f,
.h.cie.return_column = 15, /* o7 */
/* Total FDE size does not include the "len" member. */
.h.fde.len = sizeof(DebugFrame) - offsetof(DebugFrame, h.fde.cie_offset),
.fde_def_cfa = {
#if SPARC64
12, 30, /* DW_CFA_def_cfa i6, 2047 */
(2047 & 0x7f) | 0x80, (2047 >> 7)
#else
13, 30 /* DW_CFA_def_cfa_register i6 */
#endif
},
.fde_win_save = 0x2d, /* DW_CFA_GNU_window_save */
.fde_ret_save = { 9, 15, 31 }, /* DW_CFA_register o7, i7 */
};
void tcg_register_jit(const void *buf, size_t buf_size)
{
tcg_register_jit_int(buf, buf_size, &debug_frame, sizeof(debug_frame));
}
void tb_target_set_jmp_target(uintptr_t tc_ptr, uintptr_t jmp_rx,
uintptr_t jmp_rw, uintptr_t addr)
{
intptr_t tb_disp = addr - tc_ptr;
intptr_t br_disp = addr - jmp_rx;
tcg_insn_unit i1, i2;
/* We can reach the entire address space for ILP32.
For LP64, the code_gen_buffer can't be larger than 2GB. */
tcg_debug_assert(tb_disp == (int32_t)tb_disp);
tcg_debug_assert(br_disp == (int32_t)br_disp);
if (!USE_REG_TB) {
qatomic_set((uint32_t *)jmp_rw,
deposit32(CALL, 0, 30, br_disp >> 2));
flush_idcache_range(jmp_rx, jmp_rw, 4);
return;
}
/* This does not exercise the range of the branch, but we do
still need to be able to load the new value of TCG_REG_TB.
But this does still happen quite often. */
if (check_fit_ptr(tb_disp, 13)) {
/* ba,pt %icc, addr */
i1 = (INSN_OP(0) | INSN_OP2(1) | INSN_COND(COND_A)
| BPCC_ICC | BPCC_PT | INSN_OFF19(br_disp));
i2 = (ARITH_ADD | INSN_RD(TCG_REG_TB) | INSN_RS1(TCG_REG_TB)
| INSN_IMM13(tb_disp));
} else if (tb_disp >= 0) {
i1 = SETHI | INSN_RD(TCG_REG_T1) | ((tb_disp & 0xfffffc00) >> 10);
i2 = (ARITH_OR | INSN_RD(TCG_REG_T1) | INSN_RS1(TCG_REG_T1)
| INSN_IMM13(tb_disp & 0x3ff));
} else {
i1 = SETHI | INSN_RD(TCG_REG_T1) | ((~tb_disp & 0xfffffc00) >> 10);
i2 = (ARITH_XOR | INSN_RD(TCG_REG_T1) | INSN_RS1(TCG_REG_T1)
| INSN_IMM13((tb_disp & 0x3ff) | -0x400));
}
qatomic_set((uint64_t *)jmp_rw, deposit64(i2, 32, 32, i1));
flush_idcache_range(jmp_rx, jmp_rw, 8);
}