qemu/hw/arm/boot.c

792 lines
26 KiB
C
Raw Normal View History

/*
* ARM kernel loader.
*
* Copyright (c) 2006-2007 CodeSourcery.
* Written by Paul Brook
*
* This code is licensed under the GPL.
*/
#include "config.h"
#include "hw/hw.h"
#include "hw/arm/arm.h"
#include "sysemu/sysemu.h"
#include "hw/boards.h"
#include "hw/loader.h"
#include "elf.h"
#include "sysemu/device_tree.h"
#include "qemu/config-file.h"
#include "exec/address-spaces.h"
/* Kernel boot protocol is specified in the kernel docs
* Documentation/arm/Booting and Documentation/arm64/booting.txt
* They have different preferred image load offsets from system RAM base.
*/
#define KERNEL_ARGS_ADDR 0x100
#define KERNEL_LOAD_ADDR 0x00010000
#define KERNEL64_LOAD_ADDR 0x00080000
typedef enum {
FIXUP_NONE = 0, /* do nothing */
FIXUP_TERMINATOR, /* end of insns */
FIXUP_BOARDID, /* overwrite with board ID number */
FIXUP_ARGPTR, /* overwrite with pointer to kernel args */
FIXUP_ENTRYPOINT, /* overwrite with kernel entry point */
FIXUP_GIC_CPU_IF, /* overwrite with GIC CPU interface address */
FIXUP_BOOTREG, /* overwrite with boot register address */
FIXUP_DSB, /* overwrite with correct DSB insn for cpu */
FIXUP_MAX,
} FixupType;
typedef struct ARMInsnFixup {
uint32_t insn;
FixupType fixup;
} ARMInsnFixup;
static const ARMInsnFixup bootloader_aarch64[] = {
{ 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */
{ 0xaa1f03e1 }, /* mov x1, xzr */
{ 0xaa1f03e2 }, /* mov x2, xzr */
{ 0xaa1f03e3 }, /* mov x3, xzr */
{ 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */
{ 0xd61f0080 }, /* br x4 ; Jump to the kernel entry point */
{ 0, FIXUP_ARGPTR }, /* arg: .word @DTB Lower 32-bits */
{ 0 }, /* .word @DTB Higher 32-bits */
{ 0, FIXUP_ENTRYPOINT }, /* entry: .word @Kernel Entry Lower 32-bits */
{ 0 }, /* .word @Kernel Entry Higher 32-bits */
{ 0, FIXUP_TERMINATOR }
};
/* The worlds second smallest bootloader. Set r0-r2, then jump to kernel. */
static const ARMInsnFixup bootloader[] = {
{ 0xe3a00000 }, /* mov r0, #0 */
{ 0xe59f1004 }, /* ldr r1, [pc, #4] */
{ 0xe59f2004 }, /* ldr r2, [pc, #4] */
{ 0xe59ff004 }, /* ldr pc, [pc, #4] */
{ 0, FIXUP_BOARDID },
{ 0, FIXUP_ARGPTR },
{ 0, FIXUP_ENTRYPOINT },
{ 0, FIXUP_TERMINATOR }
};
/* Handling for secondary CPU boot in a multicore system.
* Unlike the uniprocessor/primary CPU boot, this is platform
* dependent. The default code here is based on the secondary
* CPU boot protocol used on realview/vexpress boards, with
* some parameterisation to increase its flexibility.
* QEMU platform models for which this code is not appropriate
* should override write_secondary_boot and secondary_cpu_reset_hook
* instead.
*
* This code enables the interrupt controllers for the secondary
* CPUs and then puts all the secondary CPUs into a loop waiting
* for an interprocessor interrupt and polling a configurable
* location for the kernel secondary CPU entry point.
*/
#define DSB_INSN 0xf57ff04f
#define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */
static const ARMInsnFixup smpboot[] = {
{ 0xe59f2028 }, /* ldr r2, gic_cpu_if */
{ 0xe59f0028 }, /* ldr r0, bootreg_addr */
{ 0xe3a01001 }, /* mov r1, #1 */
{ 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */
{ 0xe3a010ff }, /* mov r1, #0xff */
{ 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */
{ 0, FIXUP_DSB }, /* dsb */
{ 0xe320f003 }, /* wfi */
{ 0xe5901000 }, /* ldr r1, [r0] */
{ 0xe1110001 }, /* tst r1, r1 */
{ 0x0afffffb }, /* beq <wfi> */
{ 0xe12fff11 }, /* bx r1 */
{ 0, FIXUP_GIC_CPU_IF }, /* gic_cpu_if: .word 0x.... */
{ 0, FIXUP_BOOTREG }, /* bootreg_addr: .word 0x.... */
{ 0, FIXUP_TERMINATOR }
};
static void write_bootloader(const char *name, hwaddr addr,
const ARMInsnFixup *insns, uint32_t *fixupcontext)
{
/* Fix up the specified bootloader fragment and write it into
* guest memory using rom_add_blob_fixed(). fixupcontext is
* an array giving the values to write in for the fixup types
* which write a value into the code array.
*/
int i, len;
uint32_t *code;
len = 0;
while (insns[len].fixup != FIXUP_TERMINATOR) {
len++;
}
code = g_new0(uint32_t, len);
for (i = 0; i < len; i++) {
uint32_t insn = insns[i].insn;
FixupType fixup = insns[i].fixup;
switch (fixup) {
case FIXUP_NONE:
break;
case FIXUP_BOARDID:
case FIXUP_ARGPTR:
case FIXUP_ENTRYPOINT:
case FIXUP_GIC_CPU_IF:
case FIXUP_BOOTREG:
case FIXUP_DSB:
insn = fixupcontext[fixup];
break;
default:
abort();
}
code[i] = tswap32(insn);
}
rom_add_blob_fixed(name, code, len * sizeof(uint32_t), addr);
g_free(code);
}
static void default_write_secondary(ARMCPU *cpu,
const struct arm_boot_info *info)
{
uint32_t fixupcontext[FIXUP_MAX];
fixupcontext[FIXUP_GIC_CPU_IF] = info->gic_cpu_if_addr;
fixupcontext[FIXUP_BOOTREG] = info->smp_bootreg_addr;
if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
fixupcontext[FIXUP_DSB] = DSB_INSN;
} else {
fixupcontext[FIXUP_DSB] = CP15_DSB_INSN;
}
write_bootloader("smpboot", info->smp_loader_start,
smpboot, fixupcontext);
}
static void default_reset_secondary(ARMCPU *cpu,
const struct arm_boot_info *info)
{
CPUARMState *env = &cpu->env;
Switch non-CPU callers from ld/st*_phys to address_space_ld/st* Switch all the uses of ld/st*_phys to address_space_ld/st*, except for those cases where the address space is the CPU's (ie cs->as). This was done with the following script which generates a Coccinelle patch. A few over-80-columns lines in the result were rewrapped by hand where Coccinelle failed to do the wrapping automatically, as well as one location where it didn't put a line-continuation '\' when wrapping lines on a change made to a match inside a macro definition. ===begin=== #!/bin/sh -e # Usage: # ./ldst-phys.spatch.sh > ldst-phys.spatch # spatch -sp_file ldst-phys.spatch -dir . | sed -e '/^+/s/\t/ /g' > out.patch # patch -p1 < out.patch for FN in ub uw_le uw_be l_le l_be q_le q_be uw l q; do cat <<EOF @ cpu_matches_ld_${FN} @ expression E1,E2; identifier as; @@ ld${FN}_phys(E1->as,E2) @ other_matches_ld_${FN} depends on !cpu_matches_ld_${FN} @ expression E1,E2; @@ -ld${FN}_phys(E1,E2) +address_space_ld${FN}(E1,E2, MEMTXATTRS_UNSPECIFIED, NULL) EOF done for FN in b w_le w_be l_le l_be q_le q_be w l q; do cat <<EOF @ cpu_matches_st_${FN} @ expression E1,E2,E3; identifier as; @@ st${FN}_phys(E1->as,E2,E3) @ other_matches_st_${FN} depends on !cpu_matches_st_${FN} @ expression E1,E2,E3; @@ -st${FN}_phys(E1,E2,E3) +address_space_st${FN}(E1,E2,E3, MEMTXATTRS_UNSPECIFIED, NULL) EOF done ===endit=== Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com> Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
2015-04-26 23:49:24 +08:00
address_space_stl_notdirty(&address_space_memory, info->smp_bootreg_addr,
0, MEMTXATTRS_UNSPECIFIED, NULL);
env->regs[15] = info->smp_loader_start;
}
static inline bool have_dtb(const struct arm_boot_info *info)
{
return info->dtb_filename || info->get_dtb;
}
#define WRITE_WORD(p, value) do { \
Switch non-CPU callers from ld/st*_phys to address_space_ld/st* Switch all the uses of ld/st*_phys to address_space_ld/st*, except for those cases where the address space is the CPU's (ie cs->as). This was done with the following script which generates a Coccinelle patch. A few over-80-columns lines in the result were rewrapped by hand where Coccinelle failed to do the wrapping automatically, as well as one location where it didn't put a line-continuation '\' when wrapping lines on a change made to a match inside a macro definition. ===begin=== #!/bin/sh -e # Usage: # ./ldst-phys.spatch.sh > ldst-phys.spatch # spatch -sp_file ldst-phys.spatch -dir . | sed -e '/^+/s/\t/ /g' > out.patch # patch -p1 < out.patch for FN in ub uw_le uw_be l_le l_be q_le q_be uw l q; do cat <<EOF @ cpu_matches_ld_${FN} @ expression E1,E2; identifier as; @@ ld${FN}_phys(E1->as,E2) @ other_matches_ld_${FN} depends on !cpu_matches_ld_${FN} @ expression E1,E2; @@ -ld${FN}_phys(E1,E2) +address_space_ld${FN}(E1,E2, MEMTXATTRS_UNSPECIFIED, NULL) EOF done for FN in b w_le w_be l_le l_be q_le q_be w l q; do cat <<EOF @ cpu_matches_st_${FN} @ expression E1,E2,E3; identifier as; @@ st${FN}_phys(E1->as,E2,E3) @ other_matches_st_${FN} depends on !cpu_matches_st_${FN} @ expression E1,E2,E3; @@ -st${FN}_phys(E1,E2,E3) +address_space_st${FN}(E1,E2,E3, MEMTXATTRS_UNSPECIFIED, NULL) EOF done ===endit=== Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com> Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
2015-04-26 23:49:24 +08:00
address_space_stl_notdirty(&address_space_memory, p, value, \
MEMTXATTRS_UNSPECIFIED, NULL); \
p += 4; \
} while (0)
static void set_kernel_args(const struct arm_boot_info *info)
{
int initrd_size = info->initrd_size;
hwaddr base = info->loader_start;
hwaddr p;
p = base + KERNEL_ARGS_ADDR;
/* ATAG_CORE */
WRITE_WORD(p, 5);
WRITE_WORD(p, 0x54410001);
WRITE_WORD(p, 1);
WRITE_WORD(p, 0x1000);
WRITE_WORD(p, 0);
/* ATAG_MEM */
/* TODO: handle multiple chips on one ATAG list */
WRITE_WORD(p, 4);
WRITE_WORD(p, 0x54410002);
WRITE_WORD(p, info->ram_size);
WRITE_WORD(p, info->loader_start);
if (initrd_size) {
/* ATAG_INITRD2 */
WRITE_WORD(p, 4);
WRITE_WORD(p, 0x54420005);
WRITE_WORD(p, info->initrd_start);
WRITE_WORD(p, initrd_size);
}
if (info->kernel_cmdline && *info->kernel_cmdline) {
/* ATAG_CMDLINE */
int cmdline_size;
cmdline_size = strlen(info->kernel_cmdline);
cpu_physical_memory_write(p + 8, info->kernel_cmdline,
cmdline_size + 1);
cmdline_size = (cmdline_size >> 2) + 1;
WRITE_WORD(p, cmdline_size + 2);
WRITE_WORD(p, 0x54410009);
p += cmdline_size * 4;
}
if (info->atag_board) {
/* ATAG_BOARD */
int atag_board_len;
uint8_t atag_board_buf[0x1000];
atag_board_len = (info->atag_board(info, atag_board_buf) + 3) & ~3;
WRITE_WORD(p, (atag_board_len + 8) >> 2);
WRITE_WORD(p, 0x414f4d50);
cpu_physical_memory_write(p, atag_board_buf, atag_board_len);
p += atag_board_len;
}
/* ATAG_END */
WRITE_WORD(p, 0);
WRITE_WORD(p, 0);
}
static void set_kernel_args_old(const struct arm_boot_info *info)
{
hwaddr p;
const char *s;
int initrd_size = info->initrd_size;
hwaddr base = info->loader_start;
/* see linux/include/asm-arm/setup.h */
p = base + KERNEL_ARGS_ADDR;
/* page_size */
WRITE_WORD(p, 4096);
/* nr_pages */
WRITE_WORD(p, info->ram_size / 4096);
/* ramdisk_size */
WRITE_WORD(p, 0);
#define FLAG_READONLY 1
#define FLAG_RDLOAD 4
#define FLAG_RDPROMPT 8
/* flags */
WRITE_WORD(p, FLAG_READONLY | FLAG_RDLOAD | FLAG_RDPROMPT);
/* rootdev */
WRITE_WORD(p, (31 << 8) | 0); /* /dev/mtdblock0 */
/* video_num_cols */
WRITE_WORD(p, 0);
/* video_num_rows */
WRITE_WORD(p, 0);
/* video_x */
WRITE_WORD(p, 0);
/* video_y */
WRITE_WORD(p, 0);
/* memc_control_reg */
WRITE_WORD(p, 0);
/* unsigned char sounddefault */
/* unsigned char adfsdrives */
/* unsigned char bytes_per_char_h */
/* unsigned char bytes_per_char_v */
WRITE_WORD(p, 0);
/* pages_in_bank[4] */
WRITE_WORD(p, 0);
WRITE_WORD(p, 0);
WRITE_WORD(p, 0);
WRITE_WORD(p, 0);
/* pages_in_vram */
WRITE_WORD(p, 0);
/* initrd_start */
if (initrd_size) {
WRITE_WORD(p, info->initrd_start);
} else {
WRITE_WORD(p, 0);
}
/* initrd_size */
WRITE_WORD(p, initrd_size);
/* rd_start */
WRITE_WORD(p, 0);
/* system_rev */
WRITE_WORD(p, 0);
/* system_serial_low */
WRITE_WORD(p, 0);
/* system_serial_high */
WRITE_WORD(p, 0);
/* mem_fclk_21285 */
WRITE_WORD(p, 0);
/* zero unused fields */
while (p < base + KERNEL_ARGS_ADDR + 256 + 1024) {
WRITE_WORD(p, 0);
}
s = info->kernel_cmdline;
if (s) {
cpu_physical_memory_write(p, s, strlen(s) + 1);
} else {
WRITE_WORD(p, 0);
}
}
/**
* load_dtb() - load a device tree binary image into memory
* @addr: the address to load the image at
* @binfo: struct describing the boot environment
* @addr_limit: upper limit of the available memory area at @addr
*
* Load a device tree supplied by the machine or by the user with the
* '-dtb' command line option, and put it at offset @addr in target
* memory.
*
* If @addr_limit contains a meaningful value (i.e., it is strictly greater
* than @addr), the device tree is only loaded if its size does not exceed
* the limit.
*
* Returns: the size of the device tree image on success,
* 0 if the image size exceeds the limit,
* -1 on errors.
*
* Note: Must not be called unless have_dtb(binfo) is true.
*/
static int load_dtb(hwaddr addr, const struct arm_boot_info *binfo,
hwaddr addr_limit)
{
void *fdt = NULL;
int size, rc;
uint32_t acells, scells;
if (binfo->dtb_filename) {
char *filename;
filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, binfo->dtb_filename);
if (!filename) {
fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename);
goto fail;
}
fdt = load_device_tree(filename, &size);
if (!fdt) {
fprintf(stderr, "Couldn't open dtb file %s\n", filename);
g_free(filename);
goto fail;
}
g_free(filename);
} else {
fdt = binfo->get_dtb(binfo, &size);
if (!fdt) {
fprintf(stderr, "Board was unable to create a dtb blob\n");
goto fail;
}
}
if (addr_limit > addr && size > (addr_limit - addr)) {
/* Installing the device tree blob at addr would exceed addr_limit.
* Whether this constitutes failure is up to the caller to decide,
* so just return 0 as size, i.e., no error.
*/
g_free(fdt);
return 0;
}
acells = qemu_fdt_getprop_cell(fdt, "/", "#address-cells");
scells = qemu_fdt_getprop_cell(fdt, "/", "#size-cells");
if (acells == 0 || scells == 0) {
fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n");
goto fail;
}
if (scells < 2 && binfo->ram_size >= (1ULL << 32)) {
/* This is user error so deserves a friendlier error message
* than the failure of setprop_sized_cells would provide
*/
fprintf(stderr, "qemu: dtb file not compatible with "
"RAM size > 4GB\n");
goto fail;
}
rc = qemu_fdt_setprop_sized_cells(fdt, "/memory", "reg",
acells, binfo->loader_start,
scells, binfo->ram_size);
if (rc < 0) {
fprintf(stderr, "couldn't set /memory/reg\n");
goto fail;
}
if (binfo->kernel_cmdline && *binfo->kernel_cmdline) {
rc = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs",
binfo->kernel_cmdline);
if (rc < 0) {
fprintf(stderr, "couldn't set /chosen/bootargs\n");
goto fail;
}
}
if (binfo->initrd_size) {
rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-start",
binfo->initrd_start);
if (rc < 0) {
fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n");
goto fail;
}
rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end",
binfo->initrd_start + binfo->initrd_size);
if (rc < 0) {
fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n");
goto fail;
}
}
if (binfo->modify_dtb) {
binfo->modify_dtb(binfo, fdt);
}
qemu_fdt_dumpdtb(fdt, size);
/* Put the DTB into the memory map as a ROM image: this will ensure
* the DTB is copied again upon reset, even if addr points into RAM.
*/
rom_add_blob_fixed("dtb", fdt, size, addr);
g_free(fdt);
return size;
fail:
g_free(fdt);
return -1;
}
static void do_cpu_reset(void *opaque)
{
ARMCPU *cpu = opaque;
CPUARMState *env = &cpu->env;
const struct arm_boot_info *info = env->boot_info;
cpu_reset(CPU(cpu));
if (info) {
if (!info->is_linux) {
/* Jump to the entry point. */
if (env->aarch64) {
env->pc = info->entry;
} else {
env->regs[15] = info->entry & 0xfffffffe;
env->thumb = info->entry & 1;
}
} else {
/* If we are booting Linux then we need to check whether we are
* booting into secure or non-secure state and adjust the state
* accordingly. Out of reset, ARM is defined to be in secure state
* (SCR.NS = 0), we change that here if non-secure boot has been
* requested.
*/
if (arm_feature(env, ARM_FEATURE_EL3)) {
/* AArch64 is defined to come out of reset into EL3 if enabled.
* If we are booting Linux then we need to adjust our EL as
* Linux expects us to be in EL2 or EL1. AArch32 resets into
* SVC, which Linux expects, so no privilege/exception level to
* adjust.
*/
if (env->aarch64) {
if (arm_feature(env, ARM_FEATURE_EL2)) {
env->pstate = PSTATE_MODE_EL2h;
} else {
env->pstate = PSTATE_MODE_EL1h;
}
}
/* Set to non-secure if not a secure boot */
if (!info->secure_boot) {
/* Linux expects non-secure state */
env->cp15.scr_el3 |= SCR_NS;
}
}
if (CPU(cpu) == first_cpu) {
if (env->aarch64) {
env->pc = info->loader_start;
} else {
env->regs[15] = info->loader_start;
}
if (!have_dtb(info)) {
if (old_param) {
set_kernel_args_old(info);
} else {
set_kernel_args(info);
}
}
} else {
info->secondary_cpu_reset_hook(cpu, info);
}
}
}
}
hw/arm: pass pristine kernel image to guest firmware over fw_cfg Introduce the new boolean field "arm_boot_info.firmware_loaded". When this field is set, it means that the portion of guest DRAM that the VCPU normally starts to execute, or the pflash chip that the VCPU normally starts to execute, has been populated by board-specific code with full-fledged guest firmware code, before the board calls arm_load_kernel(). Simultaneously, "arm_boot_info.firmware_loaded" guarantees that the board code has set up the global firmware config instance, for arm_load_kernel() to find with fw_cfg_find(). Guest kernel (-kernel) and guest firmware (-bios, -pflash) has always been possible to specify independently on the command line. The following cases should be considered: nr -bios -pflash -kernel description unit#0 -- ------- ------- ------- ------------------------------------------- 1 present present absent Board code rejects this case, -bios and present present present -pflash unit#0 are exclusive. Left intact by this patch. 2 absent absent present Traditional kernel loading, with qemu's minimal board firmware. Left intact by this patch. 3 absent present absent Preexistent case for booting guest firmware present absent absent loaded with -bios or -pflash. Left intact by this patch. 4 absent absent absent Preexistent case for not loading any firmware or kernel up-front. Left intact by this patch. 5 present absent present New case introduced by this patch: kernel absent present present image is passed to externally loaded firmware in unmodified form, using fw_cfg. An easy way to see that this patch doesn't interfere with existing cases is to realize that "info->firmware_loaded" is constant zero at this point. Which makes the "outer" condition unchanged, and the "inner" condition (with the fw_cfg-related code) dead. Signed-off-by: Laszlo Ersek <lersek@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Message-id: 1419250305-31062-11-git-send-email-pbonzini@redhat.com Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
2014-12-22 20:11:44 +08:00
/**
* load_image_to_fw_cfg() - Load an image file into an fw_cfg entry identified
* by key.
* @fw_cfg: The firmware config instance to store the data in.
* @size_key: The firmware config key to store the size of the loaded
* data under, with fw_cfg_add_i32().
* @data_key: The firmware config key to store the loaded data under,
* with fw_cfg_add_bytes().
* @image_name: The name of the image file to load. If it is NULL, the
* function returns without doing anything.
* @try_decompress: Whether the image should be decompressed (gunzipped) before
* adding it to fw_cfg. If decompression fails, the image is
* loaded as-is.
*
* In case of failure, the function prints an error message to stderr and the
* process exits with status 1.
*/
static void load_image_to_fw_cfg(FWCfgState *fw_cfg, uint16_t size_key,
uint16_t data_key, const char *image_name,
bool try_decompress)
{
size_t size = -1;
uint8_t *data;
if (image_name == NULL) {
return;
}
if (try_decompress) {
size = load_image_gzipped_buffer(image_name,
LOAD_IMAGE_MAX_GUNZIP_BYTES, &data);
}
if (size == (size_t)-1) {
gchar *contents;
gsize length;
if (!g_file_get_contents(image_name, &contents, &length, NULL)) {
fprintf(stderr, "failed to load \"%s\"\n", image_name);
exit(1);
}
size = length;
data = (uint8_t *)contents;
}
fw_cfg_add_i32(fw_cfg, size_key, size);
fw_cfg_add_bytes(fw_cfg, data_key, data, size);
}
static void arm_load_kernel_notify(Notifier *notifier, void *data)
{
CPUState *cs;
int kernel_size;
int initrd_size;
int is_linux = 0;
uint64_t elf_entry, elf_low_addr, elf_high_addr;
int elf_machine;
hwaddr entry, kernel_load_offset;
int big_endian;
static const ARMInsnFixup *primary_loader;
ArmLoadKernelNotifier *n = DO_UPCAST(ArmLoadKernelNotifier,
notifier, notifier);
ARMCPU *cpu = n->cpu;
struct arm_boot_info *info =
container_of(n, struct arm_boot_info, load_kernel_notifier);
/* Load the kernel. */
hw/arm: pass pristine kernel image to guest firmware over fw_cfg Introduce the new boolean field "arm_boot_info.firmware_loaded". When this field is set, it means that the portion of guest DRAM that the VCPU normally starts to execute, or the pflash chip that the VCPU normally starts to execute, has been populated by board-specific code with full-fledged guest firmware code, before the board calls arm_load_kernel(). Simultaneously, "arm_boot_info.firmware_loaded" guarantees that the board code has set up the global firmware config instance, for arm_load_kernel() to find with fw_cfg_find(). Guest kernel (-kernel) and guest firmware (-bios, -pflash) has always been possible to specify independently on the command line. The following cases should be considered: nr -bios -pflash -kernel description unit#0 -- ------- ------- ------- ------------------------------------------- 1 present present absent Board code rejects this case, -bios and present present present -pflash unit#0 are exclusive. Left intact by this patch. 2 absent absent present Traditional kernel loading, with qemu's minimal board firmware. Left intact by this patch. 3 absent present absent Preexistent case for booting guest firmware present absent absent loaded with -bios or -pflash. Left intact by this patch. 4 absent absent absent Preexistent case for not loading any firmware or kernel up-front. Left intact by this patch. 5 present absent present New case introduced by this patch: kernel absent present present image is passed to externally loaded firmware in unmodified form, using fw_cfg. An easy way to see that this patch doesn't interfere with existing cases is to realize that "info->firmware_loaded" is constant zero at this point. Which makes the "outer" condition unchanged, and the "inner" condition (with the fw_cfg-related code) dead. Signed-off-by: Laszlo Ersek <lersek@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Message-id: 1419250305-31062-11-git-send-email-pbonzini@redhat.com Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
2014-12-22 20:11:44 +08:00
if (!info->kernel_filename || info->firmware_loaded) {
if (have_dtb(info)) {
hw/arm: pass pristine kernel image to guest firmware over fw_cfg Introduce the new boolean field "arm_boot_info.firmware_loaded". When this field is set, it means that the portion of guest DRAM that the VCPU normally starts to execute, or the pflash chip that the VCPU normally starts to execute, has been populated by board-specific code with full-fledged guest firmware code, before the board calls arm_load_kernel(). Simultaneously, "arm_boot_info.firmware_loaded" guarantees that the board code has set up the global firmware config instance, for arm_load_kernel() to find with fw_cfg_find(). Guest kernel (-kernel) and guest firmware (-bios, -pflash) has always been possible to specify independently on the command line. The following cases should be considered: nr -bios -pflash -kernel description unit#0 -- ------- ------- ------- ------------------------------------------- 1 present present absent Board code rejects this case, -bios and present present present -pflash unit#0 are exclusive. Left intact by this patch. 2 absent absent present Traditional kernel loading, with qemu's minimal board firmware. Left intact by this patch. 3 absent present absent Preexistent case for booting guest firmware present absent absent loaded with -bios or -pflash. Left intact by this patch. 4 absent absent absent Preexistent case for not loading any firmware or kernel up-front. Left intact by this patch. 5 present absent present New case introduced by this patch: kernel absent present present image is passed to externally loaded firmware in unmodified form, using fw_cfg. An easy way to see that this patch doesn't interfere with existing cases is to realize that "info->firmware_loaded" is constant zero at this point. Which makes the "outer" condition unchanged, and the "inner" condition (with the fw_cfg-related code) dead. Signed-off-by: Laszlo Ersek <lersek@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Message-id: 1419250305-31062-11-git-send-email-pbonzini@redhat.com Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
2014-12-22 20:11:44 +08:00
/* If we have a device tree blob, but no kernel to supply it to (or
* the kernel is supposed to be loaded by the bootloader), copy the
* DTB to the base of RAM for the bootloader to pick up.
*/
if (load_dtb(info->loader_start, info, 0) < 0) {
exit(1);
}
}
hw/arm: pass pristine kernel image to guest firmware over fw_cfg Introduce the new boolean field "arm_boot_info.firmware_loaded". When this field is set, it means that the portion of guest DRAM that the VCPU normally starts to execute, or the pflash chip that the VCPU normally starts to execute, has been populated by board-specific code with full-fledged guest firmware code, before the board calls arm_load_kernel(). Simultaneously, "arm_boot_info.firmware_loaded" guarantees that the board code has set up the global firmware config instance, for arm_load_kernel() to find with fw_cfg_find(). Guest kernel (-kernel) and guest firmware (-bios, -pflash) has always been possible to specify independently on the command line. The following cases should be considered: nr -bios -pflash -kernel description unit#0 -- ------- ------- ------- ------------------------------------------- 1 present present absent Board code rejects this case, -bios and present present present -pflash unit#0 are exclusive. Left intact by this patch. 2 absent absent present Traditional kernel loading, with qemu's minimal board firmware. Left intact by this patch. 3 absent present absent Preexistent case for booting guest firmware present absent absent loaded with -bios or -pflash. Left intact by this patch. 4 absent absent absent Preexistent case for not loading any firmware or kernel up-front. Left intact by this patch. 5 present absent present New case introduced by this patch: kernel absent present present image is passed to externally loaded firmware in unmodified form, using fw_cfg. An easy way to see that this patch doesn't interfere with existing cases is to realize that "info->firmware_loaded" is constant zero at this point. Which makes the "outer" condition unchanged, and the "inner" condition (with the fw_cfg-related code) dead. Signed-off-by: Laszlo Ersek <lersek@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Message-id: 1419250305-31062-11-git-send-email-pbonzini@redhat.com Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
2014-12-22 20:11:44 +08:00
if (info->kernel_filename) {
FWCfgState *fw_cfg;
bool try_decompressing_kernel;
fw_cfg = fw_cfg_find();
try_decompressing_kernel = arm_feature(&cpu->env,
ARM_FEATURE_AARCH64);
/* Expose the kernel, the command line, and the initrd in fw_cfg.
* We don't process them here at all, it's all left to the
* firmware.
*/
load_image_to_fw_cfg(fw_cfg,
FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA,
info->kernel_filename,
try_decompressing_kernel);
load_image_to_fw_cfg(fw_cfg,
FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA,
info->initrd_filename, false);
if (info->kernel_cmdline) {
fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
strlen(info->kernel_cmdline) + 1);
fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA,
info->kernel_cmdline);
}
}
/* We will start from address 0 (typically a boot ROM image) in the
* same way as hardware.
*/
return;
}
if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
primary_loader = bootloader_aarch64;
kernel_load_offset = KERNEL64_LOAD_ADDR;
elf_machine = EM_AARCH64;
} else {
primary_loader = bootloader;
kernel_load_offset = KERNEL_LOAD_ADDR;
elf_machine = EM_ARM;
}
info->dtb_filename = qemu_opt_get(qemu_get_machine_opts(), "dtb");
if (!info->secondary_cpu_reset_hook) {
info->secondary_cpu_reset_hook = default_reset_secondary;
}
if (!info->write_secondary_boot) {
info->write_secondary_boot = default_write_secondary;
}
if (info->nb_cpus == 0)
info->nb_cpus = 1;
#ifdef TARGET_WORDS_BIGENDIAN
big_endian = 1;
#else
big_endian = 0;
#endif
/* We want to put the initrd far enough into RAM that when the
* kernel is uncompressed it will not clobber the initrd. However
* on boards without much RAM we must ensure that we still leave
* enough room for a decent sized initrd, and on boards with large
* amounts of RAM we must avoid the initrd being so far up in RAM
* that it is outside lowmem and inaccessible to the kernel.
* So for boards with less than 256MB of RAM we put the initrd
* halfway into RAM, and for boards with 256MB of RAM or more we put
* the initrd at 128MB.
*/
info->initrd_start = info->loader_start +
MIN(info->ram_size / 2, 128 * 1024 * 1024);
/* Assume that raw images are linux kernels, and ELF images are not. */
kernel_size = load_elf(info->kernel_filename, NULL, NULL, &elf_entry,
&elf_low_addr, &elf_high_addr, big_endian,
elf_machine, 1);
if (kernel_size > 0 && have_dtb(info)) {
/* If there is still some room left at the base of RAM, try and put
* the DTB there like we do for images loaded with -bios or -pflash.
*/
if (elf_low_addr > info->loader_start
|| elf_high_addr < info->loader_start) {
/* Pass elf_low_addr as address limit to load_dtb if it may be
* pointing into RAM, otherwise pass '0' (no limit)
*/
if (elf_low_addr < info->loader_start) {
elf_low_addr = 0;
}
if (load_dtb(info->loader_start, info, elf_low_addr) < 0) {
exit(1);
}
}
}
entry = elf_entry;
if (kernel_size < 0) {
kernel_size = load_uimage(info->kernel_filename, &entry, NULL,
&is_linux, NULL, NULL);
}
/* On aarch64, it's the bootloader's job to uncompress the kernel. */
if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && kernel_size < 0) {
entry = info->loader_start + kernel_load_offset;
kernel_size = load_image_gzipped(info->kernel_filename, entry,
info->ram_size - kernel_load_offset);
is_linux = 1;
}
if (kernel_size < 0) {
entry = info->loader_start + kernel_load_offset;
kernel_size = load_image_targphys(info->kernel_filename, entry,
info->ram_size - kernel_load_offset);
is_linux = 1;
}
if (kernel_size < 0) {
fprintf(stderr, "qemu: could not load kernel '%s'\n",
info->kernel_filename);
exit(1);
}
info->entry = entry;
if (is_linux) {
uint32_t fixupcontext[FIXUP_MAX];
if (info->initrd_filename) {
initrd_size = load_ramdisk(info->initrd_filename,
info->initrd_start,
info->ram_size -
info->initrd_start);
if (initrd_size < 0) {
initrd_size = load_image_targphys(info->initrd_filename,
info->initrd_start,
info->ram_size -
info->initrd_start);
}
if (initrd_size < 0) {
fprintf(stderr, "qemu: could not load initrd '%s'\n",
info->initrd_filename);
exit(1);
}
} else {
initrd_size = 0;
}
info->initrd_size = initrd_size;
fixupcontext[FIXUP_BOARDID] = info->board_id;
/* for device tree boot, we pass the DTB directly in r2. Otherwise
* we point to the kernel args.
*/
if (have_dtb(info)) {
/* Place the DTB after the initrd in memory. Note that some
* kernels will trash anything in the 4K page the initrd
* ends in, so make sure the DTB isn't caught up in that.
*/
hwaddr dtb_start = QEMU_ALIGN_UP(info->initrd_start + initrd_size,
4096);
if (load_dtb(dtb_start, info, 0) < 0) {
exit(1);
}
fixupcontext[FIXUP_ARGPTR] = dtb_start;
} else {
fixupcontext[FIXUP_ARGPTR] = info->loader_start + KERNEL_ARGS_ADDR;
if (info->ram_size >= (1ULL << 32)) {
fprintf(stderr, "qemu: RAM size must be less than 4GB to boot"
" Linux kernel using ATAGS (try passing a device tree"
" using -dtb)\n");
exit(1);
}
}
fixupcontext[FIXUP_ENTRYPOINT] = entry;
write_bootloader("bootloader", info->loader_start,
primary_loader, fixupcontext);
if (info->nb_cpus > 1) {
info->write_secondary_boot(cpu, info);
}
}
info->is_linux = is_linux;
for (cs = CPU(cpu); cs; cs = CPU_NEXT(cs)) {
ARM_CPU(cs)->env.boot_info = info;
}
}
void arm_load_kernel(ARMCPU *cpu, struct arm_boot_info *info)
{
CPUState *cs;
info->load_kernel_notifier.cpu = cpu;
info->load_kernel_notifier.notifier.notify = arm_load_kernel_notify;
qemu_add_machine_init_done_notifier(&info->load_kernel_notifier.notifier);
/* CPU objects (unlike devices) are not automatically reset on system
* reset, so we must always register a handler to do so. If we're
* actually loading a kernel, the handler is also responsible for
* arranging that we start it correctly.
*/
for (cs = CPU(cpu); cs; cs = CPU_NEXT(cs)) {
qemu_register_reset(do_cpu_reset, ARM_CPU(cs));
}
}