qemu/target/m68k/helper.c

1417 lines
40 KiB
C
Raw Normal View History

/*
* m68k op helpers
*
* Copyright (c) 2006-2007 CodeSourcery
* Written by Paul Brook
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "exec/exec-all.h"
#include "exec/gdbstub.h"
#include "exec/helper-proto.h"
#include "fpu/softfloat.h"
#include "qemu/qemu-print.h"
#define SIGNBIT (1u << 31)
/* Sort alphabetically, except for "any". */
static gint m68k_cpu_list_compare(gconstpointer a, gconstpointer b)
{
ObjectClass *class_a = (ObjectClass *)a;
ObjectClass *class_b = (ObjectClass *)b;
const char *name_a, *name_b;
name_a = object_class_get_name(class_a);
name_b = object_class_get_name(class_b);
if (strcmp(name_a, "any-" TYPE_M68K_CPU) == 0) {
return 1;
} else if (strcmp(name_b, "any-" TYPE_M68K_CPU) == 0) {
return -1;
} else {
return strcasecmp(name_a, name_b);
}
}
static void m68k_cpu_list_entry(gpointer data, gpointer user_data)
{
ObjectClass *c = data;
const char *typename;
char *name;
typename = object_class_get_name(c);
name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_M68K_CPU));
qemu_printf("%s\n", name);
g_free(name);
}
void m68k_cpu_list(void)
{
GSList *list;
list = object_class_get_list(TYPE_M68K_CPU, false);
list = g_slist_sort(list, m68k_cpu_list_compare);
g_slist_foreach(list, m68k_cpu_list_entry, NULL);
g_slist_free(list);
}
static int cf_fpu_gdb_get_reg(CPUM68KState *env, GByteArray *mem_buf, int n)
{
if (n < 8) {
float_status s;
return gdb_get_float64(mem_buf,
floatx80_to_float64(env->fregs[n].d, &s));
}
switch (n) {
case 8: /* fpcontrol */
return gdb_get_reg32(mem_buf, env->fpcr);
case 9: /* fpstatus */
return gdb_get_reg32(mem_buf, env->fpsr);
case 10: /* fpiar, not implemented */
return gdb_get_reg32(mem_buf, 0);
}
return 0;
}
static int cf_fpu_gdb_set_reg(CPUM68KState *env, uint8_t *mem_buf, int n)
{
if (n < 8) {
float_status s;
env->fregs[n].d = float64_to_floatx80(ldfq_p(mem_buf), &s);
return 8;
}
switch (n) {
case 8: /* fpcontrol */
cpu_m68k_set_fpcr(env, ldl_p(mem_buf));
return 4;
case 9: /* fpstatus */
env->fpsr = ldl_p(mem_buf);
return 4;
case 10: /* fpiar, not implemented */
return 4;
}
return 0;
}
static int m68k_fpu_gdb_get_reg(CPUM68KState *env, GByteArray *mem_buf, int n)
{
if (n < 8) {
int len = gdb_get_reg16(mem_buf, env->fregs[n].l.upper);
len += gdb_get_reg16(mem_buf, 0);
len += gdb_get_reg64(mem_buf, env->fregs[n].l.lower);
return len;
}
switch (n) {
case 8: /* fpcontrol */
return gdb_get_reg32(mem_buf, env->fpcr);
case 9: /* fpstatus */
return gdb_get_reg32(mem_buf, env->fpsr);
case 10: /* fpiar, not implemented */
return gdb_get_reg32(mem_buf, 0);
}
return 0;
}
static int m68k_fpu_gdb_set_reg(CPUM68KState *env, uint8_t *mem_buf, int n)
{
if (n < 8) {
env->fregs[n].l.upper = lduw_be_p(mem_buf);
env->fregs[n].l.lower = ldq_be_p(mem_buf + 4);
return 12;
}
switch (n) {
case 8: /* fpcontrol */
cpu_m68k_set_fpcr(env, ldl_p(mem_buf));
return 4;
case 9: /* fpstatus */
env->fpsr = ldl_p(mem_buf);
return 4;
case 10: /* fpiar, not implemented */
return 4;
}
return 0;
}
void m68k_cpu_init_gdb(M68kCPU *cpu)
{
CPUState *cs = CPU(cpu);
CPUM68KState *env = &cpu->env;
if (m68k_feature(env, M68K_FEATURE_CF_FPU)) {
gdb_register_coprocessor(cs, cf_fpu_gdb_get_reg, cf_fpu_gdb_set_reg,
11, "cf-fp.xml", 18);
} else if (m68k_feature(env, M68K_FEATURE_FPU)) {
gdb_register_coprocessor(cs, m68k_fpu_gdb_get_reg,
m68k_fpu_gdb_set_reg, 11, "m68k-fp.xml", 18);
}
/* TODO: Add [E]MAC registers. */
}
void HELPER(cf_movec_to)(CPUM68KState *env, uint32_t reg, uint32_t val)
{
switch (reg) {
case M68K_CR_CACR:
env->cacr = val;
m68k_switch_sp(env);
break;
case M68K_CR_ACR0:
case M68K_CR_ACR1:
case M68K_CR_ACR2:
case M68K_CR_ACR3:
/* TODO: Implement Access Control Registers. */
break;
case M68K_CR_VBR:
env->vbr = val;
break;
/* TODO: Implement control registers. */
default:
cpu_abort(env_cpu(env),
"Unimplemented control register write 0x%x = 0x%x\n",
reg, val);
}
}
void HELPER(m68k_movec_to)(CPUM68KState *env, uint32_t reg, uint32_t val)
{
switch (reg) {
/* MC680[1234]0 */
case M68K_CR_SFC:
env->sfc = val & 7;
return;
case M68K_CR_DFC:
env->dfc = val & 7;
return;
case M68K_CR_VBR:
env->vbr = val;
return;
/* MC680[2346]0 */
case M68K_CR_CACR:
if (m68k_feature(env, M68K_FEATURE_M68020)) {
env->cacr = val & 0x0000000f;
} else if (m68k_feature(env, M68K_FEATURE_M68030)) {
env->cacr = val & 0x00003f1f;
} else if (m68k_feature(env, M68K_FEATURE_M68040)) {
env->cacr = val & 0x80008000;
} else if (m68k_feature(env, M68K_FEATURE_M68060)) {
env->cacr = val & 0xf8e0e000;
}
m68k_switch_sp(env);
return;
/* MC680[34]0 */
case M68K_CR_TC:
env->mmu.tcr = val;
return;
case M68K_CR_MMUSR:
env->mmu.mmusr = val;
return;
case M68K_CR_SRP:
env->mmu.srp = val;
return;
case M68K_CR_URP:
env->mmu.urp = val;
return;
case M68K_CR_USP:
env->sp[M68K_USP] = val;
return;
case M68K_CR_MSP:
env->sp[M68K_SSP] = val;
return;
case M68K_CR_ISP:
env->sp[M68K_ISP] = val;
return;
/* MC68040/MC68LC040 */
case M68K_CR_ITT0:
env->mmu.ttr[M68K_ITTR0] = val;
return;
case M68K_CR_ITT1:
env->mmu.ttr[M68K_ITTR1] = val;
return;
case M68K_CR_DTT0:
env->mmu.ttr[M68K_DTTR0] = val;
return;
case M68K_CR_DTT1:
env->mmu.ttr[M68K_DTTR1] = val;
return;
}
cpu_abort(env_cpu(env),
"Unimplemented control register write 0x%x = 0x%x\n",
reg, val);
}
uint32_t HELPER(m68k_movec_from)(CPUM68KState *env, uint32_t reg)
{
switch (reg) {
/* MC680[1234]0 */
case M68K_CR_SFC:
return env->sfc;
case M68K_CR_DFC:
return env->dfc;
case M68K_CR_VBR:
return env->vbr;
/* MC680[234]0 */
case M68K_CR_CACR:
return env->cacr;
/* MC680[34]0 */
case M68K_CR_TC:
return env->mmu.tcr;
case M68K_CR_MMUSR:
return env->mmu.mmusr;
case M68K_CR_SRP:
return env->mmu.srp;
case M68K_CR_USP:
return env->sp[M68K_USP];
case M68K_CR_MSP:
return env->sp[M68K_SSP];
case M68K_CR_ISP:
return env->sp[M68K_ISP];
/* MC68040/MC68LC040 */
case M68K_CR_URP:
return env->mmu.urp;
case M68K_CR_ITT0:
return env->mmu.ttr[M68K_ITTR0];
case M68K_CR_ITT1:
return env->mmu.ttr[M68K_ITTR1];
case M68K_CR_DTT0:
return env->mmu.ttr[M68K_DTTR0];
case M68K_CR_DTT1:
return env->mmu.ttr[M68K_DTTR1];
}
cpu_abort(env_cpu(env), "Unimplemented control register read 0x%x\n",
reg);
}
void HELPER(set_macsr)(CPUM68KState *env, uint32_t val)
{
uint32_t acc;
int8_t exthigh;
uint8_t extlow;
uint64_t regval;
int i;
if ((env->macsr ^ val) & (MACSR_FI | MACSR_SU)) {
for (i = 0; i < 4; i++) {
regval = env->macc[i];
exthigh = regval >> 40;
if (env->macsr & MACSR_FI) {
acc = regval >> 8;
extlow = regval;
} else {
acc = regval;
extlow = regval >> 32;
}
if (env->macsr & MACSR_FI) {
regval = (((uint64_t)acc) << 8) | extlow;
regval |= ((int64_t)exthigh) << 40;
} else if (env->macsr & MACSR_SU) {
regval = acc | (((int64_t)extlow) << 32);
regval |= ((int64_t)exthigh) << 40;
} else {
regval = acc | (((uint64_t)extlow) << 32);
regval |= ((uint64_t)(uint8_t)exthigh) << 40;
}
env->macc[i] = regval;
}
}
env->macsr = val;
}
void m68k_switch_sp(CPUM68KState *env)
{
int new_sp;
env->sp[env->current_sp] = env->aregs[7];
if (m68k_feature(env, M68K_FEATURE_M68000)) {
if (env->sr & SR_S) {
if (env->sr & SR_M) {
new_sp = M68K_SSP;
} else {
new_sp = M68K_ISP;
}
} else {
new_sp = M68K_USP;
}
} else {
new_sp = (env->sr & SR_S && env->cacr & M68K_CACR_EUSP)
? M68K_SSP : M68K_USP;
}
env->aregs[7] = env->sp[new_sp];
env->current_sp = new_sp;
}
#if !defined(CONFIG_USER_ONLY)
/* MMU: 68040 only */
static void print_address_zone(uint32_t logical, uint32_t physical,
uint32_t size, int attr)
{
qemu_printf("%08x - %08x -> %08x - %08x %c ",
logical, logical + size - 1,
physical, physical + size - 1,
attr & 4 ? 'W' : '-');
size >>= 10;
if (size < 1024) {
qemu_printf("(%d KiB)\n", size);
} else {
size >>= 10;
if (size < 1024) {
qemu_printf("(%d MiB)\n", size);
} else {
size >>= 10;
qemu_printf("(%d GiB)\n", size);
}
}
}
static void dump_address_map(CPUM68KState *env, uint32_t root_pointer)
{
int i, j, k;
int tic_size, tic_shift;
uint32_t tib_mask;
uint32_t tia, tib, tic;
uint32_t logical = 0xffffffff, physical = 0xffffffff;
uint32_t first_logical = 0xffffffff, first_physical = 0xffffffff;
uint32_t last_logical, last_physical;
int32_t size;
int last_attr = -1, attr = -1;
CPUState *cs = env_cpu(env);
MemTxResult txres;
if (env->mmu.tcr & M68K_TCR_PAGE_8K) {
/* 8k page */
tic_size = 32;
tic_shift = 13;
tib_mask = M68K_8K_PAGE_MASK;
} else {
/* 4k page */
tic_size = 64;
tic_shift = 12;
tib_mask = M68K_4K_PAGE_MASK;
}
for (i = 0; i < M68K_ROOT_POINTER_ENTRIES; i++) {
tia = address_space_ldl(cs->as, M68K_POINTER_BASE(root_pointer) + i * 4,
MEMTXATTRS_UNSPECIFIED, &txres);
if (txres != MEMTX_OK || !M68K_UDT_VALID(tia)) {
continue;
}
for (j = 0; j < M68K_ROOT_POINTER_ENTRIES; j++) {
tib = address_space_ldl(cs->as, M68K_POINTER_BASE(tia) + j * 4,
MEMTXATTRS_UNSPECIFIED, &txres);
if (txres != MEMTX_OK || !M68K_UDT_VALID(tib)) {
continue;
}
for (k = 0; k < tic_size; k++) {
tic = address_space_ldl(cs->as, (tib & tib_mask) + k * 4,
MEMTXATTRS_UNSPECIFIED, &txres);
if (txres != MEMTX_OK || !M68K_PDT_VALID(tic)) {
continue;
}
if (M68K_PDT_INDIRECT(tic)) {
tic = address_space_ldl(cs->as, M68K_INDIRECT_POINTER(tic),
MEMTXATTRS_UNSPECIFIED, &txres);
if (txres != MEMTX_OK) {
continue;
}
}
last_logical = logical;
logical = (i << M68K_TTS_ROOT_SHIFT) |
(j << M68K_TTS_POINTER_SHIFT) |
(k << tic_shift);
last_physical = physical;
physical = tic & ~((1 << tic_shift) - 1);
last_attr = attr;
attr = tic & ((1 << tic_shift) - 1);
if ((logical != (last_logical + (1 << tic_shift))) ||
(physical != (last_physical + (1 << tic_shift))) ||
(attr & 4) != (last_attr & 4)) {
if (first_logical != 0xffffffff) {
size = last_logical + (1 << tic_shift) -
first_logical;
print_address_zone(first_logical,
first_physical, size, last_attr);
}
first_logical = logical;
first_physical = physical;
}
}
}
}
if (first_logical != logical || (attr & 4) != (last_attr & 4)) {
size = logical + (1 << tic_shift) - first_logical;
print_address_zone(first_logical, first_physical, size, last_attr);
}
}
#define DUMP_CACHEFLAGS(a) \
switch (a & M68K_DESC_CACHEMODE) { \
case M68K_DESC_CM_WRTHRU: /* cachable, write-through */ \
qemu_printf("T"); \
break; \
case M68K_DESC_CM_COPYBK: /* cachable, copyback */ \
qemu_printf("C"); \
break; \
case M68K_DESC_CM_SERIAL: /* noncachable, serialized */ \
qemu_printf("S"); \
break; \
case M68K_DESC_CM_NCACHE: /* noncachable */ \
qemu_printf("N"); \
break; \
}
static void dump_ttr(uint32_t ttr)
{
if ((ttr & M68K_TTR_ENABLED) == 0) {
qemu_printf("disabled\n");
return;
}
qemu_printf("Base: 0x%08x Mask: 0x%08x Control: ",
ttr & M68K_TTR_ADDR_BASE,
(ttr & M68K_TTR_ADDR_MASK) << M68K_TTR_ADDR_MASK_SHIFT);
switch (ttr & M68K_TTR_SFIELD) {
case M68K_TTR_SFIELD_USER:
qemu_printf("U");
break;
case M68K_TTR_SFIELD_SUPER:
qemu_printf("S");
break;
default:
qemu_printf("*");
break;
}
DUMP_CACHEFLAGS(ttr);
if (ttr & M68K_DESC_WRITEPROT) {
qemu_printf("R");
} else {
qemu_printf("W");
}
qemu_printf(" U: %d\n", (ttr & M68K_DESC_USERATTR) >>
M68K_DESC_USERATTR_SHIFT);
}
void dump_mmu(CPUM68KState *env)
{
if ((env->mmu.tcr & M68K_TCR_ENABLED) == 0) {
qemu_printf("Translation disabled\n");
return;
}
qemu_printf("Page Size: ");
if (env->mmu.tcr & M68K_TCR_PAGE_8K) {
qemu_printf("8kB\n");
} else {
qemu_printf("4kB\n");
}
qemu_printf("MMUSR: ");
if (env->mmu.mmusr & M68K_MMU_B_040) {
qemu_printf("BUS ERROR\n");
} else {
qemu_printf("Phy=%08x Flags: ", env->mmu.mmusr & 0xfffff000);
/* flags found on the page descriptor */
if (env->mmu.mmusr & M68K_MMU_G_040) {
qemu_printf("G"); /* Global */
} else {
qemu_printf(".");
}
if (env->mmu.mmusr & M68K_MMU_S_040) {
qemu_printf("S"); /* Supervisor */
} else {
qemu_printf(".");
}
if (env->mmu.mmusr & M68K_MMU_M_040) {
qemu_printf("M"); /* Modified */
} else {
qemu_printf(".");
}
if (env->mmu.mmusr & M68K_MMU_WP_040) {
qemu_printf("W"); /* Write protect */
} else {
qemu_printf(".");
}
if (env->mmu.mmusr & M68K_MMU_T_040) {
qemu_printf("T"); /* Transparent */
} else {
qemu_printf(".");
}
if (env->mmu.mmusr & M68K_MMU_R_040) {
qemu_printf("R"); /* Resident */
} else {
qemu_printf(".");
}
qemu_printf(" Cache: ");
DUMP_CACHEFLAGS(env->mmu.mmusr);
qemu_printf(" U: %d\n", (env->mmu.mmusr >> 8) & 3);
qemu_printf("\n");
}
qemu_printf("ITTR0: ");
dump_ttr(env->mmu.ttr[M68K_ITTR0]);
qemu_printf("ITTR1: ");
dump_ttr(env->mmu.ttr[M68K_ITTR1]);
qemu_printf("DTTR0: ");
dump_ttr(env->mmu.ttr[M68K_DTTR0]);
qemu_printf("DTTR1: ");
dump_ttr(env->mmu.ttr[M68K_DTTR1]);
qemu_printf("SRP: 0x%08x\n", env->mmu.srp);
dump_address_map(env, env->mmu.srp);
qemu_printf("URP: 0x%08x\n", env->mmu.urp);
dump_address_map(env, env->mmu.urp);
}
static int check_TTR(uint32_t ttr, int *prot, target_ulong addr,
int access_type)
{
uint32_t base, mask;
/* check if transparent translation is enabled */
if ((ttr & M68K_TTR_ENABLED) == 0) {
return 0;
}
/* check mode access */
switch (ttr & M68K_TTR_SFIELD) {
case M68K_TTR_SFIELD_USER:
/* match only if user */
if ((access_type & ACCESS_SUPER) != 0) {
return 0;
}
break;
case M68K_TTR_SFIELD_SUPER:
/* match only if supervisor */
if ((access_type & ACCESS_SUPER) == 0) {
return 0;
}
break;
default:
/* all other values disable mode matching (FC2) */
break;
}
/* check address matching */
base = ttr & M68K_TTR_ADDR_BASE;
mask = (ttr & M68K_TTR_ADDR_MASK) ^ M68K_TTR_ADDR_MASK;
mask <<= M68K_TTR_ADDR_MASK_SHIFT;
if ((addr & mask) != (base & mask)) {
return 0;
}
*prot = PAGE_READ | PAGE_EXEC;
if ((ttr & M68K_DESC_WRITEPROT) == 0) {
*prot |= PAGE_WRITE;
}
return 1;
}
static int get_physical_address(CPUM68KState *env, hwaddr *physical,
int *prot, target_ulong address,
int access_type, target_ulong *page_size)
{
CPUState *cs = env_cpu(env);
uint32_t entry;
uint32_t next;
target_ulong page_mask;
bool debug = access_type & ACCESS_DEBUG;
int page_bits;
int i;
MemTxResult txres;
/* Transparent Translation (physical = logical) */
for (i = 0; i < M68K_MAX_TTR; i++) {
if (check_TTR(env->mmu.TTR(access_type, i),
prot, address, access_type)) {
if (access_type & ACCESS_PTEST) {
/* Transparent Translation Register bit */
env->mmu.mmusr = M68K_MMU_T_040 | M68K_MMU_R_040;
}
*physical = address & TARGET_PAGE_MASK;
*page_size = TARGET_PAGE_SIZE;
return 0;
}
}
/* Page Table Root Pointer */
*prot = PAGE_READ | PAGE_WRITE;
if (access_type & ACCESS_CODE) {
*prot |= PAGE_EXEC;
}
if (access_type & ACCESS_SUPER) {
next = env->mmu.srp;
} else {
next = env->mmu.urp;
}
/* Root Index */
entry = M68K_POINTER_BASE(next) | M68K_ROOT_INDEX(address);
next = address_space_ldl(cs->as, entry, MEMTXATTRS_UNSPECIFIED, &txres);
if (txres != MEMTX_OK) {
goto txfail;
}
if (!M68K_UDT_VALID(next)) {
return -1;
}
if (!(next & M68K_DESC_USED) && !debug) {
address_space_stl(cs->as, entry, next | M68K_DESC_USED,
MEMTXATTRS_UNSPECIFIED, &txres);
if (txres != MEMTX_OK) {
goto txfail;
}
}
if (next & M68K_DESC_WRITEPROT) {
if (access_type & ACCESS_PTEST) {
env->mmu.mmusr |= M68K_MMU_WP_040;
}
*prot &= ~PAGE_WRITE;
if (access_type & ACCESS_STORE) {
return -1;
}
}
/* Pointer Index */
entry = M68K_POINTER_BASE(next) | M68K_POINTER_INDEX(address);
next = address_space_ldl(cs->as, entry, MEMTXATTRS_UNSPECIFIED, &txres);
if (txres != MEMTX_OK) {
goto txfail;
}
if (!M68K_UDT_VALID(next)) {
return -1;
}
if (!(next & M68K_DESC_USED) && !debug) {
address_space_stl(cs->as, entry, next | M68K_DESC_USED,
MEMTXATTRS_UNSPECIFIED, &txres);
if (txres != MEMTX_OK) {
goto txfail;
}
}
if (next & M68K_DESC_WRITEPROT) {
if (access_type & ACCESS_PTEST) {
env->mmu.mmusr |= M68K_MMU_WP_040;
}
*prot &= ~PAGE_WRITE;
if (access_type & ACCESS_STORE) {
return -1;
}
}
/* Page Index */
if (env->mmu.tcr & M68K_TCR_PAGE_8K) {
entry = M68K_8K_PAGE_BASE(next) | M68K_8K_PAGE_INDEX(address);
} else {
entry = M68K_4K_PAGE_BASE(next) | M68K_4K_PAGE_INDEX(address);
}
next = address_space_ldl(cs->as, entry, MEMTXATTRS_UNSPECIFIED, &txres);
if (txres != MEMTX_OK) {
goto txfail;
}
if (!M68K_PDT_VALID(next)) {
return -1;
}
if (M68K_PDT_INDIRECT(next)) {
next = address_space_ldl(cs->as, M68K_INDIRECT_POINTER(next),
MEMTXATTRS_UNSPECIFIED, &txres);
if (txres != MEMTX_OK) {
goto txfail;
}
}
if (access_type & ACCESS_STORE) {
if (next & M68K_DESC_WRITEPROT) {
if (!(next & M68K_DESC_USED) && !debug) {
address_space_stl(cs->as, entry, next | M68K_DESC_USED,
MEMTXATTRS_UNSPECIFIED, &txres);
if (txres != MEMTX_OK) {
goto txfail;
}
}
} else if ((next & (M68K_DESC_MODIFIED | M68K_DESC_USED)) !=
(M68K_DESC_MODIFIED | M68K_DESC_USED) && !debug) {
address_space_stl(cs->as, entry,
next | (M68K_DESC_MODIFIED | M68K_DESC_USED),
MEMTXATTRS_UNSPECIFIED, &txres);
if (txres != MEMTX_OK) {
goto txfail;
}
}
} else {
if (!(next & M68K_DESC_USED) && !debug) {
address_space_stl(cs->as, entry, next | M68K_DESC_USED,
MEMTXATTRS_UNSPECIFIED, &txres);
if (txres != MEMTX_OK) {
goto txfail;
}
}
}
if (env->mmu.tcr & M68K_TCR_PAGE_8K) {
page_bits = 13;
} else {
page_bits = 12;
}
*page_size = 1 << page_bits;
page_mask = ~(*page_size - 1);
*physical = next & page_mask;
if (access_type & ACCESS_PTEST) {
env->mmu.mmusr |= next & M68K_MMU_SR_MASK_040;
env->mmu.mmusr |= *physical & 0xfffff000;
env->mmu.mmusr |= M68K_MMU_R_040;
}
if (next & M68K_DESC_WRITEPROT) {
*prot &= ~PAGE_WRITE;
if (access_type & ACCESS_STORE) {
return -1;
}
}
if (next & M68K_DESC_SUPERONLY) {
if ((access_type & ACCESS_SUPER) == 0) {
return -1;
}
}
return 0;
txfail:
/*
* A page table load/store failed. TODO: we should really raise a
* suitable guest fault here if this is not a debug access.
* For now just return that the translation failed.
*/
return -1;
}
hwaddr m68k_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
{
M68kCPU *cpu = M68K_CPU(cs);
CPUM68KState *env = &cpu->env;
hwaddr phys_addr;
int prot;
int access_type;
target_ulong page_size;
if ((env->mmu.tcr & M68K_TCR_ENABLED) == 0) {
/* MMU disabled */
return addr;
}
access_type = ACCESS_DATA | ACCESS_DEBUG;
if (env->sr & SR_S) {
access_type |= ACCESS_SUPER;
}
if (get_physical_address(env, &phys_addr, &prot,
addr, access_type, &page_size) != 0) {
return -1;
}
addr &= TARGET_PAGE_MASK;
phys_addr += addr & (page_size - 1);
return phys_addr;
}
/*
* Notify CPU of a pending interrupt. Prioritization and vectoring should
* be handled by the interrupt controller. Real hardware only requests
* the vector when the interrupt is acknowledged by the CPU. For
* simplicity we calculate it when the interrupt is signalled.
*/
void m68k_set_irq_level(M68kCPU *cpu, int level, uint8_t vector)
{
CPUState *cs = CPU(cpu);
CPUM68KState *env = &cpu->env;
env->pending_level = level;
env->pending_vector = vector;
if (level) {
cpu_interrupt(cs, CPU_INTERRUPT_HARD);
} else {
cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
}
}
#endif
bool m68k_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
MMUAccessType qemu_access_type, int mmu_idx,
bool probe, uintptr_t retaddr)
{
M68kCPU *cpu = M68K_CPU(cs);
CPUM68KState *env = &cpu->env;
#ifndef CONFIG_USER_ONLY
hwaddr physical;
int prot;
int access_type;
int ret;
target_ulong page_size;
if ((env->mmu.tcr & M68K_TCR_ENABLED) == 0) {
/* MMU disabled */
tlb_set_page(cs, address & TARGET_PAGE_MASK,
address & TARGET_PAGE_MASK,
PAGE_READ | PAGE_WRITE | PAGE_EXEC,
mmu_idx, TARGET_PAGE_SIZE);
return true;
}
if (qemu_access_type == MMU_INST_FETCH) {
access_type = ACCESS_CODE;
} else {
access_type = ACCESS_DATA;
if (qemu_access_type == MMU_DATA_STORE) {
access_type |= ACCESS_STORE;
}
}
if (mmu_idx != MMU_USER_IDX) {
access_type |= ACCESS_SUPER;
}
ret = get_physical_address(&cpu->env, &physical, &prot,
address, access_type, &page_size);
if (likely(ret == 0)) {
address &= TARGET_PAGE_MASK;
physical += address & (page_size - 1);
tlb_set_page(cs, address, physical,
prot, mmu_idx, TARGET_PAGE_SIZE);
return true;
}
if (probe) {
return false;
}
/* page fault */
env->mmu.ssw = M68K_ATC_040;
switch (size) {
case 1:
env->mmu.ssw |= M68K_BA_SIZE_BYTE;
break;
case 2:
env->mmu.ssw |= M68K_BA_SIZE_WORD;
break;
case 4:
env->mmu.ssw |= M68K_BA_SIZE_LONG;
break;
}
if (access_type & ACCESS_SUPER) {
env->mmu.ssw |= M68K_TM_040_SUPER;
}
if (access_type & ACCESS_CODE) {
env->mmu.ssw |= M68K_TM_040_CODE;
} else {
env->mmu.ssw |= M68K_TM_040_DATA;
}
if (!(access_type & ACCESS_STORE)) {
env->mmu.ssw |= M68K_RW_040;
}
#endif
cs->exception_index = EXCP_ACCESS;
env->mmu.ar = address;
cpu_loop_exit_restore(cs, retaddr);
}
uint32_t HELPER(bitrev)(uint32_t x)
{
x = ((x >> 1) & 0x55555555u) | ((x << 1) & 0xaaaaaaaau);
x = ((x >> 2) & 0x33333333u) | ((x << 2) & 0xccccccccu);
x = ((x >> 4) & 0x0f0f0f0fu) | ((x << 4) & 0xf0f0f0f0u);
return bswap32(x);
}
uint32_t HELPER(ff1)(uint32_t x)
{
int n;
for (n = 32; x; n--)
x >>= 1;
return n;
}
uint32_t HELPER(sats)(uint32_t val, uint32_t v)
{
/* The result has the opposite sign to the original value. */
if ((int32_t)v < 0) {
val = (((int32_t)val) >> 31) ^ SIGNBIT;
}
return val;
}
void cpu_m68k_set_sr(CPUM68KState *env, uint32_t sr)
{
env->sr = sr & 0xffe0;
cpu_m68k_set_ccr(env, sr);
m68k_switch_sp(env);
}
void HELPER(set_sr)(CPUM68KState *env, uint32_t val)
{
cpu_m68k_set_sr(env, val);
}
/* MAC unit. */
/*
* FIXME: The MAC unit implementation is a bit of a mess. Some helpers
* take values, others take register numbers and manipulate the contents
* in-place.
*/
void HELPER(mac_move)(CPUM68KState *env, uint32_t dest, uint32_t src)
{
uint32_t mask;
env->macc[dest] = env->macc[src];
mask = MACSR_PAV0 << dest;
if (env->macsr & (MACSR_PAV0 << src))
env->macsr |= mask;
else
env->macsr &= ~mask;
}
uint64_t HELPER(macmuls)(CPUM68KState *env, uint32_t op1, uint32_t op2)
{
int64_t product;
int64_t res;
product = (uint64_t)op1 * op2;
res = (product << 24) >> 24;
if (res != product) {
env->macsr |= MACSR_V;
if (env->macsr & MACSR_OMC) {
/* Make sure the accumulate operation overflows. */
if (product < 0)
res = ~(1ll << 50);
else
res = 1ll << 50;
}
}
return res;
}
uint64_t HELPER(macmulu)(CPUM68KState *env, uint32_t op1, uint32_t op2)
{
uint64_t product;
product = (uint64_t)op1 * op2;
if (product & (0xffffffull << 40)) {
env->macsr |= MACSR_V;
if (env->macsr & MACSR_OMC) {
/* Make sure the accumulate operation overflows. */
product = 1ll << 50;
} else {
product &= ((1ull << 40) - 1);
}
}
return product;
}
uint64_t HELPER(macmulf)(CPUM68KState *env, uint32_t op1, uint32_t op2)
{
uint64_t product;
uint32_t remainder;
product = (uint64_t)op1 * op2;
if (env->macsr & MACSR_RT) {
remainder = product & 0xffffff;
product >>= 24;
if (remainder > 0x800000)
product++;
else if (remainder == 0x800000)
product += (product & 1);
} else {
product >>= 24;
}
return product;
}
void HELPER(macsats)(CPUM68KState *env, uint32_t acc)
{
int64_t tmp;
int64_t result;
tmp = env->macc[acc];
result = ((tmp << 16) >> 16);
if (result != tmp) {
env->macsr |= MACSR_V;
}
if (env->macsr & MACSR_V) {
env->macsr |= MACSR_PAV0 << acc;
if (env->macsr & MACSR_OMC) {
/*
* The result is saturated to 32 bits, despite overflow occurring
* at 48 bits. Seems weird, but that's what the hardware docs
* say.
*/
result = (result >> 63) ^ 0x7fffffff;
}
}
env->macc[acc] = result;
}
void HELPER(macsatu)(CPUM68KState *env, uint32_t acc)
{
uint64_t val;
val = env->macc[acc];
if (val & (0xffffull << 48)) {
env->macsr |= MACSR_V;
}
if (env->macsr & MACSR_V) {
env->macsr |= MACSR_PAV0 << acc;
if (env->macsr & MACSR_OMC) {
if (val > (1ull << 53))
val = 0;
else
val = (1ull << 48) - 1;
} else {
val &= ((1ull << 48) - 1);
}
}
env->macc[acc] = val;
}
void HELPER(macsatf)(CPUM68KState *env, uint32_t acc)
{
int64_t sum;
int64_t result;
sum = env->macc[acc];
result = (sum << 16) >> 16;
if (result != sum) {
env->macsr |= MACSR_V;
}
if (env->macsr & MACSR_V) {
env->macsr |= MACSR_PAV0 << acc;
if (env->macsr & MACSR_OMC) {
result = (result >> 63) ^ 0x7fffffffffffll;
}
}
env->macc[acc] = result;
}
void HELPER(mac_set_flags)(CPUM68KState *env, uint32_t acc)
{
uint64_t val;
val = env->macc[acc];
if (val == 0) {
env->macsr |= MACSR_Z;
} else if (val & (1ull << 47)) {
env->macsr |= MACSR_N;
}
if (env->macsr & (MACSR_PAV0 << acc)) {
env->macsr |= MACSR_V;
}
if (env->macsr & MACSR_FI) {
val = ((int64_t)val) >> 40;
if (val != 0 && val != -1)
env->macsr |= MACSR_EV;
} else if (env->macsr & MACSR_SU) {
val = ((int64_t)val) >> 32;
if (val != 0 && val != -1)
env->macsr |= MACSR_EV;
} else {
if ((val >> 32) != 0)
env->macsr |= MACSR_EV;
}
}
#define EXTSIGN(val, index) ( \
(index == 0) ? (int8_t)(val) : ((index == 1) ? (int16_t)(val) : (val)) \
)
#define COMPUTE_CCR(op, x, n, z, v, c) { \
switch (op) { \
case CC_OP_FLAGS: \
/* Everything in place. */ \
break; \
case CC_OP_ADDB: \
case CC_OP_ADDW: \
case CC_OP_ADDL: \
res = n; \
src2 = v; \
src1 = EXTSIGN(res - src2, op - CC_OP_ADDB); \
c = x; \
z = n; \
v = (res ^ src1) & ~(src1 ^ src2); \
break; \
case CC_OP_SUBB: \
case CC_OP_SUBW: \
case CC_OP_SUBL: \
res = n; \
src2 = v; \
src1 = EXTSIGN(res + src2, op - CC_OP_SUBB); \
c = x; \
z = n; \
v = (res ^ src1) & (src1 ^ src2); \
break; \
case CC_OP_CMPB: \
case CC_OP_CMPW: \
case CC_OP_CMPL: \
src1 = n; \
src2 = v; \
res = EXTSIGN(src1 - src2, op - CC_OP_CMPB); \
n = res; \
z = res; \
c = src1 < src2; \
v = (res ^ src1) & (src1 ^ src2); \
break; \
case CC_OP_LOGIC: \
c = v = 0; \
z = n; \
break; \
default: \
cpu_abort(env_cpu(env), "Bad CC_OP %d", op); \
} \
} while (0)
uint32_t cpu_m68k_get_ccr(CPUM68KState *env)
{
uint32_t x, c, n, z, v;
uint32_t res, src1, src2;
x = env->cc_x;
n = env->cc_n;
z = env->cc_z;
v = env->cc_v;
c = env->cc_c;
COMPUTE_CCR(env->cc_op, x, n, z, v, c);
n = n >> 31;
z = (z == 0);
v = v >> 31;
return x * CCF_X + n * CCF_N + z * CCF_Z + v * CCF_V + c * CCF_C;
}
uint32_t HELPER(get_ccr)(CPUM68KState *env)
{
return cpu_m68k_get_ccr(env);
}
void cpu_m68k_set_ccr(CPUM68KState *env, uint32_t ccr)
{
env->cc_x = (ccr & CCF_X ? 1 : 0);
env->cc_n = (ccr & CCF_N ? -1 : 0);
env->cc_z = (ccr & CCF_Z ? 0 : 1);
env->cc_v = (ccr & CCF_V ? -1 : 0);
env->cc_c = (ccr & CCF_C ? 1 : 0);
env->cc_op = CC_OP_FLAGS;
}
void HELPER(set_ccr)(CPUM68KState *env, uint32_t ccr)
{
cpu_m68k_set_ccr(env, ccr);
}
void HELPER(flush_flags)(CPUM68KState *env, uint32_t cc_op)
{
uint32_t res, src1, src2;
COMPUTE_CCR(cc_op, env->cc_x, env->cc_n, env->cc_z, env->cc_v, env->cc_c);
env->cc_op = CC_OP_FLAGS;
}
uint32_t HELPER(get_macf)(CPUM68KState *env, uint64_t val)
{
int rem;
uint32_t result;
if (env->macsr & MACSR_SU) {
/* 16-bit rounding. */
rem = val & 0xffffff;
val = (val >> 24) & 0xffffu;
if (rem > 0x800000)
val++;
else if (rem == 0x800000)
val += (val & 1);
} else if (env->macsr & MACSR_RT) {
/* 32-bit rounding. */
rem = val & 0xff;
val >>= 8;
if (rem > 0x80)
val++;
else if (rem == 0x80)
val += (val & 1);
} else {
/* No rounding. */
val >>= 8;
}
if (env->macsr & MACSR_OMC) {
/* Saturate. */
if (env->macsr & MACSR_SU) {
if (val != (uint16_t) val) {
result = ((val >> 63) ^ 0x7fff) & 0xffff;
} else {
result = val & 0xffff;
}
} else {
if (val != (uint32_t)val) {
result = ((uint32_t)(val >> 63) & 0x7fffffff);
} else {
result = (uint32_t)val;
}
}
} else {
/* No saturation. */
if (env->macsr & MACSR_SU) {
result = val & 0xffff;
} else {
result = (uint32_t)val;
}
}
return result;
}
uint32_t HELPER(get_macs)(uint64_t val)
{
if (val == (int32_t)val) {
return (int32_t)val;
} else {
return (val >> 61) ^ ~SIGNBIT;
}
}
uint32_t HELPER(get_macu)(uint64_t val)
{
if ((val >> 32) == 0) {
return (uint32_t)val;
} else {
return 0xffffffffu;
}
}
uint32_t HELPER(get_mac_extf)(CPUM68KState *env, uint32_t acc)
{
uint32_t val;
val = env->macc[acc] & 0x00ff;
val |= (env->macc[acc] >> 32) & 0xff00;
val |= (env->macc[acc + 1] << 16) & 0x00ff0000;
val |= (env->macc[acc + 1] >> 16) & 0xff000000;
return val;
}
uint32_t HELPER(get_mac_exti)(CPUM68KState *env, uint32_t acc)
{
uint32_t val;
val = (env->macc[acc] >> 32) & 0xffff;
val |= (env->macc[acc + 1] >> 16) & 0xffff0000;
return val;
}
void HELPER(set_mac_extf)(CPUM68KState *env, uint32_t val, uint32_t acc)
{
int64_t res;
int32_t tmp;
res = env->macc[acc] & 0xffffffff00ull;
tmp = (int16_t)(val & 0xff00);
res |= ((int64_t)tmp) << 32;
res |= val & 0xff;
env->macc[acc] = res;
res = env->macc[acc + 1] & 0xffffffff00ull;
tmp = (val & 0xff000000);
res |= ((int64_t)tmp) << 16;
res |= (val >> 16) & 0xff;
env->macc[acc + 1] = res;
}
void HELPER(set_mac_exts)(CPUM68KState *env, uint32_t val, uint32_t acc)
{
int64_t res;
int32_t tmp;
res = (uint32_t)env->macc[acc];
tmp = (int16_t)val;
res |= ((int64_t)tmp) << 32;
env->macc[acc] = res;
res = (uint32_t)env->macc[acc + 1];
tmp = val & 0xffff0000;
res |= (int64_t)tmp << 16;
env->macc[acc + 1] = res;
}
void HELPER(set_mac_extu)(CPUM68KState *env, uint32_t val, uint32_t acc)
{
uint64_t res;
res = (uint32_t)env->macc[acc];
res |= ((uint64_t)(val & 0xffff)) << 32;
env->macc[acc] = res;
res = (uint32_t)env->macc[acc + 1];
res |= (uint64_t)(val & 0xffff0000) << 16;
env->macc[acc + 1] = res;
}
#if defined(CONFIG_SOFTMMU)
void HELPER(ptest)(CPUM68KState *env, uint32_t addr, uint32_t is_read)
{
hwaddr physical;
int access_type;
int prot;
int ret;
target_ulong page_size;
access_type = ACCESS_PTEST;
if (env->dfc & 4) {
access_type |= ACCESS_SUPER;
}
if ((env->dfc & 3) == 2) {
access_type |= ACCESS_CODE;
}
if (!is_read) {
access_type |= ACCESS_STORE;
}
env->mmu.mmusr = 0;
env->mmu.ssw = 0;
ret = get_physical_address(env, &physical, &prot, addr,
access_type, &page_size);
if (ret == 0) {
addr &= TARGET_PAGE_MASK;
physical += addr & (page_size - 1);
tlb_set_page(env_cpu(env), addr, physical,
prot, access_type & ACCESS_SUPER ?
MMU_KERNEL_IDX : MMU_USER_IDX, page_size);
}
}
void HELPER(pflush)(CPUM68KState *env, uint32_t addr, uint32_t opmode)
{
CPUState *cs = env_cpu(env);
switch (opmode) {
case 0: /* Flush page entry if not global */
case 1: /* Flush page entry */
tlb_flush_page(cs, addr);
break;
case 2: /* Flush all except global entries */
tlb_flush(cs);
break;
case 3: /* Flush all entries */
tlb_flush(cs);
break;
}
}
void HELPER(reset)(CPUM68KState *env)
{
/* FIXME: reset all except CPU */
}
#endif