qemu/hw/ppc/spapr_hcall.c

1131 lines
31 KiB
C
Raw Normal View History

#include "qemu/osdep.h"
#include "sysemu/sysemu.h"
#include "cpu.h"
#include "helper_regs.h"
#include "hw/ppc/spapr.h"
#include "mmu-hash64.h"
#include "cpu-models.h"
#include "trace.h"
#include "kvm_ppc.h"
struct SPRSyncState {
CPUState *cs;
int spr;
target_ulong value;
target_ulong mask;
};
static void do_spr_sync(void *arg)
{
struct SPRSyncState *s = arg;
PowerPCCPU *cpu = POWERPC_CPU(s->cs);
CPUPPCState *env = &cpu->env;
cpu_synchronize_state(s->cs);
env->spr[s->spr] &= ~s->mask;
env->spr[s->spr] |= s->value;
}
static void set_spr(CPUState *cs, int spr, target_ulong value,
target_ulong mask)
{
struct SPRSyncState s = {
.cs = cs,
.spr = spr,
.value = value,
.mask = mask
};
run_on_cpu(cs, do_spr_sync, &s);
}
static bool has_spr(PowerPCCPU *cpu, int spr)
{
/* We can test whether the SPR is defined by checking for a valid name */
return cpu->env.spr_cb[spr].name != NULL;
}
static inline bool valid_pte_index(CPUPPCState *env, target_ulong pte_index)
{
/*
* hash value/pteg group index is normalized by htab_mask
*/
if (((pte_index & ~7ULL) / HPTES_PER_GROUP) & ~env->htab_mask) {
return false;
}
return true;
}
static bool is_ram_address(sPAPRMachineState *spapr, hwaddr addr)
{
MachineState *machine = MACHINE(spapr);
MemoryHotplugState *hpms = &spapr->hotplug_memory;
if (addr < machine->ram_size) {
return true;
}
if ((addr >= hpms->base)
&& ((addr - hpms->base) < memory_region_size(&hpms->mr))) {
return true;
}
return false;
}
static target_ulong h_enter(PowerPCCPU *cpu, sPAPRMachineState *spapr,
target_ulong opcode, target_ulong *args)
{
CPUPPCState *env = &cpu->env;
target_ulong flags = args[0];
target_ulong pte_index = args[1];
target_ulong pteh = args[2];
target_ulong ptel = args[3];
unsigned apshift, spshift;
target_ulong raddr;
target_ulong index;
uint64_t token;
apshift = ppc_hash64_hpte_page_shift_noslb(cpu, pteh, ptel, &spshift);
if (!apshift) {
/* Bad page size encoding */
return H_PARAMETER;
}
raddr = (ptel & HPTE64_R_RPN) & ~((1ULL << apshift) - 1);
if (is_ram_address(spapr, raddr)) {
/* Regular RAM - should have WIMG=0010 */
if ((ptel & HPTE64_R_WIMG) != HPTE64_R_M) {
return H_PARAMETER;
}
} else {
/* Looks like an IO address */
/* FIXME: What WIMG combinations could be sensible for IO?
* For now we allow WIMG=010x, but are there others? */
/* FIXME: Should we check against registered IO addresses? */
if ((ptel & (HPTE64_R_W | HPTE64_R_I | HPTE64_R_M)) != HPTE64_R_I) {
return H_PARAMETER;
}
}
pteh &= ~0x60ULL;
if (!valid_pte_index(env, pte_index)) {
return H_PARAMETER;
}
index = 0;
if (likely((flags & H_EXACT) == 0)) {
pte_index &= ~7ULL;
token = ppc_hash64_start_access(cpu, pte_index);
for (; index < 8; index++) {
if (!(ppc_hash64_load_hpte0(cpu, token, index) & HPTE64_V_VALID)) {
break;
}
}
target-ppc: Eliminate kvmppc_kern_htab global fa48b43 "target-ppc: Remove hack for ppc_hash64_load_hpte*() with HV KVM" purports to remove a hack in the handling of hash page tables (HPTs) managed by KVM instead of qemu. However, it actually went in the wrong direction. That patch requires anything looking for an external HPT (that is one not managed by the guest itself) to check both env->external_htab (for a qemu managed HPT) and kvmppc_kern_htab (for a KVM managed HPT). That's a problem because kvmppc_kern_htab is local to mmu-hash64.c, but some places which need to check for an external HPT are outside that, such as kvm_arch_get_registers(). The latter was subtly broken by the earlier patch such that gdbstub can no longer access memory. Basically a KVM managed HPT is much more like a qemu managed HPT than it is like a guest managed HPT, so the original "hack" was actually on the right track. This partially reverts fa48b43, so we again mark a KVM managed external HPT by putting a special but non-NULL value in env->external_htab. It then goes further, using that marker to eliminate the kvmppc_kern_htab global entirely. The ppc_hash64_set_external_hpt() helper function is extended to set that marker if passed a NULL value (if you're setting an external HPT, but don't have an actual HPT to set, the assumption is that it must be a KVM managed HPT). This also has some flow-on changes to the HPT access helpers, required by the above changes. Reported-by: Greg Kurz <gkurz@linux.vnet.ibm.com> Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Reviewed-by: Thomas Huth <thuth@redhat.com> Reviewed-by: Greg Kurz <gkurz@linux.vnet.ibm.com> Tested-by: Greg Kurz <gkurz@linux.vnet.ibm.com>
2016-03-08 08:35:15 +08:00
ppc_hash64_stop_access(cpu, token);
if (index == 8) {
return H_PTEG_FULL;
}
} else {
token = ppc_hash64_start_access(cpu, pte_index);
if (ppc_hash64_load_hpte0(cpu, token, 0) & HPTE64_V_VALID) {
target-ppc: Eliminate kvmppc_kern_htab global fa48b43 "target-ppc: Remove hack for ppc_hash64_load_hpte*() with HV KVM" purports to remove a hack in the handling of hash page tables (HPTs) managed by KVM instead of qemu. However, it actually went in the wrong direction. That patch requires anything looking for an external HPT (that is one not managed by the guest itself) to check both env->external_htab (for a qemu managed HPT) and kvmppc_kern_htab (for a KVM managed HPT). That's a problem because kvmppc_kern_htab is local to mmu-hash64.c, but some places which need to check for an external HPT are outside that, such as kvm_arch_get_registers(). The latter was subtly broken by the earlier patch such that gdbstub can no longer access memory. Basically a KVM managed HPT is much more like a qemu managed HPT than it is like a guest managed HPT, so the original "hack" was actually on the right track. This partially reverts fa48b43, so we again mark a KVM managed external HPT by putting a special but non-NULL value in env->external_htab. It then goes further, using that marker to eliminate the kvmppc_kern_htab global entirely. The ppc_hash64_set_external_hpt() helper function is extended to set that marker if passed a NULL value (if you're setting an external HPT, but don't have an actual HPT to set, the assumption is that it must be a KVM managed HPT). This also has some flow-on changes to the HPT access helpers, required by the above changes. Reported-by: Greg Kurz <gkurz@linux.vnet.ibm.com> Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Reviewed-by: Thomas Huth <thuth@redhat.com> Reviewed-by: Greg Kurz <gkurz@linux.vnet.ibm.com> Tested-by: Greg Kurz <gkurz@linux.vnet.ibm.com>
2016-03-08 08:35:15 +08:00
ppc_hash64_stop_access(cpu, token);
return H_PTEG_FULL;
}
target-ppc: Eliminate kvmppc_kern_htab global fa48b43 "target-ppc: Remove hack for ppc_hash64_load_hpte*() with HV KVM" purports to remove a hack in the handling of hash page tables (HPTs) managed by KVM instead of qemu. However, it actually went in the wrong direction. That patch requires anything looking for an external HPT (that is one not managed by the guest itself) to check both env->external_htab (for a qemu managed HPT) and kvmppc_kern_htab (for a KVM managed HPT). That's a problem because kvmppc_kern_htab is local to mmu-hash64.c, but some places which need to check for an external HPT are outside that, such as kvm_arch_get_registers(). The latter was subtly broken by the earlier patch such that gdbstub can no longer access memory. Basically a KVM managed HPT is much more like a qemu managed HPT than it is like a guest managed HPT, so the original "hack" was actually on the right track. This partially reverts fa48b43, so we again mark a KVM managed external HPT by putting a special but non-NULL value in env->external_htab. It then goes further, using that marker to eliminate the kvmppc_kern_htab global entirely. The ppc_hash64_set_external_hpt() helper function is extended to set that marker if passed a NULL value (if you're setting an external HPT, but don't have an actual HPT to set, the assumption is that it must be a KVM managed HPT). This also has some flow-on changes to the HPT access helpers, required by the above changes. Reported-by: Greg Kurz <gkurz@linux.vnet.ibm.com> Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Reviewed-by: Thomas Huth <thuth@redhat.com> Reviewed-by: Greg Kurz <gkurz@linux.vnet.ibm.com> Tested-by: Greg Kurz <gkurz@linux.vnet.ibm.com>
2016-03-08 08:35:15 +08:00
ppc_hash64_stop_access(cpu, token);
}
ppc_hash64_store_hpte(cpu, pte_index + index,
pteh | HPTE64_V_HPTE_DIRTY, ptel);
args[0] = pte_index + index;
return H_SUCCESS;
}
typedef enum {
REMOVE_SUCCESS = 0,
REMOVE_NOT_FOUND = 1,
REMOVE_PARM = 2,
REMOVE_HW = 3,
} RemoveResult;
static RemoveResult remove_hpte(PowerPCCPU *cpu, target_ulong ptex,
target_ulong avpn,
target_ulong flags,
target_ulong *vp, target_ulong *rp)
{
CPUPPCState *env = &cpu->env;
uint64_t token;
target_ulong v, r;
if (!valid_pte_index(env, ptex)) {
return REMOVE_PARM;
}
token = ppc_hash64_start_access(cpu, ptex);
v = ppc_hash64_load_hpte0(cpu, token, 0);
r = ppc_hash64_load_hpte1(cpu, token, 0);
target-ppc: Eliminate kvmppc_kern_htab global fa48b43 "target-ppc: Remove hack for ppc_hash64_load_hpte*() with HV KVM" purports to remove a hack in the handling of hash page tables (HPTs) managed by KVM instead of qemu. However, it actually went in the wrong direction. That patch requires anything looking for an external HPT (that is one not managed by the guest itself) to check both env->external_htab (for a qemu managed HPT) and kvmppc_kern_htab (for a KVM managed HPT). That's a problem because kvmppc_kern_htab is local to mmu-hash64.c, but some places which need to check for an external HPT are outside that, such as kvm_arch_get_registers(). The latter was subtly broken by the earlier patch such that gdbstub can no longer access memory. Basically a KVM managed HPT is much more like a qemu managed HPT than it is like a guest managed HPT, so the original "hack" was actually on the right track. This partially reverts fa48b43, so we again mark a KVM managed external HPT by putting a special but non-NULL value in env->external_htab. It then goes further, using that marker to eliminate the kvmppc_kern_htab global entirely. The ppc_hash64_set_external_hpt() helper function is extended to set that marker if passed a NULL value (if you're setting an external HPT, but don't have an actual HPT to set, the assumption is that it must be a KVM managed HPT). This also has some flow-on changes to the HPT access helpers, required by the above changes. Reported-by: Greg Kurz <gkurz@linux.vnet.ibm.com> Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Reviewed-by: Thomas Huth <thuth@redhat.com> Reviewed-by: Greg Kurz <gkurz@linux.vnet.ibm.com> Tested-by: Greg Kurz <gkurz@linux.vnet.ibm.com>
2016-03-08 08:35:15 +08:00
ppc_hash64_stop_access(cpu, token);
if ((v & HPTE64_V_VALID) == 0 ||
((flags & H_AVPN) && (v & ~0x7fULL) != avpn) ||
((flags & H_ANDCOND) && (v & avpn) != 0)) {
return REMOVE_NOT_FOUND;
}
*vp = v;
*rp = r;
ppc_hash64_store_hpte(cpu, ptex, HPTE64_V_HPTE_DIRTY, 0);
ppc_hash64_tlb_flush_hpte(cpu, ptex, v, r);
return REMOVE_SUCCESS;
}
static target_ulong h_remove(PowerPCCPU *cpu, sPAPRMachineState *spapr,
target_ulong opcode, target_ulong *args)
{
target_ulong flags = args[0];
target_ulong pte_index = args[1];
target_ulong avpn = args[2];
RemoveResult ret;
ret = remove_hpte(cpu, pte_index, avpn, flags,
&args[0], &args[1]);
switch (ret) {
case REMOVE_SUCCESS:
return H_SUCCESS;
case REMOVE_NOT_FOUND:
return H_NOT_FOUND;
case REMOVE_PARM:
return H_PARAMETER;
case REMOVE_HW:
return H_HARDWARE;
}
g_assert_not_reached();
}
#define H_BULK_REMOVE_TYPE 0xc000000000000000ULL
#define H_BULK_REMOVE_REQUEST 0x4000000000000000ULL
#define H_BULK_REMOVE_RESPONSE 0x8000000000000000ULL
#define H_BULK_REMOVE_END 0xc000000000000000ULL
#define H_BULK_REMOVE_CODE 0x3000000000000000ULL
#define H_BULK_REMOVE_SUCCESS 0x0000000000000000ULL
#define H_BULK_REMOVE_NOT_FOUND 0x1000000000000000ULL
#define H_BULK_REMOVE_PARM 0x2000000000000000ULL
#define H_BULK_REMOVE_HW 0x3000000000000000ULL
#define H_BULK_REMOVE_RC 0x0c00000000000000ULL
#define H_BULK_REMOVE_FLAGS 0x0300000000000000ULL
#define H_BULK_REMOVE_ABSOLUTE 0x0000000000000000ULL
#define H_BULK_REMOVE_ANDCOND 0x0100000000000000ULL
#define H_BULK_REMOVE_AVPN 0x0200000000000000ULL
#define H_BULK_REMOVE_PTEX 0x00ffffffffffffffULL
#define H_BULK_REMOVE_MAX_BATCH 4
static target_ulong h_bulk_remove(PowerPCCPU *cpu, sPAPRMachineState *spapr,
target_ulong opcode, target_ulong *args)
{
int i;
for (i = 0; i < H_BULK_REMOVE_MAX_BATCH; i++) {
target_ulong *tsh = &args[i*2];
target_ulong tsl = args[i*2 + 1];
target_ulong v, r, ret;
if ((*tsh & H_BULK_REMOVE_TYPE) == H_BULK_REMOVE_END) {
break;
} else if ((*tsh & H_BULK_REMOVE_TYPE) != H_BULK_REMOVE_REQUEST) {
return H_PARAMETER;
}
*tsh &= H_BULK_REMOVE_PTEX | H_BULK_REMOVE_FLAGS;
*tsh |= H_BULK_REMOVE_RESPONSE;
if ((*tsh & H_BULK_REMOVE_ANDCOND) && (*tsh & H_BULK_REMOVE_AVPN)) {
*tsh |= H_BULK_REMOVE_PARM;
return H_PARAMETER;
}
ret = remove_hpte(cpu, *tsh & H_BULK_REMOVE_PTEX, tsl,
(*tsh & H_BULK_REMOVE_FLAGS) >> 26,
&v, &r);
*tsh |= ret << 60;
switch (ret) {
case REMOVE_SUCCESS:
*tsh |= (r & (HPTE64_R_C | HPTE64_R_R)) << 43;
break;
case REMOVE_PARM:
return H_PARAMETER;
case REMOVE_HW:
return H_HARDWARE;
}
}
return H_SUCCESS;
}
static target_ulong h_protect(PowerPCCPU *cpu, sPAPRMachineState *spapr,
target_ulong opcode, target_ulong *args)
{
CPUPPCState *env = &cpu->env;
target_ulong flags = args[0];
target_ulong pte_index = args[1];
target_ulong avpn = args[2];
uint64_t token;
target_ulong v, r;
if (!valid_pte_index(env, pte_index)) {
return H_PARAMETER;
}
token = ppc_hash64_start_access(cpu, pte_index);
v = ppc_hash64_load_hpte0(cpu, token, 0);
r = ppc_hash64_load_hpte1(cpu, token, 0);
target-ppc: Eliminate kvmppc_kern_htab global fa48b43 "target-ppc: Remove hack for ppc_hash64_load_hpte*() with HV KVM" purports to remove a hack in the handling of hash page tables (HPTs) managed by KVM instead of qemu. However, it actually went in the wrong direction. That patch requires anything looking for an external HPT (that is one not managed by the guest itself) to check both env->external_htab (for a qemu managed HPT) and kvmppc_kern_htab (for a KVM managed HPT). That's a problem because kvmppc_kern_htab is local to mmu-hash64.c, but some places which need to check for an external HPT are outside that, such as kvm_arch_get_registers(). The latter was subtly broken by the earlier patch such that gdbstub can no longer access memory. Basically a KVM managed HPT is much more like a qemu managed HPT than it is like a guest managed HPT, so the original "hack" was actually on the right track. This partially reverts fa48b43, so we again mark a KVM managed external HPT by putting a special but non-NULL value in env->external_htab. It then goes further, using that marker to eliminate the kvmppc_kern_htab global entirely. The ppc_hash64_set_external_hpt() helper function is extended to set that marker if passed a NULL value (if you're setting an external HPT, but don't have an actual HPT to set, the assumption is that it must be a KVM managed HPT). This also has some flow-on changes to the HPT access helpers, required by the above changes. Reported-by: Greg Kurz <gkurz@linux.vnet.ibm.com> Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Reviewed-by: Thomas Huth <thuth@redhat.com> Reviewed-by: Greg Kurz <gkurz@linux.vnet.ibm.com> Tested-by: Greg Kurz <gkurz@linux.vnet.ibm.com>
2016-03-08 08:35:15 +08:00
ppc_hash64_stop_access(cpu, token);
if ((v & HPTE64_V_VALID) == 0 ||
((flags & H_AVPN) && (v & ~0x7fULL) != avpn)) {
return H_NOT_FOUND;
}
r &= ~(HPTE64_R_PP0 | HPTE64_R_PP | HPTE64_R_N |
HPTE64_R_KEY_HI | HPTE64_R_KEY_LO);
r |= (flags << 55) & HPTE64_R_PP0;
r |= (flags << 48) & HPTE64_R_KEY_HI;
r |= flags & (HPTE64_R_PP | HPTE64_R_N | HPTE64_R_KEY_LO);
ppc_hash64_store_hpte(cpu, pte_index,
(v & ~HPTE64_V_VALID) | HPTE64_V_HPTE_DIRTY, 0);
ppc_hash64_tlb_flush_hpte(cpu, pte_index, v, r);
/* Don't need a memory barrier, due to qemu's global lock */
ppc_hash64_store_hpte(cpu, pte_index, v | HPTE64_V_HPTE_DIRTY, r);
return H_SUCCESS;
}
static target_ulong h_read(PowerPCCPU *cpu, sPAPRMachineState *spapr,
target_ulong opcode, target_ulong *args)
{
CPUPPCState *env = &cpu->env;
target_ulong flags = args[0];
target_ulong pte_index = args[1];
uint8_t *hpte;
int i, ridx, n_entries = 1;
if (!valid_pte_index(env, pte_index)) {
return H_PARAMETER;
}
if (flags & H_READ_4) {
/* Clear the two low order bits */
pte_index &= ~(3ULL);
n_entries = 4;
}
hpte = env->external_htab + (pte_index * HASH_PTE_SIZE_64);
for (i = 0, ridx = 0; i < n_entries; i++) {
args[ridx++] = ldq_p(hpte);
args[ridx++] = ldq_p(hpte + (HASH_PTE_SIZE_64/2));
hpte += HASH_PTE_SIZE_64;
}
return H_SUCCESS;
}
static target_ulong h_set_sprg0(PowerPCCPU *cpu, sPAPRMachineState *spapr,
target_ulong opcode, target_ulong *args)
{
cpu_synchronize_state(CPU(cpu));
cpu->env.spr[SPR_SPRG0] = args[0];
return H_SUCCESS;
}
static target_ulong h_set_dabr(PowerPCCPU *cpu, sPAPRMachineState *spapr,
target_ulong opcode, target_ulong *args)
{
if (!has_spr(cpu, SPR_DABR)) {
return H_HARDWARE; /* DABR register not available */
}
cpu_synchronize_state(CPU(cpu));
if (has_spr(cpu, SPR_DABRX)) {
cpu->env.spr[SPR_DABRX] = 0x3; /* Use Problem and Privileged state */
} else if (!(args[0] & 0x4)) { /* Breakpoint Translation set? */
return H_RESERVED_DABR;
}
cpu->env.spr[SPR_DABR] = args[0];
return H_SUCCESS;
}
static target_ulong h_set_xdabr(PowerPCCPU *cpu, sPAPRMachineState *spapr,
target_ulong opcode, target_ulong *args)
{
target_ulong dabrx = args[1];
if (!has_spr(cpu, SPR_DABR) || !has_spr(cpu, SPR_DABRX)) {
return H_HARDWARE;
}
if ((dabrx & ~0xfULL) != 0 || (dabrx & H_DABRX_HYPERVISOR) != 0
|| (dabrx & (H_DABRX_KERNEL | H_DABRX_USER)) == 0) {
return H_PARAMETER;
}
cpu_synchronize_state(CPU(cpu));
cpu->env.spr[SPR_DABRX] = dabrx;
cpu->env.spr[SPR_DABR] = args[0];
return H_SUCCESS;
}
static target_ulong h_page_init(PowerPCCPU *cpu, sPAPRMachineState *spapr,
target_ulong opcode, target_ulong *args)
{
target_ulong flags = args[0];
hwaddr dst = args[1];
hwaddr src = args[2];
hwaddr len = TARGET_PAGE_SIZE;
uint8_t *pdst, *psrc;
target_long ret = H_SUCCESS;
if (flags & ~(H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE
| H_COPY_PAGE | H_ZERO_PAGE)) {
qemu_log_mask(LOG_UNIMP, "h_page_init: Bad flags (" TARGET_FMT_lx "\n",
flags);
return H_PARAMETER;
}
/* Map-in destination */
if (!is_ram_address(spapr, dst) || (dst & ~TARGET_PAGE_MASK) != 0) {
return H_PARAMETER;
}
pdst = cpu_physical_memory_map(dst, &len, 1);
if (!pdst || len != TARGET_PAGE_SIZE) {
return H_PARAMETER;
}
if (flags & H_COPY_PAGE) {
/* Map-in source, copy to destination, and unmap source again */
if (!is_ram_address(spapr, src) || (src & ~TARGET_PAGE_MASK) != 0) {
ret = H_PARAMETER;
goto unmap_out;
}
psrc = cpu_physical_memory_map(src, &len, 0);
if (!psrc || len != TARGET_PAGE_SIZE) {
ret = H_PARAMETER;
goto unmap_out;
}
memcpy(pdst, psrc, len);
cpu_physical_memory_unmap(psrc, len, 0, len);
} else if (flags & H_ZERO_PAGE) {
memset(pdst, 0, len); /* Just clear the destination page */
}
if (kvm_enabled() && (flags & H_ICACHE_SYNCHRONIZE) != 0) {
kvmppc_dcbst_range(cpu, pdst, len);
}
if (flags & (H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE)) {
if (kvm_enabled()) {
kvmppc_icbi_range(cpu, pdst, len);
} else {
tb_flush(CPU(cpu));
}
}
unmap_out:
cpu_physical_memory_unmap(pdst, TARGET_PAGE_SIZE, 1, len);
return ret;
}
#define FLAGS_REGISTER_VPA 0x0000200000000000ULL
#define FLAGS_REGISTER_DTL 0x0000400000000000ULL
#define FLAGS_REGISTER_SLBSHADOW 0x0000600000000000ULL
#define FLAGS_DEREGISTER_VPA 0x0000a00000000000ULL
#define FLAGS_DEREGISTER_DTL 0x0000c00000000000ULL
#define FLAGS_DEREGISTER_SLBSHADOW 0x0000e00000000000ULL
#define VPA_MIN_SIZE 640
#define VPA_SIZE_OFFSET 0x4
#define VPA_SHARED_PROC_OFFSET 0x9
#define VPA_SHARED_PROC_VAL 0x2
static target_ulong register_vpa(CPUPPCState *env, target_ulong vpa)
{
CPUState *cs = CPU(ppc_env_get_cpu(env));
uint16_t size;
uint8_t tmp;
if (vpa == 0) {
hcall_dprintf("Can't cope with registering a VPA at logical 0\n");
return H_HARDWARE;
}
if (vpa % env->dcache_line_size) {
return H_PARAMETER;
}
/* FIXME: bounds check the address */
size = lduw_be_phys(cs->as, vpa + 0x4);
if (size < VPA_MIN_SIZE) {
return H_PARAMETER;
}
/* VPA is not allowed to cross a page boundary */
if ((vpa / 4096) != ((vpa + size - 1) / 4096)) {
return H_PARAMETER;
}
env->vpa_addr = vpa;
tmp = ldub_phys(cs->as, env->vpa_addr + VPA_SHARED_PROC_OFFSET);
tmp |= VPA_SHARED_PROC_VAL;
stb_phys(cs->as, env->vpa_addr + VPA_SHARED_PROC_OFFSET, tmp);
return H_SUCCESS;
}
static target_ulong deregister_vpa(CPUPPCState *env, target_ulong vpa)
{
if (env->slb_shadow_addr) {
return H_RESOURCE;
}
if (env->dtl_addr) {
return H_RESOURCE;
}
env->vpa_addr = 0;
return H_SUCCESS;
}
static target_ulong register_slb_shadow(CPUPPCState *env, target_ulong addr)
{
CPUState *cs = CPU(ppc_env_get_cpu(env));
uint32_t size;
if (addr == 0) {
hcall_dprintf("Can't cope with SLB shadow at logical 0\n");
return H_HARDWARE;
}
size = ldl_be_phys(cs->as, addr + 0x4);
if (size < 0x8) {
return H_PARAMETER;
}
if ((addr / 4096) != ((addr + size - 1) / 4096)) {
return H_PARAMETER;
}
if (!env->vpa_addr) {
return H_RESOURCE;
}
env->slb_shadow_addr = addr;
env->slb_shadow_size = size;
return H_SUCCESS;
}
static target_ulong deregister_slb_shadow(CPUPPCState *env, target_ulong addr)
{
env->slb_shadow_addr = 0;
env->slb_shadow_size = 0;
return H_SUCCESS;
}
static target_ulong register_dtl(CPUPPCState *env, target_ulong addr)
{
CPUState *cs = CPU(ppc_env_get_cpu(env));
uint32_t size;
if (addr == 0) {
hcall_dprintf("Can't cope with DTL at logical 0\n");
return H_HARDWARE;
}
size = ldl_be_phys(cs->as, addr + 0x4);
if (size < 48) {
return H_PARAMETER;
}
if (!env->vpa_addr) {
return H_RESOURCE;
}
env->dtl_addr = addr;
env->dtl_size = size;
return H_SUCCESS;
}
static target_ulong deregister_dtl(CPUPPCState *env, target_ulong addr)
{
env->dtl_addr = 0;
env->dtl_size = 0;
return H_SUCCESS;
}
static target_ulong h_register_vpa(PowerPCCPU *cpu, sPAPRMachineState *spapr,
target_ulong opcode, target_ulong *args)
{
target_ulong flags = args[0];
target_ulong procno = args[1];
target_ulong vpa = args[2];
target_ulong ret = H_PARAMETER;
CPUPPCState *tenv;
PowerPCCPU *tcpu;
tcpu = ppc_get_vcpu_by_dt_id(procno);
if (!tcpu) {
return H_PARAMETER;
}
tenv = &tcpu->env;
switch (flags) {
case FLAGS_REGISTER_VPA:
ret = register_vpa(tenv, vpa);
break;
case FLAGS_DEREGISTER_VPA:
ret = deregister_vpa(tenv, vpa);
break;
case FLAGS_REGISTER_SLBSHADOW:
ret = register_slb_shadow(tenv, vpa);
break;
case FLAGS_DEREGISTER_SLBSHADOW:
ret = deregister_slb_shadow(tenv, vpa);
break;
case FLAGS_REGISTER_DTL:
ret = register_dtl(tenv, vpa);
break;
case FLAGS_DEREGISTER_DTL:
ret = deregister_dtl(tenv, vpa);
break;
}
return ret;
}
static target_ulong h_cede(PowerPCCPU *cpu, sPAPRMachineState *spapr,
target_ulong opcode, target_ulong *args)
{
CPUPPCState *env = &cpu->env;
CPUState *cs = CPU(cpu);
env->msr |= (1ULL << MSR_EE);
hreg_compute_hflags(env);
if (!cpu_has_work(cs)) {
cs->halted = 1;
cs->exception_index = EXCP_HLT;
cs->exit_request = 1;
}
return H_SUCCESS;
}
static target_ulong h_rtas(PowerPCCPU *cpu, sPAPRMachineState *spapr,
target_ulong opcode, target_ulong *args)
{
target_ulong rtas_r3 = args[0];
uint32_t token = rtas_ld(rtas_r3, 0);
uint32_t nargs = rtas_ld(rtas_r3, 1);
uint32_t nret = rtas_ld(rtas_r3, 2);
return spapr_rtas_call(cpu, spapr, token, nargs, rtas_r3 + 12,
nret, rtas_r3 + 12 + 4*nargs);
}
static target_ulong h_logical_load(PowerPCCPU *cpu, sPAPRMachineState *spapr,
target_ulong opcode, target_ulong *args)
{
CPUState *cs = CPU(cpu);
target_ulong size = args[0];
target_ulong addr = args[1];
switch (size) {
case 1:
args[0] = ldub_phys(cs->as, addr);
return H_SUCCESS;
case 2:
args[0] = lduw_phys(cs->as, addr);
return H_SUCCESS;
case 4:
args[0] = ldl_phys(cs->as, addr);
return H_SUCCESS;
case 8:
args[0] = ldq_phys(cs->as, addr);
return H_SUCCESS;
}
return H_PARAMETER;
}
static target_ulong h_logical_store(PowerPCCPU *cpu, sPAPRMachineState *spapr,
target_ulong opcode, target_ulong *args)
{
CPUState *cs = CPU(cpu);
target_ulong size = args[0];
target_ulong addr = args[1];
target_ulong val = args[2];
switch (size) {
case 1:
stb_phys(cs->as, addr, val);
return H_SUCCESS;
case 2:
stw_phys(cs->as, addr, val);
return H_SUCCESS;
case 4:
stl_phys(cs->as, addr, val);
return H_SUCCESS;
case 8:
stq_phys(cs->as, addr, val);
return H_SUCCESS;
}
return H_PARAMETER;
}
static target_ulong h_logical_memop(PowerPCCPU *cpu, sPAPRMachineState *spapr,
target_ulong opcode, target_ulong *args)
{
CPUState *cs = CPU(cpu);
target_ulong dst = args[0]; /* Destination address */
target_ulong src = args[1]; /* Source address */
target_ulong esize = args[2]; /* Element size (0=1,1=2,2=4,3=8) */
target_ulong count = args[3]; /* Element count */
target_ulong op = args[4]; /* 0 = copy, 1 = invert */
uint64_t tmp;
unsigned int mask = (1 << esize) - 1;
int step = 1 << esize;
if (count > 0x80000000) {
return H_PARAMETER;
}
if ((dst & mask) || (src & mask) || (op > 1)) {
return H_PARAMETER;
}
if (dst >= src && dst < (src + (count << esize))) {
dst = dst + ((count - 1) << esize);
src = src + ((count - 1) << esize);
step = -step;
}
while (count--) {
switch (esize) {
case 0:
tmp = ldub_phys(cs->as, src);
break;
case 1:
tmp = lduw_phys(cs->as, src);
break;
case 2:
tmp = ldl_phys(cs->as, src);
break;
case 3:
tmp = ldq_phys(cs->as, src);
break;
default:
return H_PARAMETER;
}
if (op == 1) {
tmp = ~tmp;
}
switch (esize) {
case 0:
stb_phys(cs->as, dst, tmp);
break;
case 1:
stw_phys(cs->as, dst, tmp);
break;
case 2:
stl_phys(cs->as, dst, tmp);
break;
case 3:
stq_phys(cs->as, dst, tmp);
break;
}
dst = dst + step;
src = src + step;
}
return H_SUCCESS;
}
static target_ulong h_logical_icbi(PowerPCCPU *cpu, sPAPRMachineState *spapr,
target_ulong opcode, target_ulong *args)
{
/* Nothing to do on emulation, KVM will trap this in the kernel */
return H_SUCCESS;
}
static target_ulong h_logical_dcbf(PowerPCCPU *cpu, sPAPRMachineState *spapr,
target_ulong opcode, target_ulong *args)
{
/* Nothing to do on emulation, KVM will trap this in the kernel */
return H_SUCCESS;
}
static target_ulong h_set_mode_resource_le(PowerPCCPU *cpu,
target_ulong mflags,
target_ulong value1,
target_ulong value2)
{
CPUState *cs;
if (value1) {
return H_P3;
}
if (value2) {
return H_P4;
}
switch (mflags) {
case H_SET_MODE_ENDIAN_BIG:
CPU_FOREACH(cs) {
set_spr(cs, SPR_LPCR, 0, LPCR_ILE);
}
spapr_pci_switch_vga(true);
return H_SUCCESS;
case H_SET_MODE_ENDIAN_LITTLE:
CPU_FOREACH(cs) {
set_spr(cs, SPR_LPCR, LPCR_ILE, LPCR_ILE);
}
spapr_pci_switch_vga(false);
return H_SUCCESS;
}
return H_UNSUPPORTED_FLAG;
}
static target_ulong h_set_mode_resource_addr_trans_mode(PowerPCCPU *cpu,
target_ulong mflags,
target_ulong value1,
target_ulong value2)
{
CPUState *cs;
PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
target_ulong prefix;
if (!(pcc->insns_flags2 & PPC2_ISA207S)) {
return H_P2;
}
if (value1) {
return H_P3;
}
if (value2) {
return H_P4;
}
switch (mflags) {
case H_SET_MODE_ADDR_TRANS_NONE:
prefix = 0;
break;
case H_SET_MODE_ADDR_TRANS_0001_8000:
prefix = 0x18000;
break;
case H_SET_MODE_ADDR_TRANS_C000_0000_0000_4000:
prefix = 0xC000000000004000ULL;
break;
default:
return H_UNSUPPORTED_FLAG;
}
CPU_FOREACH(cs) {
CPUPPCState *env = &POWERPC_CPU(cpu)->env;
set_spr(cs, SPR_LPCR, mflags << LPCR_AIL_SHIFT, LPCR_AIL);
env->excp_prefix = prefix;
}
return H_SUCCESS;
}
static target_ulong h_set_mode(PowerPCCPU *cpu, sPAPRMachineState *spapr,
target_ulong opcode, target_ulong *args)
{
target_ulong resource = args[1];
target_ulong ret = H_P2;
switch (resource) {
case H_SET_MODE_RESOURCE_LE:
ret = h_set_mode_resource_le(cpu, args[0], args[2], args[3]);
break;
case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
ret = h_set_mode_resource_addr_trans_mode(cpu, args[0],
args[2], args[3]);
break;
}
return ret;
}
/*
* Return the offset to the requested option vector @vector in the
* option vector table @table.
*/
static target_ulong cas_get_option_vector(int vector, target_ulong table)
{
int i;
char nr_vectors, nr_entries;
if (!table) {
return 0;
}
nr_vectors = (ldl_phys(&address_space_memory, table) >> 24) + 1;
if (!vector || vector > nr_vectors) {
return 0;
}
table++; /* skip nr option vectors */
for (i = 0; i < vector - 1; i++) {
nr_entries = ldl_phys(&address_space_memory, table) >> 24;
table += nr_entries + 2;
}
return table;
}
typedef struct {
PowerPCCPU *cpu;
uint32_t cpu_version;
Error *err;
} SetCompatState;
static void do_set_compat(void *arg)
{
SetCompatState *s = arg;
cpu_synchronize_state(CPU(s->cpu));
ppc_set_compat(s->cpu, s->cpu_version, &s->err);
}
#define get_compat_level(cpuver) ( \
((cpuver) == CPU_POWERPC_LOGICAL_2_05) ? 2050 : \
((cpuver) == CPU_POWERPC_LOGICAL_2_06) ? 2060 : \
((cpuver) == CPU_POWERPC_LOGICAL_2_06_PLUS) ? 2061 : \
((cpuver) == CPU_POWERPC_LOGICAL_2_07) ? 2070 : 0)
#define OV5_DRCONF_MEMORY 0x20
spapr: Add ibm, client-architecture-support call The PAPR+ specification defines a ibm,client-architecture-support (CAS) RTAS call which purpose is to provide a negotiation mechanism for the guest and the hypervisor to work out the best compatibility parameters. During the negotiation process, the guest provides an array of various options and capabilities which it supports, the hypervisor adjusts the device tree and (optionally) reboots the guest. At the moment the Linux guest calls CAS method at early boot so SLOF gets called. SLOF allocates a memory buffer for the device tree changes and calls a custom KVMPPC_H_CAS hypercall. QEMU parses the options, composes a diff for the device tree, copies it to the buffer provided by SLOF and returns to SLOF. SLOF updates the device tree and returns control to the guest kernel. Only then the Linux guest parses the device tree so it is possible to avoid unnecessary reboot in most cases. The device tree diff is a header with an update format version (defined as 1 in this patch) followed by a device tree with the properties which require update. If QEMU detects that it has to reboot the guest, it silently does so as the guest expects reboot to happen because this is usual pHyp firmware behavior. This defines custom KVMPPC_H_CAS hypercall. The current SLOF already has support for it. This implements stub which returns very basic tree (root node, no properties) to the guest. As the return buffer does not contain any change, no change in behavior is expected. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Alexander Graf <agraf@suse.de>
2014-05-23 10:26:54 +08:00
static target_ulong h_client_architecture_support(PowerPCCPU *cpu_,
sPAPRMachineState *spapr,
spapr: Add ibm, client-architecture-support call The PAPR+ specification defines a ibm,client-architecture-support (CAS) RTAS call which purpose is to provide a negotiation mechanism for the guest and the hypervisor to work out the best compatibility parameters. During the negotiation process, the guest provides an array of various options and capabilities which it supports, the hypervisor adjusts the device tree and (optionally) reboots the guest. At the moment the Linux guest calls CAS method at early boot so SLOF gets called. SLOF allocates a memory buffer for the device tree changes and calls a custom KVMPPC_H_CAS hypercall. QEMU parses the options, composes a diff for the device tree, copies it to the buffer provided by SLOF and returns to SLOF. SLOF updates the device tree and returns control to the guest kernel. Only then the Linux guest parses the device tree so it is possible to avoid unnecessary reboot in most cases. The device tree diff is a header with an update format version (defined as 1 in this patch) followed by a device tree with the properties which require update. If QEMU detects that it has to reboot the guest, it silently does so as the guest expects reboot to happen because this is usual pHyp firmware behavior. This defines custom KVMPPC_H_CAS hypercall. The current SLOF already has support for it. This implements stub which returns very basic tree (root node, no properties) to the guest. As the return buffer does not contain any change, no change in behavior is expected. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Alexander Graf <agraf@suse.de>
2014-05-23 10:26:54 +08:00
target_ulong opcode,
target_ulong *args)
{
target_ulong list = ppc64_phys_to_real(args[0]);
target_ulong ov_table, ov5;
PowerPCCPUClass *pcc_ = POWERPC_CPU_GET_CLASS(cpu_);
CPUState *cs;
bool cpu_match = false, cpu_update = true, memory_update = false;
unsigned old_cpu_version = cpu_->cpu_version;
unsigned compat_lvl = 0, cpu_version = 0;
unsigned max_lvl = get_compat_level(cpu_->max_compat);
int counter;
char ov5_byte2;
/* Parse PVR list */
for (counter = 0; counter < 512; ++counter) {
uint32_t pvr, pvr_mask;
pvr_mask = ldl_be_phys(&address_space_memory, list);
list += 4;
pvr = ldl_be_phys(&address_space_memory, list);
list += 4;
trace_spapr_cas_pvr_try(pvr);
if (!max_lvl &&
((cpu_->env.spr[SPR_PVR] & pvr_mask) == (pvr & pvr_mask))) {
cpu_match = true;
cpu_version = 0;
} else if (pvr == cpu_->cpu_version) {
cpu_match = true;
cpu_version = cpu_->cpu_version;
} else if (!cpu_match) {
/* If it is a logical PVR, try to determine the highest level */
unsigned lvl = get_compat_level(pvr);
if (lvl) {
bool is205 = (pcc_->pcr_mask & PCR_COMPAT_2_05) &&
(lvl == get_compat_level(CPU_POWERPC_LOGICAL_2_05));
bool is206 = (pcc_->pcr_mask & PCR_COMPAT_2_06) &&
((lvl == get_compat_level(CPU_POWERPC_LOGICAL_2_06)) ||
(lvl == get_compat_level(CPU_POWERPC_LOGICAL_2_06_PLUS)));
if (is205 || is206) {
if (!max_lvl) {
/* User did not set the level, choose the highest */
if (compat_lvl <= lvl) {
compat_lvl = lvl;
cpu_version = pvr;
}
} else if (max_lvl >= lvl) {
/* User chose the level, don't set higher than this */
compat_lvl = lvl;
cpu_version = pvr;
}
}
}
}
/* Terminator record */
if (~pvr_mask & pvr) {
break;
}
}
/* Parsing finished */
trace_spapr_cas_pvr(cpu_->cpu_version, cpu_match,
cpu_version, pcc_->pcr_mask);
/* Update CPUs */
if (old_cpu_version != cpu_version) {
CPU_FOREACH(cs) {
SetCompatState s = {
.cpu = POWERPC_CPU(cs),
.cpu_version = cpu_version,
.err = NULL,
};
run_on_cpu(cs, do_set_compat, &s);
if (s.err) {
error_report_err(s.err);
return H_HARDWARE;
}
}
}
if (!cpu_version) {
cpu_update = false;
}
spapr: Add ibm, client-architecture-support call The PAPR+ specification defines a ibm,client-architecture-support (CAS) RTAS call which purpose is to provide a negotiation mechanism for the guest and the hypervisor to work out the best compatibility parameters. During the negotiation process, the guest provides an array of various options and capabilities which it supports, the hypervisor adjusts the device tree and (optionally) reboots the guest. At the moment the Linux guest calls CAS method at early boot so SLOF gets called. SLOF allocates a memory buffer for the device tree changes and calls a custom KVMPPC_H_CAS hypercall. QEMU parses the options, composes a diff for the device tree, copies it to the buffer provided by SLOF and returns to SLOF. SLOF updates the device tree and returns control to the guest kernel. Only then the Linux guest parses the device tree so it is possible to avoid unnecessary reboot in most cases. The device tree diff is a header with an update format version (defined as 1 in this patch) followed by a device tree with the properties which require update. If QEMU detects that it has to reboot the guest, it silently does so as the guest expects reboot to happen because this is usual pHyp firmware behavior. This defines custom KVMPPC_H_CAS hypercall. The current SLOF already has support for it. This implements stub which returns very basic tree (root node, no properties) to the guest. As the return buffer does not contain any change, no change in behavior is expected. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Alexander Graf <agraf@suse.de>
2014-05-23 10:26:54 +08:00
/* For the future use: here @ov_table points to the first option vector */
ov_table = list;
ov5 = cas_get_option_vector(5, ov_table);
if (!ov5) {
spapr: Add ibm, client-architecture-support call The PAPR+ specification defines a ibm,client-architecture-support (CAS) RTAS call which purpose is to provide a negotiation mechanism for the guest and the hypervisor to work out the best compatibility parameters. During the negotiation process, the guest provides an array of various options and capabilities which it supports, the hypervisor adjusts the device tree and (optionally) reboots the guest. At the moment the Linux guest calls CAS method at early boot so SLOF gets called. SLOF allocates a memory buffer for the device tree changes and calls a custom KVMPPC_H_CAS hypercall. QEMU parses the options, composes a diff for the device tree, copies it to the buffer provided by SLOF and returns to SLOF. SLOF updates the device tree and returns control to the guest kernel. Only then the Linux guest parses the device tree so it is possible to avoid unnecessary reboot in most cases. The device tree diff is a header with an update format version (defined as 1 in this patch) followed by a device tree with the properties which require update. If QEMU detects that it has to reboot the guest, it silently does so as the guest expects reboot to happen because this is usual pHyp firmware behavior. This defines custom KVMPPC_H_CAS hypercall. The current SLOF already has support for it. This implements stub which returns very basic tree (root node, no properties) to the guest. As the return buffer does not contain any change, no change in behavior is expected. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Alexander Graf <agraf@suse.de>
2014-05-23 10:26:54 +08:00
return H_SUCCESS;
}
/* @list now points to OV 5 */
ov5_byte2 = ldub_phys(&address_space_memory, ov5 + 2);
if (ov5_byte2 & OV5_DRCONF_MEMORY) {
memory_update = true;
}
if (spapr_h_cas_compose_response(spapr, args[1], args[2],
cpu_update, memory_update)) {
spapr: Add ibm, client-architecture-support call The PAPR+ specification defines a ibm,client-architecture-support (CAS) RTAS call which purpose is to provide a negotiation mechanism for the guest and the hypervisor to work out the best compatibility parameters. During the negotiation process, the guest provides an array of various options and capabilities which it supports, the hypervisor adjusts the device tree and (optionally) reboots the guest. At the moment the Linux guest calls CAS method at early boot so SLOF gets called. SLOF allocates a memory buffer for the device tree changes and calls a custom KVMPPC_H_CAS hypercall. QEMU parses the options, composes a diff for the device tree, copies it to the buffer provided by SLOF and returns to SLOF. SLOF updates the device tree and returns control to the guest kernel. Only then the Linux guest parses the device tree so it is possible to avoid unnecessary reboot in most cases. The device tree diff is a header with an update format version (defined as 1 in this patch) followed by a device tree with the properties which require update. If QEMU detects that it has to reboot the guest, it silently does so as the guest expects reboot to happen because this is usual pHyp firmware behavior. This defines custom KVMPPC_H_CAS hypercall. The current SLOF already has support for it. This implements stub which returns very basic tree (root node, no properties) to the guest. As the return buffer does not contain any change, no change in behavior is expected. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Alexander Graf <agraf@suse.de>
2014-05-23 10:26:54 +08:00
qemu_system_reset_request();
}
return H_SUCCESS;
}
static spapr_hcall_fn papr_hypercall_table[(MAX_HCALL_OPCODE / 4) + 1];
static spapr_hcall_fn kvmppc_hypercall_table[KVMPPC_HCALL_MAX - KVMPPC_HCALL_BASE + 1];
void spapr_register_hypercall(target_ulong opcode, spapr_hcall_fn fn)
{
spapr_hcall_fn *slot;
if (opcode <= MAX_HCALL_OPCODE) {
assert((opcode & 0x3) == 0);
slot = &papr_hypercall_table[opcode / 4];
} else {
assert((opcode >= KVMPPC_HCALL_BASE) && (opcode <= KVMPPC_HCALL_MAX));
slot = &kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
}
assert(!(*slot));
*slot = fn;
}
target_ulong spapr_hypercall(PowerPCCPU *cpu, target_ulong opcode,
target_ulong *args)
{
sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
if ((opcode <= MAX_HCALL_OPCODE)
&& ((opcode & 0x3) == 0)) {
spapr_hcall_fn fn = papr_hypercall_table[opcode / 4];
if (fn) {
return fn(cpu, spapr, opcode, args);
}
} else if ((opcode >= KVMPPC_HCALL_BASE) &&
(opcode <= KVMPPC_HCALL_MAX)) {
spapr_hcall_fn fn = kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
if (fn) {
return fn(cpu, spapr, opcode, args);
}
}
qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x" TARGET_FMT_lx "\n",
opcode);
return H_FUNCTION;
}
static void hypercall_register_types(void)
{
/* hcall-pft */
spapr_register_hypercall(H_ENTER, h_enter);
spapr_register_hypercall(H_REMOVE, h_remove);
spapr_register_hypercall(H_PROTECT, h_protect);
spapr_register_hypercall(H_READ, h_read);
/* hcall-bulk */
spapr_register_hypercall(H_BULK_REMOVE, h_bulk_remove);
/* hcall-splpar */
spapr_register_hypercall(H_REGISTER_VPA, h_register_vpa);
spapr_register_hypercall(H_CEDE, h_cede);
/* processor register resource access h-calls */
spapr_register_hypercall(H_SET_SPRG0, h_set_sprg0);
spapr_register_hypercall(H_SET_DABR, h_set_dabr);
spapr_register_hypercall(H_SET_XDABR, h_set_xdabr);
spapr_register_hypercall(H_PAGE_INIT, h_page_init);
spapr_register_hypercall(H_SET_MODE, h_set_mode);
/* "debugger" hcalls (also used by SLOF). Note: We do -not- differenciate
* here between the "CI" and the "CACHE" variants, they will use whatever
* mapping attributes qemu is using. When using KVM, the kernel will
* enforce the attributes more strongly
*/
spapr_register_hypercall(H_LOGICAL_CI_LOAD, h_logical_load);
spapr_register_hypercall(H_LOGICAL_CI_STORE, h_logical_store);
spapr_register_hypercall(H_LOGICAL_CACHE_LOAD, h_logical_load);
spapr_register_hypercall(H_LOGICAL_CACHE_STORE, h_logical_store);
spapr_register_hypercall(H_LOGICAL_ICBI, h_logical_icbi);
spapr_register_hypercall(H_LOGICAL_DCBF, h_logical_dcbf);
spapr_register_hypercall(KVMPPC_H_LOGICAL_MEMOP, h_logical_memop);
/* qemu/KVM-PPC specific hcalls */
spapr_register_hypercall(KVMPPC_H_RTAS, h_rtas);
spapr: Add ibm, client-architecture-support call The PAPR+ specification defines a ibm,client-architecture-support (CAS) RTAS call which purpose is to provide a negotiation mechanism for the guest and the hypervisor to work out the best compatibility parameters. During the negotiation process, the guest provides an array of various options and capabilities which it supports, the hypervisor adjusts the device tree and (optionally) reboots the guest. At the moment the Linux guest calls CAS method at early boot so SLOF gets called. SLOF allocates a memory buffer for the device tree changes and calls a custom KVMPPC_H_CAS hypercall. QEMU parses the options, composes a diff for the device tree, copies it to the buffer provided by SLOF and returns to SLOF. SLOF updates the device tree and returns control to the guest kernel. Only then the Linux guest parses the device tree so it is possible to avoid unnecessary reboot in most cases. The device tree diff is a header with an update format version (defined as 1 in this patch) followed by a device tree with the properties which require update. If QEMU detects that it has to reboot the guest, it silently does so as the guest expects reboot to happen because this is usual pHyp firmware behavior. This defines custom KVMPPC_H_CAS hypercall. The current SLOF already has support for it. This implements stub which returns very basic tree (root node, no properties) to the guest. As the return buffer does not contain any change, no change in behavior is expected. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Alexander Graf <agraf@suse.de>
2014-05-23 10:26:54 +08:00
/* ibm,client-architecture-support support */
spapr_register_hypercall(KVMPPC_H_CAS, h_client_architecture_support);
}
type_init(hypercall_register_types)