mirror of https://gitee.com/openkylin/qemu.git
964 lines
27 KiB
C
964 lines
27 KiB
C
/*
|
|
* QEMU PowerMac CUDA device support
|
|
*
|
|
* Copyright (c) 2004-2007 Fabrice Bellard
|
|
* Copyright (c) 2007 Jocelyn Mayer
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
#include "qemu/osdep.h"
|
|
#include "hw/hw.h"
|
|
#include "hw/ppc/mac.h"
|
|
#include "hw/input/adb.h"
|
|
#include "qemu/timer.h"
|
|
#include "sysemu/sysemu.h"
|
|
|
|
/* XXX: implement all timer modes */
|
|
|
|
/* debug CUDA */
|
|
//#define DEBUG_CUDA
|
|
|
|
/* debug CUDA packets */
|
|
//#define DEBUG_CUDA_PACKET
|
|
|
|
#ifdef DEBUG_CUDA
|
|
#define CUDA_DPRINTF(fmt, ...) \
|
|
do { printf("CUDA: " fmt , ## __VA_ARGS__); } while (0)
|
|
#else
|
|
#define CUDA_DPRINTF(fmt, ...)
|
|
#endif
|
|
|
|
/* Bits in B data register: all active low */
|
|
#define TREQ 0x08 /* Transfer request (input) */
|
|
#define TACK 0x10 /* Transfer acknowledge (output) */
|
|
#define TIP 0x20 /* Transfer in progress (output) */
|
|
|
|
/* Bits in ACR */
|
|
#define SR_CTRL 0x1c /* Shift register control bits */
|
|
#define SR_EXT 0x0c /* Shift on external clock */
|
|
#define SR_OUT 0x10 /* Shift out if 1 */
|
|
|
|
/* Bits in IFR and IER */
|
|
#define IER_SET 0x80 /* set bits in IER */
|
|
#define IER_CLR 0 /* clear bits in IER */
|
|
#define SR_INT 0x04 /* Shift register full/empty */
|
|
#define SR_DATA_INT 0x08
|
|
#define SR_CLOCK_INT 0x10
|
|
#define T1_INT 0x40 /* Timer 1 interrupt */
|
|
#define T2_INT 0x20 /* Timer 2 interrupt */
|
|
|
|
/* Bits in ACR */
|
|
#define T1MODE 0xc0 /* Timer 1 mode */
|
|
#define T1MODE_CONT 0x40 /* continuous interrupts */
|
|
|
|
/* commands (1st byte) */
|
|
#define ADB_PACKET 0
|
|
#define CUDA_PACKET 1
|
|
#define ERROR_PACKET 2
|
|
#define TIMER_PACKET 3
|
|
#define POWER_PACKET 4
|
|
#define MACIIC_PACKET 5
|
|
#define PMU_PACKET 6
|
|
|
|
|
|
/* CUDA commands (2nd byte) */
|
|
#define CUDA_WARM_START 0x0
|
|
#define CUDA_AUTOPOLL 0x1
|
|
#define CUDA_GET_6805_ADDR 0x2
|
|
#define CUDA_GET_TIME 0x3
|
|
#define CUDA_GET_PRAM 0x7
|
|
#define CUDA_SET_6805_ADDR 0x8
|
|
#define CUDA_SET_TIME 0x9
|
|
#define CUDA_POWERDOWN 0xa
|
|
#define CUDA_POWERUP_TIME 0xb
|
|
#define CUDA_SET_PRAM 0xc
|
|
#define CUDA_MS_RESET 0xd
|
|
#define CUDA_SEND_DFAC 0xe
|
|
#define CUDA_BATTERY_SWAP_SENSE 0x10
|
|
#define CUDA_RESET_SYSTEM 0x11
|
|
#define CUDA_SET_IPL 0x12
|
|
#define CUDA_FILE_SERVER_FLAG 0x13
|
|
#define CUDA_SET_AUTO_RATE 0x14
|
|
#define CUDA_GET_AUTO_RATE 0x16
|
|
#define CUDA_SET_DEVICE_LIST 0x19
|
|
#define CUDA_GET_DEVICE_LIST 0x1a
|
|
#define CUDA_SET_ONE_SECOND_MODE 0x1b
|
|
#define CUDA_SET_POWER_MESSAGES 0x21
|
|
#define CUDA_GET_SET_IIC 0x22
|
|
#define CUDA_WAKEUP 0x23
|
|
#define CUDA_TIMER_TICKLE 0x24
|
|
#define CUDA_COMBINED_FORMAT_IIC 0x25
|
|
|
|
#define CUDA_TIMER_FREQ (4700000 / 6)
|
|
|
|
/* CUDA returns time_t's offset from Jan 1, 1904, not 1970 */
|
|
#define RTC_OFFSET 2082844800
|
|
|
|
/* CUDA registers */
|
|
#define CUDA_REG_B 0x00
|
|
#define CUDA_REG_A 0x01
|
|
#define CUDA_REG_DIRB 0x02
|
|
#define CUDA_REG_DIRA 0x03
|
|
#define CUDA_REG_T1CL 0x04
|
|
#define CUDA_REG_T1CH 0x05
|
|
#define CUDA_REG_T1LL 0x06
|
|
#define CUDA_REG_T1LH 0x07
|
|
#define CUDA_REG_T2CL 0x08
|
|
#define CUDA_REG_T2CH 0x09
|
|
#define CUDA_REG_SR 0x0a
|
|
#define CUDA_REG_ACR 0x0b
|
|
#define CUDA_REG_PCR 0x0c
|
|
#define CUDA_REG_IFR 0x0d
|
|
#define CUDA_REG_IER 0x0e
|
|
#define CUDA_REG_ANH 0x0f
|
|
|
|
static void cuda_update(CUDAState *s);
|
|
static void cuda_receive_packet_from_host(CUDAState *s,
|
|
const uint8_t *data, int len);
|
|
static void cuda_timer_update(CUDAState *s, CUDATimer *ti,
|
|
int64_t current_time);
|
|
|
|
static void cuda_update_irq(CUDAState *s)
|
|
{
|
|
if (s->ifr & s->ier & (SR_INT | T1_INT | T2_INT)) {
|
|
qemu_irq_raise(s->irq);
|
|
} else {
|
|
qemu_irq_lower(s->irq);
|
|
}
|
|
}
|
|
|
|
static uint64_t get_tb(uint64_t time, uint64_t freq)
|
|
{
|
|
return muldiv64(time, freq, get_ticks_per_sec());
|
|
}
|
|
|
|
static unsigned int get_counter(CUDATimer *ti)
|
|
{
|
|
int64_t d;
|
|
unsigned int counter;
|
|
uint64_t tb_diff;
|
|
uint64_t current_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
|
|
|
|
/* Reverse of the tb calculation algorithm that Mac OS X uses on bootup. */
|
|
tb_diff = get_tb(current_time, ti->frequency) - ti->load_time;
|
|
d = (tb_diff * 0xBF401675E5DULL) / (ti->frequency << 24);
|
|
|
|
if (ti->index == 0) {
|
|
/* the timer goes down from latch to -1 (period of latch + 2) */
|
|
if (d <= (ti->counter_value + 1)) {
|
|
counter = (ti->counter_value - d) & 0xffff;
|
|
} else {
|
|
counter = (d - (ti->counter_value + 1)) % (ti->latch + 2);
|
|
counter = (ti->latch - counter) & 0xffff;
|
|
}
|
|
} else {
|
|
counter = (ti->counter_value - d) & 0xffff;
|
|
}
|
|
return counter;
|
|
}
|
|
|
|
static void set_counter(CUDAState *s, CUDATimer *ti, unsigned int val)
|
|
{
|
|
CUDA_DPRINTF("T%d.counter=%d\n", 1 + ti->index, val);
|
|
ti->load_time = get_tb(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
|
|
s->frequency);
|
|
ti->counter_value = val;
|
|
cuda_timer_update(s, ti, ti->load_time);
|
|
}
|
|
|
|
static int64_t get_next_irq_time(CUDATimer *s, int64_t current_time)
|
|
{
|
|
int64_t d, next_time;
|
|
unsigned int counter;
|
|
|
|
/* current counter value */
|
|
d = muldiv64(current_time - s->load_time,
|
|
CUDA_TIMER_FREQ, get_ticks_per_sec());
|
|
/* the timer goes down from latch to -1 (period of latch + 2) */
|
|
if (d <= (s->counter_value + 1)) {
|
|
counter = (s->counter_value - d) & 0xffff;
|
|
} else {
|
|
counter = (d - (s->counter_value + 1)) % (s->latch + 2);
|
|
counter = (s->latch - counter) & 0xffff;
|
|
}
|
|
|
|
/* Note: we consider the irq is raised on 0 */
|
|
if (counter == 0xffff) {
|
|
next_time = d + s->latch + 1;
|
|
} else if (counter == 0) {
|
|
next_time = d + s->latch + 2;
|
|
} else {
|
|
next_time = d + counter;
|
|
}
|
|
CUDA_DPRINTF("latch=%d counter=%" PRId64 " delta_next=%" PRId64 "\n",
|
|
s->latch, d, next_time - d);
|
|
next_time = muldiv64(next_time, get_ticks_per_sec(), CUDA_TIMER_FREQ) +
|
|
s->load_time;
|
|
if (next_time <= current_time)
|
|
next_time = current_time + 1;
|
|
return next_time;
|
|
}
|
|
|
|
static void cuda_timer_update(CUDAState *s, CUDATimer *ti,
|
|
int64_t current_time)
|
|
{
|
|
if (!ti->timer)
|
|
return;
|
|
if (ti->index == 0 && (s->acr & T1MODE) != T1MODE_CONT) {
|
|
timer_del(ti->timer);
|
|
} else {
|
|
ti->next_irq_time = get_next_irq_time(ti, current_time);
|
|
timer_mod(ti->timer, ti->next_irq_time);
|
|
}
|
|
}
|
|
|
|
static void cuda_timer1(void *opaque)
|
|
{
|
|
CUDAState *s = opaque;
|
|
CUDATimer *ti = &s->timers[0];
|
|
|
|
cuda_timer_update(s, ti, ti->next_irq_time);
|
|
s->ifr |= T1_INT;
|
|
cuda_update_irq(s);
|
|
}
|
|
|
|
static void cuda_timer2(void *opaque)
|
|
{
|
|
CUDAState *s = opaque;
|
|
CUDATimer *ti = &s->timers[1];
|
|
|
|
cuda_timer_update(s, ti, ti->next_irq_time);
|
|
s->ifr |= T2_INT;
|
|
cuda_update_irq(s);
|
|
}
|
|
|
|
static void cuda_set_sr_int(void *opaque)
|
|
{
|
|
CUDAState *s = opaque;
|
|
|
|
CUDA_DPRINTF("CUDA: %s:%d\n", __func__, __LINE__);
|
|
s->ifr |= SR_INT;
|
|
cuda_update_irq(s);
|
|
}
|
|
|
|
static void cuda_delay_set_sr_int(CUDAState *s)
|
|
{
|
|
int64_t expire;
|
|
|
|
if (s->dirb == 0xff) {
|
|
/* Not in Mac OS, fire the IRQ directly */
|
|
cuda_set_sr_int(s);
|
|
return;
|
|
}
|
|
|
|
CUDA_DPRINTF("CUDA: %s:%d\n", __func__, __LINE__);
|
|
|
|
expire = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 300 * SCALE_US;
|
|
timer_mod(s->sr_delay_timer, expire);
|
|
}
|
|
|
|
static uint32_t cuda_readb(void *opaque, hwaddr addr)
|
|
{
|
|
CUDAState *s = opaque;
|
|
uint32_t val;
|
|
|
|
addr = (addr >> 9) & 0xf;
|
|
switch(addr) {
|
|
case CUDA_REG_B:
|
|
val = s->b;
|
|
break;
|
|
case CUDA_REG_A:
|
|
val = s->a;
|
|
break;
|
|
case CUDA_REG_DIRB:
|
|
val = s->dirb;
|
|
break;
|
|
case CUDA_REG_DIRA:
|
|
val = s->dira;
|
|
break;
|
|
case CUDA_REG_T1CL:
|
|
val = get_counter(&s->timers[0]) & 0xff;
|
|
s->ifr &= ~T1_INT;
|
|
cuda_update_irq(s);
|
|
break;
|
|
case CUDA_REG_T1CH:
|
|
val = get_counter(&s->timers[0]) >> 8;
|
|
cuda_update_irq(s);
|
|
break;
|
|
case CUDA_REG_T1LL:
|
|
val = s->timers[0].latch & 0xff;
|
|
break;
|
|
case CUDA_REG_T1LH:
|
|
/* XXX: check this */
|
|
val = (s->timers[0].latch >> 8) & 0xff;
|
|
break;
|
|
case CUDA_REG_T2CL:
|
|
val = get_counter(&s->timers[1]) & 0xff;
|
|
s->ifr &= ~T2_INT;
|
|
cuda_update_irq(s);
|
|
break;
|
|
case CUDA_REG_T2CH:
|
|
val = get_counter(&s->timers[1]) >> 8;
|
|
break;
|
|
case CUDA_REG_SR:
|
|
val = s->sr;
|
|
s->ifr &= ~(SR_INT | SR_CLOCK_INT | SR_DATA_INT);
|
|
cuda_update_irq(s);
|
|
break;
|
|
case CUDA_REG_ACR:
|
|
val = s->acr;
|
|
break;
|
|
case CUDA_REG_PCR:
|
|
val = s->pcr;
|
|
break;
|
|
case CUDA_REG_IFR:
|
|
val = s->ifr;
|
|
if (s->ifr & s->ier) {
|
|
val |= 0x80;
|
|
}
|
|
break;
|
|
case CUDA_REG_IER:
|
|
val = s->ier | 0x80;
|
|
break;
|
|
default:
|
|
case CUDA_REG_ANH:
|
|
val = s->anh;
|
|
break;
|
|
}
|
|
if (addr != CUDA_REG_IFR || val != 0) {
|
|
CUDA_DPRINTF("read: reg=0x%x val=%02x\n", (int)addr, val);
|
|
}
|
|
|
|
return val;
|
|
}
|
|
|
|
static void cuda_writeb(void *opaque, hwaddr addr, uint32_t val)
|
|
{
|
|
CUDAState *s = opaque;
|
|
|
|
addr = (addr >> 9) & 0xf;
|
|
CUDA_DPRINTF("write: reg=0x%x val=%02x\n", (int)addr, val);
|
|
|
|
switch(addr) {
|
|
case CUDA_REG_B:
|
|
s->b = val;
|
|
cuda_update(s);
|
|
break;
|
|
case CUDA_REG_A:
|
|
s->a = val;
|
|
break;
|
|
case CUDA_REG_DIRB:
|
|
s->dirb = val;
|
|
break;
|
|
case CUDA_REG_DIRA:
|
|
s->dira = val;
|
|
break;
|
|
case CUDA_REG_T1CL:
|
|
s->timers[0].latch = (s->timers[0].latch & 0xff00) | val;
|
|
cuda_timer_update(s, &s->timers[0], qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
|
|
break;
|
|
case CUDA_REG_T1CH:
|
|
s->timers[0].latch = (s->timers[0].latch & 0xff) | (val << 8);
|
|
s->ifr &= ~T1_INT;
|
|
set_counter(s, &s->timers[0], s->timers[0].latch);
|
|
break;
|
|
case CUDA_REG_T1LL:
|
|
s->timers[0].latch = (s->timers[0].latch & 0xff00) | val;
|
|
cuda_timer_update(s, &s->timers[0], qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
|
|
break;
|
|
case CUDA_REG_T1LH:
|
|
s->timers[0].latch = (s->timers[0].latch & 0xff) | (val << 8);
|
|
s->ifr &= ~T1_INT;
|
|
cuda_timer_update(s, &s->timers[0], qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
|
|
break;
|
|
case CUDA_REG_T2CL:
|
|
s->timers[1].latch = (s->timers[1].latch & 0xff00) | val;
|
|
break;
|
|
case CUDA_REG_T2CH:
|
|
/* To ensure T2 generates an interrupt on zero crossing with the
|
|
common timer code, write the value directly from the latch to
|
|
the counter */
|
|
s->timers[1].latch = (s->timers[1].latch & 0xff) | (val << 8);
|
|
s->ifr &= ~T2_INT;
|
|
set_counter(s, &s->timers[1], s->timers[1].latch);
|
|
break;
|
|
case CUDA_REG_SR:
|
|
s->sr = val;
|
|
break;
|
|
case CUDA_REG_ACR:
|
|
s->acr = val;
|
|
cuda_timer_update(s, &s->timers[0], qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
|
|
cuda_update(s);
|
|
break;
|
|
case CUDA_REG_PCR:
|
|
s->pcr = val;
|
|
break;
|
|
case CUDA_REG_IFR:
|
|
/* reset bits */
|
|
s->ifr &= ~val;
|
|
cuda_update_irq(s);
|
|
break;
|
|
case CUDA_REG_IER:
|
|
if (val & IER_SET) {
|
|
/* set bits */
|
|
s->ier |= val & 0x7f;
|
|
} else {
|
|
/* reset bits */
|
|
s->ier &= ~val;
|
|
}
|
|
cuda_update_irq(s);
|
|
break;
|
|
default:
|
|
case CUDA_REG_ANH:
|
|
s->anh = val;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* NOTE: TIP and TREQ are negated */
|
|
static void cuda_update(CUDAState *s)
|
|
{
|
|
int packet_received, len;
|
|
|
|
packet_received = 0;
|
|
if (!(s->b & TIP)) {
|
|
/* transfer requested from host */
|
|
|
|
if (s->acr & SR_OUT) {
|
|
/* data output */
|
|
if ((s->b & (TACK | TIP)) != (s->last_b & (TACK | TIP))) {
|
|
if (s->data_out_index < sizeof(s->data_out)) {
|
|
CUDA_DPRINTF("send: %02x\n", s->sr);
|
|
s->data_out[s->data_out_index++] = s->sr;
|
|
cuda_delay_set_sr_int(s);
|
|
}
|
|
}
|
|
} else {
|
|
if (s->data_in_index < s->data_in_size) {
|
|
/* data input */
|
|
if ((s->b & (TACK | TIP)) != (s->last_b & (TACK | TIP))) {
|
|
s->sr = s->data_in[s->data_in_index++];
|
|
CUDA_DPRINTF("recv: %02x\n", s->sr);
|
|
/* indicate end of transfer */
|
|
if (s->data_in_index >= s->data_in_size) {
|
|
s->b = (s->b | TREQ);
|
|
}
|
|
cuda_delay_set_sr_int(s);
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
/* no transfer requested: handle sync case */
|
|
if ((s->last_b & TIP) && (s->b & TACK) != (s->last_b & TACK)) {
|
|
/* update TREQ state each time TACK change state */
|
|
if (s->b & TACK)
|
|
s->b = (s->b | TREQ);
|
|
else
|
|
s->b = (s->b & ~TREQ);
|
|
cuda_delay_set_sr_int(s);
|
|
} else {
|
|
if (!(s->last_b & TIP)) {
|
|
/* handle end of host to cuda transfer */
|
|
packet_received = (s->data_out_index > 0);
|
|
/* always an IRQ at the end of transfer */
|
|
cuda_delay_set_sr_int(s);
|
|
}
|
|
/* signal if there is data to read */
|
|
if (s->data_in_index < s->data_in_size) {
|
|
s->b = (s->b & ~TREQ);
|
|
}
|
|
}
|
|
}
|
|
|
|
s->last_acr = s->acr;
|
|
s->last_b = s->b;
|
|
|
|
/* NOTE: cuda_receive_packet_from_host() can call cuda_update()
|
|
recursively */
|
|
if (packet_received) {
|
|
len = s->data_out_index;
|
|
s->data_out_index = 0;
|
|
cuda_receive_packet_from_host(s, s->data_out, len);
|
|
}
|
|
}
|
|
|
|
static void cuda_send_packet_to_host(CUDAState *s,
|
|
const uint8_t *data, int len)
|
|
{
|
|
#ifdef DEBUG_CUDA_PACKET
|
|
{
|
|
int i;
|
|
printf("cuda_send_packet_to_host:\n");
|
|
for(i = 0; i < len; i++)
|
|
printf(" %02x", data[i]);
|
|
printf("\n");
|
|
}
|
|
#endif
|
|
memcpy(s->data_in, data, len);
|
|
s->data_in_size = len;
|
|
s->data_in_index = 0;
|
|
cuda_update(s);
|
|
cuda_delay_set_sr_int(s);
|
|
}
|
|
|
|
static void cuda_adb_poll(void *opaque)
|
|
{
|
|
CUDAState *s = opaque;
|
|
uint8_t obuf[ADB_MAX_OUT_LEN + 2];
|
|
int olen;
|
|
|
|
olen = adb_poll(&s->adb_bus, obuf + 2, s->adb_poll_mask);
|
|
if (olen > 0) {
|
|
obuf[0] = ADB_PACKET;
|
|
obuf[1] = 0x40; /* polled data */
|
|
cuda_send_packet_to_host(s, obuf, olen + 2);
|
|
}
|
|
timer_mod(s->adb_poll_timer,
|
|
qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
|
|
(get_ticks_per_sec() / (1000 / s->autopoll_rate_ms)));
|
|
}
|
|
|
|
/* description of commands */
|
|
typedef struct CudaCommand {
|
|
uint8_t command;
|
|
const char *name;
|
|
bool (*handler)(CUDAState *s,
|
|
const uint8_t *in_args, int in_len,
|
|
uint8_t *out_args, int *out_len);
|
|
} CudaCommand;
|
|
|
|
static bool cuda_cmd_autopoll(CUDAState *s,
|
|
const uint8_t *in_data, int in_len,
|
|
uint8_t *out_data, int *out_len)
|
|
{
|
|
int autopoll;
|
|
|
|
if (in_len != 1) {
|
|
return false;
|
|
}
|
|
|
|
autopoll = (in_data[0] != 0);
|
|
if (autopoll != s->autopoll) {
|
|
s->autopoll = autopoll;
|
|
if (autopoll) {
|
|
timer_mod(s->adb_poll_timer,
|
|
qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
|
|
(get_ticks_per_sec() / (1000 / s->autopoll_rate_ms)));
|
|
} else {
|
|
timer_del(s->adb_poll_timer);
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool cuda_cmd_set_autorate(CUDAState *s,
|
|
const uint8_t *in_data, int in_len,
|
|
uint8_t *out_data, int *out_len)
|
|
{
|
|
if (in_len != 1) {
|
|
return false;
|
|
}
|
|
|
|
/* we don't want a period of 0 ms */
|
|
/* FIXME: check what real hardware does */
|
|
if (in_data[0] == 0) {
|
|
return false;
|
|
}
|
|
|
|
s->autopoll_rate_ms = in_data[0];
|
|
if (s->autopoll) {
|
|
timer_mod(s->adb_poll_timer,
|
|
qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
|
|
(get_ticks_per_sec() / (1000 / s->autopoll_rate_ms)));
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool cuda_cmd_set_device_list(CUDAState *s,
|
|
const uint8_t *in_data, int in_len,
|
|
uint8_t *out_data, int *out_len)
|
|
{
|
|
if (in_len != 2) {
|
|
return false;
|
|
}
|
|
|
|
s->adb_poll_mask = (((uint16_t)in_data[0]) << 8) | in_data[1];
|
|
return true;
|
|
}
|
|
|
|
static bool cuda_cmd_powerdown(CUDAState *s,
|
|
const uint8_t *in_data, int in_len,
|
|
uint8_t *out_data, int *out_len)
|
|
{
|
|
if (in_len != 0) {
|
|
return false;
|
|
}
|
|
|
|
qemu_system_shutdown_request();
|
|
return true;
|
|
}
|
|
|
|
static bool cuda_cmd_reset_system(CUDAState *s,
|
|
const uint8_t *in_data, int in_len,
|
|
uint8_t *out_data, int *out_len)
|
|
{
|
|
if (in_len != 0) {
|
|
return false;
|
|
}
|
|
|
|
qemu_system_reset_request();
|
|
return true;
|
|
}
|
|
|
|
static bool cuda_cmd_set_file_server_flag(CUDAState *s,
|
|
const uint8_t *in_data, int in_len,
|
|
uint8_t *out_data, int *out_len)
|
|
{
|
|
if (in_len != 1) {
|
|
return false;
|
|
}
|
|
|
|
qemu_log_mask(LOG_UNIMP,
|
|
"CUDA: unimplemented command FILE_SERVER_FLAG %d\n",
|
|
in_data[0]);
|
|
return true;
|
|
}
|
|
|
|
static bool cuda_cmd_set_power_message(CUDAState *s,
|
|
const uint8_t *in_data, int in_len,
|
|
uint8_t *out_data, int *out_len)
|
|
{
|
|
if (in_len != 1) {
|
|
return false;
|
|
}
|
|
|
|
qemu_log_mask(LOG_UNIMP,
|
|
"CUDA: unimplemented command SET_POWER_MESSAGE %d\n",
|
|
in_data[0]);
|
|
return true;
|
|
}
|
|
|
|
static bool cuda_cmd_get_time(CUDAState *s,
|
|
const uint8_t *in_data, int in_len,
|
|
uint8_t *out_data, int *out_len)
|
|
{
|
|
uint32_t ti;
|
|
|
|
if (in_len != 0) {
|
|
return false;
|
|
}
|
|
|
|
ti = s->tick_offset + (qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)
|
|
/ get_ticks_per_sec());
|
|
out_data[0] = ti >> 24;
|
|
out_data[1] = ti >> 16;
|
|
out_data[2] = ti >> 8;
|
|
out_data[3] = ti;
|
|
*out_len = 4;
|
|
return true;
|
|
}
|
|
|
|
static bool cuda_cmd_set_time(CUDAState *s,
|
|
const uint8_t *in_data, int in_len,
|
|
uint8_t *out_data, int *out_len)
|
|
{
|
|
uint32_t ti;
|
|
|
|
if (in_len != 4) {
|
|
return false;
|
|
}
|
|
|
|
ti = (((uint32_t)in_data[1]) << 24) + (((uint32_t)in_data[2]) << 16)
|
|
+ (((uint32_t)in_data[3]) << 8) + in_data[4];
|
|
s->tick_offset = ti - (qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)
|
|
/ get_ticks_per_sec());
|
|
return true;
|
|
}
|
|
|
|
static const CudaCommand handlers[] = {
|
|
{ CUDA_AUTOPOLL, "AUTOPOLL", cuda_cmd_autopoll },
|
|
{ CUDA_SET_AUTO_RATE, "SET_AUTO_RATE", cuda_cmd_set_autorate },
|
|
{ CUDA_SET_DEVICE_LIST, "SET_DEVICE_LIST", cuda_cmd_set_device_list },
|
|
{ CUDA_POWERDOWN, "POWERDOWN", cuda_cmd_powerdown },
|
|
{ CUDA_RESET_SYSTEM, "RESET_SYSTEM", cuda_cmd_reset_system },
|
|
{ CUDA_FILE_SERVER_FLAG, "FILE_SERVER_FLAG",
|
|
cuda_cmd_set_file_server_flag },
|
|
{ CUDA_SET_POWER_MESSAGES, "SET_POWER_MESSAGES",
|
|
cuda_cmd_set_power_message },
|
|
{ CUDA_GET_TIME, "GET_TIME", cuda_cmd_get_time },
|
|
{ CUDA_SET_TIME, "SET_TIME", cuda_cmd_set_time },
|
|
};
|
|
|
|
static void cuda_receive_packet(CUDAState *s,
|
|
const uint8_t *data, int len)
|
|
{
|
|
uint8_t obuf[16] = { CUDA_PACKET, 0, data[0] };
|
|
int i, out_len = 0;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(handlers); i++) {
|
|
const CudaCommand *desc = &handlers[i];
|
|
if (desc->command == data[0]) {
|
|
CUDA_DPRINTF("handling command %s\n", desc->name);
|
|
out_len = 0;
|
|
if (desc->handler(s, data + 1, len - 1, obuf + 3, &out_len)) {
|
|
cuda_send_packet_to_host(s, obuf, 3 + out_len);
|
|
} else {
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"CUDA: %s: wrong parameters %d\n",
|
|
desc->name, len);
|
|
obuf[0] = ERROR_PACKET;
|
|
obuf[1] = 0x5; /* bad parameters */
|
|
obuf[2] = CUDA_PACKET;
|
|
obuf[3] = data[0];
|
|
cuda_send_packet_to_host(s, obuf, 4);
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
qemu_log_mask(LOG_GUEST_ERROR, "CUDA: unknown command 0x%02x\n", data[0]);
|
|
obuf[0] = ERROR_PACKET;
|
|
obuf[1] = 0x2; /* unknown command */
|
|
obuf[2] = CUDA_PACKET;
|
|
obuf[3] = data[0];
|
|
cuda_send_packet_to_host(s, obuf, 4);
|
|
}
|
|
|
|
static void cuda_receive_packet_from_host(CUDAState *s,
|
|
const uint8_t *data, int len)
|
|
{
|
|
#ifdef DEBUG_CUDA_PACKET
|
|
{
|
|
int i;
|
|
printf("cuda_receive_packet_from_host:\n");
|
|
for(i = 0; i < len; i++)
|
|
printf(" %02x", data[i]);
|
|
printf("\n");
|
|
}
|
|
#endif
|
|
switch(data[0]) {
|
|
case ADB_PACKET:
|
|
{
|
|
uint8_t obuf[ADB_MAX_OUT_LEN + 3];
|
|
int olen;
|
|
olen = adb_request(&s->adb_bus, obuf + 2, data + 1, len - 1);
|
|
if (olen > 0) {
|
|
obuf[0] = ADB_PACKET;
|
|
obuf[1] = 0x00;
|
|
cuda_send_packet_to_host(s, obuf, olen + 2);
|
|
} else {
|
|
/* error */
|
|
obuf[0] = ADB_PACKET;
|
|
obuf[1] = -olen;
|
|
obuf[2] = data[1];
|
|
olen = 0;
|
|
cuda_send_packet_to_host(s, obuf, olen + 3);
|
|
}
|
|
}
|
|
break;
|
|
case CUDA_PACKET:
|
|
cuda_receive_packet(s, data + 1, len - 1);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void cuda_writew (void *opaque, hwaddr addr, uint32_t value)
|
|
{
|
|
}
|
|
|
|
static void cuda_writel (void *opaque, hwaddr addr, uint32_t value)
|
|
{
|
|
}
|
|
|
|
static uint32_t cuda_readw (void *opaque, hwaddr addr)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static uint32_t cuda_readl (void *opaque, hwaddr addr)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static const MemoryRegionOps cuda_ops = {
|
|
.old_mmio = {
|
|
.write = {
|
|
cuda_writeb,
|
|
cuda_writew,
|
|
cuda_writel,
|
|
},
|
|
.read = {
|
|
cuda_readb,
|
|
cuda_readw,
|
|
cuda_readl,
|
|
},
|
|
},
|
|
.endianness = DEVICE_NATIVE_ENDIAN,
|
|
};
|
|
|
|
static bool cuda_timer_exist(void *opaque, int version_id)
|
|
{
|
|
CUDATimer *s = opaque;
|
|
|
|
return s->timer != NULL;
|
|
}
|
|
|
|
static const VMStateDescription vmstate_cuda_timer = {
|
|
.name = "cuda_timer",
|
|
.version_id = 0,
|
|
.minimum_version_id = 0,
|
|
.fields = (VMStateField[]) {
|
|
VMSTATE_UINT16(latch, CUDATimer),
|
|
VMSTATE_UINT16(counter_value, CUDATimer),
|
|
VMSTATE_INT64(load_time, CUDATimer),
|
|
VMSTATE_INT64(next_irq_time, CUDATimer),
|
|
VMSTATE_TIMER_PTR_TEST(timer, CUDATimer, cuda_timer_exist),
|
|
VMSTATE_END_OF_LIST()
|
|
}
|
|
};
|
|
|
|
static const VMStateDescription vmstate_cuda = {
|
|
.name = "cuda",
|
|
.version_id = 4,
|
|
.minimum_version_id = 4,
|
|
.fields = (VMStateField[]) {
|
|
VMSTATE_UINT8(a, CUDAState),
|
|
VMSTATE_UINT8(b, CUDAState),
|
|
VMSTATE_UINT8(last_b, CUDAState),
|
|
VMSTATE_UINT8(dira, CUDAState),
|
|
VMSTATE_UINT8(dirb, CUDAState),
|
|
VMSTATE_UINT8(sr, CUDAState),
|
|
VMSTATE_UINT8(acr, CUDAState),
|
|
VMSTATE_UINT8(last_acr, CUDAState),
|
|
VMSTATE_UINT8(pcr, CUDAState),
|
|
VMSTATE_UINT8(ifr, CUDAState),
|
|
VMSTATE_UINT8(ier, CUDAState),
|
|
VMSTATE_UINT8(anh, CUDAState),
|
|
VMSTATE_INT32(data_in_size, CUDAState),
|
|
VMSTATE_INT32(data_in_index, CUDAState),
|
|
VMSTATE_INT32(data_out_index, CUDAState),
|
|
VMSTATE_UINT8(autopoll, CUDAState),
|
|
VMSTATE_UINT8(autopoll_rate_ms, CUDAState),
|
|
VMSTATE_UINT16(adb_poll_mask, CUDAState),
|
|
VMSTATE_BUFFER(data_in, CUDAState),
|
|
VMSTATE_BUFFER(data_out, CUDAState),
|
|
VMSTATE_UINT32(tick_offset, CUDAState),
|
|
VMSTATE_STRUCT_ARRAY(timers, CUDAState, 2, 1,
|
|
vmstate_cuda_timer, CUDATimer),
|
|
VMSTATE_TIMER_PTR(adb_poll_timer, CUDAState),
|
|
VMSTATE_TIMER_PTR(sr_delay_timer, CUDAState),
|
|
VMSTATE_END_OF_LIST()
|
|
}
|
|
};
|
|
|
|
static void cuda_reset(DeviceState *dev)
|
|
{
|
|
CUDAState *s = CUDA(dev);
|
|
|
|
s->b = 0;
|
|
s->a = 0;
|
|
s->dirb = 0xff;
|
|
s->dira = 0;
|
|
s->sr = 0;
|
|
s->acr = 0;
|
|
s->pcr = 0;
|
|
s->ifr = 0;
|
|
s->ier = 0;
|
|
// s->ier = T1_INT | SR_INT;
|
|
s->anh = 0;
|
|
s->data_in_size = 0;
|
|
s->data_in_index = 0;
|
|
s->data_out_index = 0;
|
|
s->autopoll = 0;
|
|
|
|
s->timers[0].latch = 0xffff;
|
|
set_counter(s, &s->timers[0], 0xffff);
|
|
|
|
s->timers[1].latch = 0xffff;
|
|
|
|
s->sr_delay_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cuda_set_sr_int, s);
|
|
}
|
|
|
|
static void cuda_realizefn(DeviceState *dev, Error **errp)
|
|
{
|
|
CUDAState *s = CUDA(dev);
|
|
struct tm tm;
|
|
|
|
s->timers[0].timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cuda_timer1, s);
|
|
s->timers[0].frequency = s->frequency;
|
|
s->timers[1].timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cuda_timer2, s);
|
|
s->timers[1].frequency = (SCALE_US * 6000) / 4700;
|
|
|
|
qemu_get_timedate(&tm, 0);
|
|
s->tick_offset = (uint32_t)mktimegm(&tm) + RTC_OFFSET;
|
|
|
|
s->adb_poll_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cuda_adb_poll, s);
|
|
s->autopoll_rate_ms = 20;
|
|
s->adb_poll_mask = 0xffff;
|
|
}
|
|
|
|
static void cuda_initfn(Object *obj)
|
|
{
|
|
SysBusDevice *d = SYS_BUS_DEVICE(obj);
|
|
CUDAState *s = CUDA(obj);
|
|
int i;
|
|
|
|
memory_region_init_io(&s->mem, obj, &cuda_ops, s, "cuda", 0x2000);
|
|
sysbus_init_mmio(d, &s->mem);
|
|
sysbus_init_irq(d, &s->irq);
|
|
|
|
for (i = 0; i < ARRAY_SIZE(s->timers); i++) {
|
|
s->timers[i].index = i;
|
|
}
|
|
|
|
qbus_create_inplace(&s->adb_bus, sizeof(s->adb_bus), TYPE_ADB_BUS,
|
|
DEVICE(obj), "adb.0");
|
|
}
|
|
|
|
static Property cuda_properties[] = {
|
|
DEFINE_PROP_UINT64("frequency", CUDAState, frequency, 0),
|
|
DEFINE_PROP_END_OF_LIST()
|
|
};
|
|
|
|
static void cuda_class_init(ObjectClass *oc, void *data)
|
|
{
|
|
DeviceClass *dc = DEVICE_CLASS(oc);
|
|
|
|
dc->realize = cuda_realizefn;
|
|
dc->reset = cuda_reset;
|
|
dc->vmsd = &vmstate_cuda;
|
|
dc->props = cuda_properties;
|
|
set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories);
|
|
}
|
|
|
|
static const TypeInfo cuda_type_info = {
|
|
.name = TYPE_CUDA,
|
|
.parent = TYPE_SYS_BUS_DEVICE,
|
|
.instance_size = sizeof(CUDAState),
|
|
.instance_init = cuda_initfn,
|
|
.class_init = cuda_class_init,
|
|
};
|
|
|
|
static void cuda_register_types(void)
|
|
{
|
|
type_register_static(&cuda_type_info);
|
|
}
|
|
|
|
type_init(cuda_register_types)
|