forked from p94628173/idrlnet
1.3 KiB
1.3 KiB
Parameterized Poisson
We consider an extended problem of Simple Poisson.
\begin{array}{l}
-\Delta u=1\\
\frac{\partial u(x, -1)}{\partial n}=\frac{\partial u(x, 1)}{\partial n}=0 \\
u(-1,y)=T_l\\
u(1, y)=0,
\end{array}
where T_l
is a design parameter ranging in (-0.2,0.2)
.
The target is to train a surrogate that u_\theta(x,y,T_l)
gives the temperature at (x,y)
when T_l
is provided.
Train A Surrogate
In addition, we define the parameter
temp = sp.Symbol('temp')
temp_range = {temp: (-0.2, 0.2)}
The usage of temp
is similar to the time variable in Burgers' Equation.
temp_range
should be passed to the argument param_ranges
in sampling domains.
The left bound value condition is
@sc.datanode
class Left(sc.SampleDomain):
# Due to `name` is not specified, Left will be the name of datanode automatically
def sampling(self, *args, **kwargs):
points = rec.sample_boundary(1000, sieve=(sp.Eq(x, -1.)), param_ranges=temp_range)
constraints = sc.Variables({'T': temp})
return points, constraints
The result is shown as follows:
See examples/parameterized_poisson
.