LLaMA-Factory-310P3/scripts/cal_flops.py

32 lines
1.2 KiB
Python
Raw Normal View History

2023-09-16 23:40:41 +08:00
# coding=utf-8
# Calculates the flops of pre-trained models.
# Usage: python cal_flops.py --model_name_or_path path_to_model --batch_size 1 --seq_length 512
# Inspired by: https://www.deepspeed.ai/tutorials/flops-profiler/
import fire
import torch
2024-01-20 20:15:56 +08:00
from deepspeed.accelerator import get_accelerator # type: ignore
from deepspeed.profiling.flops_profiler import get_model_profile # type: ignore
2023-09-16 23:40:41 +08:00
2024-05-16 18:39:08 +08:00
from llamafactory.chat import ChatModel
2023-09-16 23:40:41 +08:00
2023-11-14 20:58:37 +08:00
def calculate_flops(
2023-09-16 23:40:41 +08:00
model_name_or_path: str,
2024-05-04 22:02:25 +08:00
batch_size: int = 1,
seq_length: int = 256,
flash_attn: str = "auto",
2023-09-16 23:40:41 +08:00
):
with get_accelerator().device(0):
2024-05-04 22:02:25 +08:00
chat_model = ChatModel(dict(model_name_or_path=model_name_or_path, template="empty", flash_attn=flash_attn))
2023-09-16 23:40:41 +08:00
fake_input = torch.ones((batch_size, seq_length), dtype=torch.long, device=chat_model.model.device)
2024-01-20 20:15:56 +08:00
input_dict = {"input_ids": fake_input, "labels": fake_input.clone()}
flops, macs, params = get_model_profile(chat_model.model, kwargs=input_dict, print_profile=True, detailed=True)
2023-09-23 00:34:17 +08:00
print("FLOPs:", flops)
2023-09-16 23:40:41 +08:00
print("MACs:", macs)
print("Params:", params)
if __name__ == "__main__":
2023-11-14 20:58:37 +08:00
fire.Fire(calculate_flops)