support distributed quantized training

This commit is contained in:
hiyouga 2023-06-06 17:39:41 +08:00
parent 3d8d5ee5d5
commit 4eb17bcf6c
7 changed files with 20 additions and 18 deletions

View File

@ -9,7 +9,7 @@
## Changelog
[23/06/03] Now we support quantized training and inference (aka QLoRA). Try `--quantization_bit 4/8` argument to work with quantized model. (experimental feature)
[23/06/03] Now we support quantized training and inference (aka [QLoRA](https://github.com/artidoro/qlora)). Try `--quantization_bit 4/8` argument to work with quantized model. (experimental feature)
[23/05/31] Now we support training the BLOOM & BLOOMZ models in this repo. Try `--model_name_or_path bigscience/bloomz-7b1-mt` argument to use the BLOOMZ model.

View File

@ -38,7 +38,7 @@ from .config import (
)
from .other import (
get_logger,
get_main_logger,
load_trainable_params,
load_valuehead_params,
print_trainable_params,
@ -53,7 +53,7 @@ require_version("peft>=0.3.0", "To fix: pip install peft>=0.3.0")
require_version("trl>=0.4.1", "To fix: pip install trl>=0.4.1")
logger = get_logger(__name__)
logger = get_main_logger(__name__)
def _init_adapter(
@ -190,9 +190,10 @@ def load_pretrained(
else:
raise NotImplementedError
is_mergeable = False
config_kwargs["device_map"] = {"": int(os.environ.get("LOCAL_RANK") or 0)}
logger.info("Quantizing model to {} bit.".format(model_args.quantization_bit))
if model_args.quantization_bit is not None or (not is_trainable): # automatically load in CUDA
if not is_trainable:
config_kwargs["device_map"] = "auto"
# Load and prepare pretrained models (without valuehead).
@ -288,7 +289,7 @@ def prepare_args(
logger.info(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}\n"
+ f" distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
, main_process_only=False)
logger.info(f"Training/evaluation parameters {training_args}")
# Set seed before initializing model.

View File

@ -10,6 +10,8 @@ from transformers.modeling_utils import PreTrainedModel
from transformers.generation.utils import LogitsProcessorList
from transformers.generation.logits_process import LogitsProcessor
from accelerate.logging import get_logger
from peft.utils.other import WEIGHTS_NAME
@ -18,17 +20,16 @@ VALUE_HEAD_FILE_NAME = "value_head.bin"
FINETUNING_ARGS_NAME = "finetuning_args.json"
logger = logging.getLogger(__name__)
logger = get_logger(__name__, log_level="INFO")
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
handlers=[logging.StreamHandler(sys.stdout)]
)
def get_logger(name: str) -> logging.Logger:
return logging.getLogger(name)
def get_main_logger(name: str) -> logging.Logger:
return get_logger(name, log_level="INFO")
class AverageMeter:
@ -57,7 +58,7 @@ class InvalidScoreLogitsProcessor(LogitsProcessor):
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
if torch.isnan(scores).any() or torch.isinf(scores).any():
scores.zero_()
scores[:, 0] = 1.0
scores[..., 0] = 1.0
return scores

View File

@ -5,9 +5,9 @@ from .data_collator import DynamicDataCollatorWithPadding
from .peft_trainer import PeftTrainer
from .other import get_logger
from .other import get_main_logger
logger = get_logger(__name__)
logger = get_main_logger(__name__)
class PairwiseDataCollatorWithPadding(DynamicDataCollatorWithPadding):

View File

@ -21,7 +21,7 @@ from peft.utils.other import WEIGHTS_NAME
from .config import FinetuningArguments
from .other import (
get_logger,
get_main_logger,
get_state_dict,
load_trainable_params,
load_valuehead_params,
@ -30,7 +30,7 @@ from .other import (
)
logger = get_logger(__name__)
logger = get_main_logger(__name__)
class LogCallback(TrainerCallback):

View File

@ -16,12 +16,12 @@ from .config import FinetuningArguments
from .other import (
AverageMeter,
get_logger,
get_main_logger,
get_logits_processor
)
logger = get_logger(__name__)
logger = get_main_logger(__name__)
def replace_model(model: AutoModelForCausalLMWithValueHead, target: Literal["default", "reward"]) -> None:

View File

@ -13,10 +13,10 @@ from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction
from .peft_trainer import PeftTrainer
from .other import get_logger, IGNORE_INDEX
from .other import get_main_logger, IGNORE_INDEX
logger = get_logger(__name__)
logger = get_main_logger(__name__)
@dataclass