LLaMA-Factory-310P3/README_zh.md

24 KiB
Raw Blame History

LLaMA Factory: 轻松的大模型训练与评估

GitHub Repo stars GitHub Code License GitHub last commit PyPI Downloads GitHub pull request Discord Spaces Studios

👋 加入我们的微信群

 [English](README.md) | 中文 

LLaMA Board: 通过一站式网页界面快速上手 LLaMA Factory

通过 🤗 SpacesModelScope 预览 LLaMA Board。

使用 CUDA_VISIBLE_DEVICES=0 python src/train_web.py 启动 LLaMA Board。该模式目前仅支持单卡训练

下面是使用单张 GPU 在 10 分钟内更改对话式大型语言模型自我认知的示例。

https://github.com/hiyouga/LLaMA-Factory/assets/16256802/6ba60acc-e2e2-4bec-b846-2d88920d5ba1

目录

性能指标

与 ChatGLM 官方的 P-Tuning 微调相比LLaMA-Factory 的 LoRA 微调提供了 3.7 倍的加速比,同时在广告文案生成任务上取得了更高的 Rouge 分数。结合 4 比特量化技术LLaMA-Factory 的 QLoRA 微调进一步降低了 GPU 显存消耗。

benchmark

  • Training Speed: 训练阶段每秒处理的样本数量。(批处理大小=4截断长度=1024
  • Rouge Score: 广告文案生成任务验证集上的 Rouge-2 分数。(批处理大小=4截断长度=1024
  • GPU Memory: 4 比特量化训练的 GPU 显存峰值。(批处理大小=1截断长度=1024
  • 我们在 ChatGLM 的 P-Tuning 中采用 pre_seq_len=128,在 LLaMA-Factory 的 LoRA 微调中采用 lora_rank=32

更新日志

[23/12/01] 我们支持了 魔搭ModelHub 进行模型下载加速。在启动命令前环境变量中增加 USE_MODELSCOPE_HUB=1 即可开启。

[23/10/21] 我们支持了 NEFTune 训练技巧。请使用 --neft_alpha 参数启用 NEFTune例如 --neft_alpha 5

[23/09/27] 我们针对 LLaMA 模型支持了 LongLoRA 提出的 S^2-Attn。请使用 --shift_attn 参数以启用该功能。

[23/09/23] 我们在项目中集成了 MMLU、C-Eval 和 CMMLU 评估集。使用方法请参阅此示例

[23/09/10] 我们针对 LLaMA 模型支持了 FlashAttention-2。如果您使用的是 RTX4090、A100 或 H100 GPU请使用 --flash_attn 参数以启用 FlashAttention-2。

[23/08/12] 我们支持了 RoPE 插值来扩展 LLaMA 模型的上下文长度。请使用 --rope_scaling linear 参数训练模型或使用 --rope_scaling dynamic 参数评估模型。

[23/08/11] 我们支持了指令模型的 DPO 训练。使用方法请参阅此示例

[23/07/31] 我们支持了数据流式加载。请尝试使用 --streaming--max_steps 10000 参数来流式加载数据集。

[23/07/29] 我们在 Hugging Face 发布了两个 13B 指令微调模型。详细内容请查阅我们的 Hugging Face 项目(LLaMA-2 / Baichuan)。

[23/07/18] 我们开发了支持训练和测试的浏览器一体化界面。请使用 train_web.py 在您的浏览器中微调模型。感谢 @KanadeSiina@codemayq 在该功能开发中付出的努力。

[23/07/09] 我们开源了 FastEdit 🩹,一个简单易用的、能迅速编辑大模型事实记忆的工具包。如果您感兴趣请关注我们的 FastEdit 项目。

[23/06/29] 我们提供了一个可复现的指令模型微调示例,详细内容请查阅 Baichuan-7B-sft

[23/06/22] 我们对齐了示例 APIOpenAI API 的格式,您可以将微调模型接入任意基于 ChatGPT 的应用中。

[23/06/03] 我们实现了 4 比特的 LoRA 训练(也称 QLoRA)。请使用 --quantization_bit 4 参数进行 4 比特量化微调。

模型

模型名 模型大小 默认模块 Template
Baichuan 7B/13B W_pack baichuan
Baichuan2 7B/13B W_pack baichuan2
BLOOM 560M/1.1B/1.7B/3B/7.1B/176B query_key_value -
BLOOMZ 560M/1.1B/1.7B/3B/7.1B/176B query_key_value -
ChatGLM3 6B query_key_value chatglm3
Falcon 7B/40B/180B query_key_value falcon
InternLM 7B/20B q_proj,v_proj intern
LLaMA 7B/13B/33B/65B q_proj,v_proj -
LLaMA-2 7B/13B/70B q_proj,v_proj llama2
Mistral 7B q_proj,v_proj mistral
Phi-1.5 1.3B Wqkv -
Qwen 1.8B/7B/14B/72B c_attn qwen
XVERSE 7B/13B/65B q_proj,v_proj xverse

[!NOTE] 默认模块应作为 --lora_target 参数的默认值,可使用 --lora_target all 参数指定全部模块。

对于所有“基座”Base模型--template 参数可以是 default, alpaca, vicuna 等任意值。但“对话”Chat模型请务必使用对应的模板

项目所支持模型的完整列表请参阅 constants.py

训练方法

方法 全参数训练 部分参数训练 LoRA QLoRA
预训练
指令监督微调
奖励模型训练
PPO 训练
DPO 训练

[!NOTE] 请使用 --quantization_bit 4/8 参数来启用 QLoRA 训练。

数据集

预训练数据集
指令微调数据集
偏好数据集

使用方法请参考 data/README_zh.md 文件。

部分数据集的使用需要确认,我们推荐使用下述命令登录您的 Hugging Face 账户。

pip install --upgrade huggingface_hub
huggingface-cli login

软硬件依赖

  • Python 3.8+ 和 PyTorch 1.13.1+
  • 🤗Transformers, Datasets, Accelerate, PEFT 和 TRL
  • sentencepiece, protobuf 和 tiktoken
  • jieba, rouge-chinese 和 nltk (用于评估及预测)
  • gradio 和 matplotlib (用于网页端交互)
  • uvicorn, fastapi 和 sse-starlette (用于 API)

硬件依赖

训练方法 精度 7B 13B 30B 65B
全参数 16 140GB 240GB 520GB 1200GB
部分参数 16 20GB 40GB 120GB 240GB
LoRA 16 16GB 32GB 80GB 160GB
QLoRA 8 10GB 16GB 40GB 80GB
QLoRA 4 6GB 12GB 24GB 48GB

如何使用

数据准备(可跳过)

关于数据集文件的格式,请参考 data/README_zh.md 的内容。构建自定义数据集时,既可以使用单个 .json 文件,也可以使用一个数据加载脚本和多个文件。

[!NOTE] 使用自定义数据集时,请更新 data/dataset_info.json 文件,该文件的格式请参考 data/README_zh.md

环境搭建(可跳过)

git clone https://github.com/hiyouga/LLaMA-Factory.git
conda create -n llama_factory python=3.10
conda activate llama_factory
cd LLaMA-Factory
pip install -r requirements.txt

如果要在 Windows 平台上开启量化 LoRAQLoRA需要安装预编译的 bitsandbytes 库, 支持 CUDA 11.1 到 12.1.

pip install https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-0.39.1-py3-none-win_amd64.whl

使用魔搭的模型

如果下载HuggingFace模型存在问题我们已经支持了魔搭的ModelHub只需要添加一个环境变量

export USE_MODELSCOPE_HUB=1

[!NOTE]

该环境变量仅支持整数0或者不设置代表使用HuggingFace其他值代表使用ModelScope

之后就可以在命令行中指定魔搭的模型id

python src/train_bash.py \
    --model_name_or_path ZhipuAI/chatglm3-6b \
    ... other arguments
# 在这个链接中可以看到所有可用模型: https://www.modelscope.cn/models

Web demo目前也支持了魔搭, 在设置环境变量后即可使用:

CUDA_VISIBLE_DEVICES=0 python src/train_web.py

单 GPU 训练

[!IMPORTANT] 如果您使用多张 GPU 训练模型,请移步多 GPU 分布式训练部分。

预训练

CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
    --stage pt \
    --model_name_or_path path_to_llama_model \
    --do_train \
    --dataset wiki_demo \
    --finetuning_type lora \
    --lora_target q_proj,v_proj \
    --output_dir path_to_pt_checkpoint \
    --overwrite_cache \
    --per_device_train_batch_size 4 \
    --gradient_accumulation_steps 4 \
    --lr_scheduler_type cosine \
    --logging_steps 10 \
    --save_steps 1000 \
    --learning_rate 5e-5 \
    --num_train_epochs 3.0 \
    --plot_loss \
    --fp16

指令监督微调

CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
    --stage sft \
    --model_name_or_path path_to_llama_model \
    --do_train \
    --dataset alpaca_gpt4_zh \
    --template default \
    --finetuning_type lora \
    --lora_target q_proj,v_proj \
    --output_dir path_to_sft_checkpoint \
    --overwrite_cache \
    --per_device_train_batch_size 4 \
    --gradient_accumulation_steps 4 \
    --lr_scheduler_type cosine \
    --logging_steps 10 \
    --save_steps 1000 \
    --learning_rate 5e-5 \
    --num_train_epochs 3.0 \
    --plot_loss \
    --fp16

奖励模型训练

CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
    --stage rm \
    --model_name_or_path path_to_llama_model \
    --do_train \
    --dataset comparison_gpt4_zh \
    --template default \
    --finetuning_type lora \
    --lora_target q_proj,v_proj \
    --resume_lora_training False \
    --checkpoint_dir path_to_sft_checkpoint \
    --output_dir path_to_rm_checkpoint \
    --per_device_train_batch_size 2 \
    --gradient_accumulation_steps 4 \
    --lr_scheduler_type cosine \
    --logging_steps 10 \
    --save_steps 1000 \
    --learning_rate 1e-6 \
    --num_train_epochs 1.0 \
    --plot_loss \
    --fp16

PPO 训练

CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
    --stage ppo \
    --model_name_or_path path_to_llama_model \
    --do_train \
    --dataset alpaca_gpt4_zh \
    --template default \
    --finetuning_type lora \
    --lora_target q_proj,v_proj \
    --resume_lora_training False \
    --checkpoint_dir path_to_sft_checkpoint \
    --reward_model path_to_rm_checkpoint \
    --output_dir path_to_ppo_checkpoint \
    --per_device_train_batch_size 2 \
    --gradient_accumulation_steps 4 \
    --lr_scheduler_type cosine \
    --top_k 0 \
    --top_p 0.9 \
    --logging_steps 10 \
    --save_steps 1000 \
    --learning_rate 1e-5 \
    --num_train_epochs 1.0 \
    --plot_loss \
    --fp16

[!WARNING] 如果使用 fp16 精度进行 LLaMA-2 模型的 PPO 训练,请使用 --per_device_train_batch_size=1

DPO 训练

CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
    --stage dpo \
    --model_name_or_path path_to_llama_model \
    --do_train \
    --dataset comparison_gpt4_zh \
    --template default \
    --finetuning_type lora \
    --lora_target q_proj,v_proj \
    --resume_lora_training False \
    --checkpoint_dir path_to_sft_checkpoint \
    --output_dir path_to_dpo_checkpoint \
    --per_device_train_batch_size 2 \
    --gradient_accumulation_steps 4 \
    --lr_scheduler_type cosine \
    --logging_steps 10 \
    --save_steps 1000 \
    --learning_rate 1e-5 \
    --num_train_epochs 1.0 \
    --plot_loss \
    --fp16

多 GPU 分布式训练

使用 Huggingface Accelerate

accelerate config # 首先配置分布式环境
accelerate launch src/train_bash.py # 参数同上
LoRA 训练的 Accelerate 配置示例
compute_environment: LOCAL_MACHINE
distributed_type: MULTI_GPU
downcast_bf16: 'no'
gpu_ids: all
machine_rank: 0
main_training_function: main
mixed_precision: fp16
num_machines: 1
num_processes: 4
rdzv_backend: static
same_network: true
tpu_env: []
tpu_use_cluster: false
tpu_use_sudo: false
use_cpu: false

使用 DeepSpeed

deepspeed --num_gpus 8 --master_port=9901 src/train_bash.py \
    --deepspeed ds_config.json \
    ... # 参数同上
使用 DeepSpeed ZeRO-2 进行全参数训练的 DeepSpeed 配置示例
{
  "train_batch_size": "auto",
  "train_micro_batch_size_per_gpu": "auto",
  "gradient_accumulation_steps": "auto",
  "gradient_clipping": "auto",
  "zero_allow_untested_optimizer": true,
  "fp16": {
    "enabled": "auto",
    "loss_scale": 0,
    "initial_scale_power": 16,
    "loss_scale_window": 1000,
    "hysteresis": 2,
    "min_loss_scale": 1
  },  
  "zero_optimization": {
    "stage": 2,
    "allgather_partitions": true,
    "allgather_bucket_size": 5e8,
    "reduce_scatter": true,
    "reduce_bucket_size": 5e8,
    "overlap_comm": false,
    "contiguous_gradients": true
  }
}

合并 LoRA 权重并导出完整模型

python src/export_model.py \
    --model_name_or_path path_to_llama_model \
    --template default \
    --finetuning_type lora \
    --checkpoint_dir path_to_checkpoint \
    --export_dir path_to_export

API 服务

python src/api_demo.py \
    --model_name_or_path path_to_llama_model \
    --template default \
    --finetuning_type lora \
    --checkpoint_dir path_to_checkpoint

[!TIP] 关于 API 文档请见 http://localhost:8000/docs

命令行测试

python src/cli_demo.py \
    --model_name_or_path path_to_llama_model \
    --template default \
    --finetuning_type lora \
    --checkpoint_dir path_to_checkpoint

浏览器测试

python src/web_demo.py \
    --model_name_or_path path_to_llama_model \
    --template default \
    --finetuning_type lora \
    --checkpoint_dir path_to_checkpoint

模型评估

CUDA_VISIBLE_DEVICES=0 python src/evaluate.py \
    --model_name_or_path path_to_llama_model \
    --finetuning_type lora \
    --checkpoint_dir path_to_checkpoint \
    --template vanilla \
    --task ceval \
    --split validation \
    --lang zh \
    --n_shot 5 \
    --batch_size 4

模型预测

CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
    --stage sft \
    --model_name_or_path path_to_llama_model \
    --do_predict \
    --dataset alpaca_gpt4_zh \
    --template default \
    --finetuning_type lora \
    --checkpoint_dir path_to_checkpoint \
    --output_dir path_to_predict_result \
    --per_device_eval_batch_size 8 \
    --max_samples 100 \
    --predict_with_generate \
    --fp16

[!WARNING] 如果使用 fp16 精度进行 LLaMA-2 模型的预测,请使用 --per_device_eval_batch_size=1

[!TIP] 我们建议在量化模型的预测中使用 --per_device_eval_batch_size=1--max_target_length 128

使用了 LLaMA Factory 的项目

  • StarWhisper: 天文大模型 StarWhisper基于 ChatGLM2-6B 和 Qwen-14B 在天文数据上微调而得。
  • DISC-LawLLM: 中文法律领域大模型 DISC-LawLLM基于 Baichuan-13B 微调而得,具有法律推理和知识检索能力。
  • Sunsimiao: 孙思邈中文医疗大模型 Sumsimiao基于 Baichuan-7B 和 ChatGLM-6B 在中文医疗数据上微调而得。
  • CareGPT: 医疗大模型项目 CareGPT基于 LLaMA2-7B 和 Baichuan-13B 在中文医疗数据上微调而得。

[!TIP] 如果您有项目希望添加至上述列表,请通过邮件联系或者创建一个 PR。

协议

本仓库的代码依照 Apache-2.0 协议开源。

使用模型权重时,请遵循对应的模型协议:Baichuan / Baichuan2 / BLOOM / ChatGLM3 / Falcon / InternLM / LLaMA / LLaMA-2 / Mistral / Phi-1.5 / Qwen / XVERSE

引用

如果您觉得此项目有帮助,请考虑以下列格式引用

@Misc{llama-factory,
  title = {LLaMA Factory},
  author = {hiyouga},
  howpublished = {\url{https://github.com/hiyouga/LLaMA-Factory}},
  year = {2023}
}

致谢

本项目受益于 PEFTQLoRAFastChat,感谢以上诸位作者的付出。

Star History

Star History Chart