79 lines
3.3 KiB
Python
79 lines
3.3 KiB
Python
# Copyright 2024 the LlamaFactory team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import os
|
|
import random
|
|
from typing import Dict, List
|
|
|
|
import pytest
|
|
from datasets import load_dataset
|
|
from transformers import AutoTokenizer
|
|
|
|
from llamafactory.extras.constants import IGNORE_INDEX
|
|
from llamafactory.train.test_utils import load_train_dataset
|
|
|
|
|
|
DEMO_DATA = os.environ.get("DEMO_DATA", "llamafactory/demo_data")
|
|
|
|
TINY_LLAMA = os.environ.get("TINY_LLAMA", "llamafactory/tiny-random-Llama-3")
|
|
|
|
TRAIN_ARGS = {
|
|
"model_name_or_path": TINY_LLAMA,
|
|
"stage": "rm",
|
|
"do_train": True,
|
|
"finetuning_type": "full",
|
|
"dataset": "dpo_en_demo",
|
|
"dataset_dir": "REMOTE:" + DEMO_DATA,
|
|
"template": "llama3",
|
|
"cutoff_len": 8192,
|
|
"overwrite_cache": True,
|
|
"output_dir": "dummy_dir",
|
|
"overwrite_output_dir": True,
|
|
"fp16": True,
|
|
}
|
|
|
|
|
|
def _convert_sharegpt_to_openai(messages: List[Dict[str, str]]) -> List[Dict[str, str]]:
|
|
role_mapping = {"human": "user", "gpt": "assistant", "system": "system"}
|
|
new_messages = []
|
|
for message in messages:
|
|
new_messages.append({"role": role_mapping[message["from"]], "content": message["value"]})
|
|
|
|
return new_messages
|
|
|
|
|
|
@pytest.mark.parametrize("num_samples", [16])
|
|
def test_pairwise_data(num_samples: int):
|
|
train_dataset = load_train_dataset(**TRAIN_ARGS)
|
|
ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA)
|
|
original_data = load_dataset(DEMO_DATA, name="dpo_en_demo", split="train")
|
|
indexes = random.choices(range(len(original_data)), k=num_samples)
|
|
for index in indexes:
|
|
chosen_messages = original_data["conversations"][index] + [original_data["chosen"][index]]
|
|
rejected_messages = original_data["conversations"][index] + [original_data["rejected"][index]]
|
|
chosen_messages = _convert_sharegpt_to_openai(chosen_messages)
|
|
rejected_messages = _convert_sharegpt_to_openai(rejected_messages)
|
|
ref_chosen_input_ids = ref_tokenizer.apply_chat_template(chosen_messages)
|
|
chosen_prompt_len = len(ref_tokenizer.apply_chat_template(chosen_messages[:-1], add_generation_prompt=True))
|
|
ref_chosen_labels = [IGNORE_INDEX] * chosen_prompt_len + ref_chosen_input_ids[chosen_prompt_len:]
|
|
ref_rejected_input_ids = ref_tokenizer.apply_chat_template(rejected_messages)
|
|
rejected_prompt_len = len(
|
|
ref_tokenizer.apply_chat_template(rejected_messages[:-1], add_generation_prompt=True)
|
|
)
|
|
ref_rejected_labels = [IGNORE_INDEX] * rejected_prompt_len + ref_rejected_input_ids[rejected_prompt_len:]
|
|
assert train_dataset["chosen_input_ids"][index] == ref_chosen_input_ids
|
|
assert train_dataset["chosen_labels"][index] == ref_chosen_labels
|
|
assert train_dataset["rejected_input_ids"][index] == ref_rejected_input_ids
|
|
assert train_dataset["rejected_labels"][index] == ref_rejected_labels
|