471 lines
19 KiB
Markdown
471 lines
19 KiB
Markdown
# LLaMA Factory: Training and Evaluating Large Language Models with Minimal Effort
|
|
|
|
[![GitHub Repo stars](https://img.shields.io/github/stars/hiyouga/LLaMA-Factory?style=social)](https://github.com/hiyouga/LLaMA-Factory/stargazers)
|
|
[![GitHub Code License](https://img.shields.io/github/license/hiyouga/LLaMA-Factory)](LICENSE)
|
|
[![GitHub last commit](https://img.shields.io/github/last-commit/hiyouga/LLaMA-Factory)](https://github.com/hiyouga/LLaMA-Factory/commits/main)
|
|
[![PyPI](https://img.shields.io/pypi/v/llmtuner)](https://pypi.org/project/llmtuner/)
|
|
[![Downloads](https://static.pepy.tech/badge/llmtuner)](https://pypi.org/project/llmtuner/)
|
|
[![GitHub pull request](https://img.shields.io/badge/PRs-welcome-blue)](https://github.com/hiyouga/LLaMA-Factory/pulls)
|
|
[![Discord](https://dcbadge.vercel.app/api/server/e73gccsSd?compact=true&style=flat)](https://discord.gg/e73gccsSd)
|
|
|
|
👋 Join our [WeChat](assets/wechat.jpg).
|
|
|
|
\[ English | [中文](README_zh.md) \]
|
|
|
|
## LLaMA Board: A One-stop Web UI for Getting Started with LLaMA Factory
|
|
|
|
Launch **LLaMA Board** via `CUDA_VISIBLE_DEVICES=0 python src/train_web.py`. (multiple GPUs are not supported yet)
|
|
|
|
Here is an example of altering the self-cognition of an instruction-tuned language model within 10 minutes on a single GPU.
|
|
|
|
https://github.com/hiyouga/LLaMA-Factory/assets/16256802/6ba60acc-e2e2-4bec-b846-2d88920d5ba1
|
|
|
|
## Changelog
|
|
|
|
[23/10/21] We supported **[NEFTune](https://arxiv.org/abs/2310.05914)** trick for fine-tuning. Try `--neft_alpha` argument to activate NEFTune, e.g., `--neft_alpha 5`.
|
|
|
|
[23/09/27] We supported **$S^2$-Attn** proposed by [LongLoRA](https://github.com/dvlab-research/LongLoRA) for the LLaMA models. Try `--shift_attn` argument to enable shift short attention.
|
|
|
|
[23/09/23] We integrated MMLU, C-Eval and CMMLU benchmarks in this repo. See [this example](#evaluation) to evaluate your models.
|
|
|
|
[23/09/10] We supported using **[FlashAttention-2](https://github.com/Dao-AILab/flash-attention)** for the LLaMA models. Try `--flash_attn` argument to enable FlashAttention-2 if you are using RTX4090, A100 or H100 GPUs.
|
|
|
|
[23/08/12] We supported **RoPE scaling** to extend the context length of the LLaMA models. Try `--rope_scaling linear` argument in training and `--rope_scaling dynamic` argument at inference to extrapolate the position embeddings.
|
|
|
|
[23/08/11] We supported **[DPO training](https://arxiv.org/abs/2305.18290)** for instruction-tuned models. See [this example](#dpo-training) to train your models.
|
|
|
|
[23/07/31] We supported **dataset streaming**. Try `--streaming` and `--max_steps 10000` arguments to load your dataset in streaming mode.
|
|
|
|
[23/07/29] We released two instruction-tuned 13B models at Hugging Face. See these Hugging Face Repos ([LLaMA-2](https://huggingface.co/hiyouga/Llama-2-Chinese-13b-chat) / [Baichuan](https://huggingface.co/hiyouga/Baichuan-13B-sft)) for details.
|
|
|
|
[23/07/18] We developed an **all-in-one Web UI** for training, evaluation and inference. Try `train_web.py` to fine-tune models in your Web browser. Thank [@KanadeSiina](https://github.com/KanadeSiina) and [@codemayq](https://github.com/codemayq) for their efforts in the development.
|
|
|
|
[23/07/09] We released **[FastEdit](https://github.com/hiyouga/FastEdit)** ⚡🩹, an easy-to-use package for editing the factual knowledge of large language models efficiently. Please follow [FastEdit](https://github.com/hiyouga/FastEdit) if you are interested.
|
|
|
|
[23/06/29] We provided a **reproducible example** of training a chat model using instruction-following datasets, see [Baichuan-7B-sft](https://huggingface.co/hiyouga/Baichuan-7B-sft) for details.
|
|
|
|
[23/06/22] We aligned the [demo API](src/api_demo.py) with the [OpenAI's](https://platform.openai.com/docs/api-reference/chat) format where you can insert the fine-tuned model in **arbitrary ChatGPT-based applications**.
|
|
|
|
[23/06/03] We supported quantized training and inference (aka **[QLoRA](https://github.com/artidoro/qlora)**). Try `--quantization_bit 4/8` argument to work with quantized models.
|
|
|
|
## Supported Models
|
|
|
|
| Model | Model size | Default module | Template |
|
|
| -------------------------------------------------------- | --------------------------- | ----------------- | --------- |
|
|
| [LLaMA](https://github.com/facebookresearch/llama) | 7B/13B/33B/65B | q_proj,v_proj | - |
|
|
| [LLaMA-2](https://huggingface.co/meta-llama) | 7B/13B/70B | q_proj,v_proj | llama2 |
|
|
| [BLOOM](https://huggingface.co/bigscience/bloom) | 560M/1.1B/1.7B/3B/7.1B/176B | query_key_value | - |
|
|
| [BLOOMZ](https://huggingface.co/bigscience/bloomz) | 560M/1.1B/1.7B/3B/7.1B/176B | query_key_value | - |
|
|
| [Falcon](https://huggingface.co/tiiuae/falcon-7b) | 7B/40B | query_key_value | - |
|
|
| [Baichuan](https://github.com/baichuan-inc/Baichuan-13B) | 7B/13B | W_pack | baichuan |
|
|
| [Baichuan2](https://github.com/baichuan-inc/Baichuan2) | 7B/13B | W_pack | baichuan2 |
|
|
| [InternLM](https://github.com/InternLM/InternLM) | 7B/20B | q_proj,v_proj | intern |
|
|
| [Qwen](https://github.com/QwenLM/Qwen-7B) | 7B/14B | c_attn | chatml |
|
|
| [ChatGLM3](https://github.com/THUDM/ChatGLM3) | 6B | query_key_value | chatglm3 |
|
|
| [Phi-1.5](https://huggingface.co/microsoft/phi-1_5) | 1.3B | Wqkv | - |
|
|
|
|
> [!NOTE]
|
|
> **Default module** is used for the `--lora_target` argument, you can use `--lora_target all` to specify all the available modules.
|
|
>
|
|
> For the "base" models, the `--template` argument can be chosen from `default`, `alpaca`, `vicuna` etc. But make sure to use the **corresponding template** for the "chat" models.
|
|
>
|
|
> Please refer to [template.py](src/llmtuner/extras/template.py) for a full list of models we supported.
|
|
|
|
## Supported Training Approaches
|
|
|
|
| Approach | Full-parameter | Partial-parameter | LoRA | QLoRA |
|
|
| ---------------------- | ------------------ | ------------------ | ------------------ | ------------------ |
|
|
| Pre-Training | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
|
|
| Supervised Fine-Tuning | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
|
|
| Reward Modeling | | | :white_check_mark: | :white_check_mark: |
|
|
| PPO Training | | | :white_check_mark: | :white_check_mark: |
|
|
| DPO Training | :white_check_mark: | | :white_check_mark: | :white_check_mark: |
|
|
|
|
> [!NOTE]
|
|
> Use `--quantization_bit 4/8` argument to enable QLoRA.
|
|
|
|
## Provided Datasets
|
|
|
|
- For pre-training:
|
|
- [Wiki Demo (en)](data/wiki_demo.txt)
|
|
- [RefinedWeb (en)](https://huggingface.co/datasets/tiiuae/falcon-refinedweb)
|
|
- [StarCoder (en)](https://huggingface.co/datasets/bigcode/starcoderdata)
|
|
- [Wikipedia (en)](https://huggingface.co/datasets/olm/olm-wikipedia-20221220)
|
|
- [Wikipedia (zh)](https://huggingface.co/datasets/pleisto/wikipedia-cn-20230720-filtered)
|
|
- For supervised fine-tuning:
|
|
- [Stanford Alpaca (en)](https://github.com/tatsu-lab/stanford_alpaca)
|
|
- [Stanford Alpaca (zh)](https://github.com/ymcui/Chinese-LLaMA-Alpaca)
|
|
- [GPT-4 Generated Data (en&zh)](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM)
|
|
- [Open Assistant (multilingual)](https://huggingface.co/datasets/OpenAssistant/oasst1)
|
|
- [Self-cognition (zh)](data/self_cognition.json)
|
|
- [ShareGPT (zh)](https://huggingface.co/datasets/QingyiSi/Alpaca-CoT/tree/main/Chinese-instruction-collection)
|
|
- [Guanaco Dataset (multilingual)](https://huggingface.co/datasets/JosephusCheung/GuanacoDataset)
|
|
- [BELLE 2M (zh)](https://huggingface.co/datasets/BelleGroup/train_2M_CN)
|
|
- [BELLE 1M (zh)](https://huggingface.co/datasets/BelleGroup/train_1M_CN)
|
|
- [BELLE 0.5M (zh)](https://huggingface.co/datasets/BelleGroup/train_0.5M_CN)
|
|
- [BELLE Dialogue 0.4M (zh)](https://huggingface.co/datasets/BelleGroup/generated_chat_0.4M)
|
|
- [BELLE School Math 0.25M (zh)](https://huggingface.co/datasets/BelleGroup/school_math_0.25M)
|
|
- [BELLE Multiturn Chat 0.8M (zh)](https://huggingface.co/datasets/BelleGroup/multiturn_chat_0.8M)
|
|
- [LIMA (en)](https://huggingface.co/datasets/GAIR/lima)
|
|
- [CodeAlpaca 20k (en)](https://huggingface.co/datasets/sahil2801/CodeAlpaca-20k)
|
|
- [Alpaca CoT (multilingual)](https://huggingface.co/datasets/QingyiSi/Alpaca-CoT)
|
|
- [MathInstruct (en)](https://huggingface.co/datasets/TIGER-Lab/MathInstruct)
|
|
- [Firefly 1.1M (zh)](https://huggingface.co/datasets/YeungNLP/firefly-train-1.1M)
|
|
- [Web QA (zh)](https://huggingface.co/datasets/suolyer/webqa)
|
|
- [UltraChat (en)](https://github.com/thunlp/UltraChat)
|
|
- [WebNovel (zh)](https://huggingface.co/datasets/zxbsmk/webnovel_cn)
|
|
- [Ad Gen (zh)](https://huggingface.co/datasets/HasturOfficial/adgen)
|
|
- For reward modeling or DPO training:
|
|
- [HH-RLHF (en)](https://huggingface.co/datasets/Anthropic/hh-rlhf)
|
|
- [Open Assistant (multilingual)](https://huggingface.co/datasets/OpenAssistant/oasst1)
|
|
- [GPT-4 Generated Data (en&zh)](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM)
|
|
|
|
Please refer to [data/README.md](data/README.md) for details.
|
|
|
|
Some datasets require confirmation before using them, so we recommend logging in with your Hugging Face account using these commands.
|
|
|
|
```bash
|
|
pip install --upgrade huggingface_hub
|
|
huggingface-cli login
|
|
```
|
|
|
|
## Requirement
|
|
|
|
- Python 3.8+ and PyTorch 1.13.1+
|
|
- 🤗Transformers, Datasets, Accelerate, PEFT and TRL
|
|
- sentencepiece, protobuf and tiktoken
|
|
- fire, jieba, rouge-chinese and nltk (used at evaluation and predict)
|
|
- gradio and matplotlib (used in web_demo.py)
|
|
- uvicorn, fastapi and sse-starlette (used in api_demo.py)
|
|
|
|
And **powerful GPUs**!
|
|
|
|
## Getting Started
|
|
|
|
### Data Preparation (optional)
|
|
|
|
Please refer to `data/example_dataset` for checking the details about the format of dataset files. You can either use a single `.json` file or a [dataset loading script](https://huggingface.co/docs/datasets/dataset_script) with multiple files to create a custom dataset.
|
|
|
|
> [!NOTE]
|
|
> Please update `data/dataset_info.json` to use your custom dataset. About the format of this file, please refer to `data/README.md`.
|
|
|
|
### Dependence Installation (optional)
|
|
|
|
```bash
|
|
git clone https://github.com/hiyouga/LLaMA-Factory.git
|
|
conda create -n llama_factory python=3.10
|
|
conda activate llama_factory
|
|
cd LLaMA-Factory
|
|
pip install -r requirements.txt
|
|
```
|
|
|
|
If you want to enable the quantized LoRA (QLoRA) on the Windows platform, you will be required to install a pre-built version of `bitsandbytes` library, which supports CUDA 11.1 to 12.1.
|
|
|
|
```bash
|
|
pip install https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-0.39.1-py3-none-win_amd64.whl
|
|
```
|
|
|
|
### Train on a single GPU
|
|
|
|
> [!IMPORTANT]
|
|
> If you want to train models on multiple GPUs, please refer to [Distributed Training](#distributed-training).
|
|
|
|
#### Pre-Training
|
|
|
|
```bash
|
|
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
|
|
--stage pt \
|
|
--model_name_or_path path_to_llama_model \
|
|
--do_train \
|
|
--dataset wiki_demo \
|
|
--finetuning_type lora \
|
|
--lora_target q_proj,v_proj \
|
|
--output_dir path_to_pt_checkpoint \
|
|
--overwrite_cache \
|
|
--per_device_train_batch_size 4 \
|
|
--gradient_accumulation_steps 4 \
|
|
--lr_scheduler_type cosine \
|
|
--logging_steps 10 \
|
|
--save_steps 1000 \
|
|
--learning_rate 5e-5 \
|
|
--num_train_epochs 3.0 \
|
|
--plot_loss \
|
|
--fp16
|
|
```
|
|
|
|
#### Supervised Fine-Tuning
|
|
|
|
```bash
|
|
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
|
|
--stage sft \
|
|
--model_name_or_path path_to_llama_model \
|
|
--do_train \
|
|
--dataset alpaca_gpt4_en \
|
|
--template default \
|
|
--finetuning_type lora \
|
|
--lora_target q_proj,v_proj \
|
|
--output_dir path_to_sft_checkpoint \
|
|
--overwrite_cache \
|
|
--per_device_train_batch_size 4 \
|
|
--gradient_accumulation_steps 4 \
|
|
--lr_scheduler_type cosine \
|
|
--logging_steps 10 \
|
|
--save_steps 1000 \
|
|
--learning_rate 5e-5 \
|
|
--num_train_epochs 3.0 \
|
|
--plot_loss \
|
|
--fp16
|
|
```
|
|
|
|
#### Reward Modeling
|
|
|
|
```bash
|
|
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
|
|
--stage rm \
|
|
--model_name_or_path path_to_llama_model \
|
|
--do_train \
|
|
--dataset comparison_gpt4_en \
|
|
--template default \
|
|
--finetuning_type lora \
|
|
--lora_target q_proj,v_proj \
|
|
--resume_lora_training False \
|
|
--checkpoint_dir path_to_sft_checkpoint \
|
|
--output_dir path_to_rm_checkpoint \
|
|
--per_device_train_batch_size 2 \
|
|
--gradient_accumulation_steps 4 \
|
|
--lr_scheduler_type cosine \
|
|
--logging_steps 10 \
|
|
--save_steps 1000 \
|
|
--learning_rate 1e-6 \
|
|
--num_train_epochs 1.0 \
|
|
--plot_loss \
|
|
--fp16
|
|
```
|
|
|
|
#### PPO Training
|
|
|
|
```bash
|
|
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
|
|
--stage ppo \
|
|
--model_name_or_path path_to_llama_model \
|
|
--do_train \
|
|
--dataset alpaca_gpt4_en \
|
|
--template default \
|
|
--finetuning_type lora \
|
|
--lora_target q_proj,v_proj \
|
|
--resume_lora_training False \
|
|
--checkpoint_dir path_to_sft_checkpoint \
|
|
--reward_model path_to_rm_checkpoint \
|
|
--output_dir path_to_ppo_checkpoint \
|
|
--per_device_train_batch_size 2 \
|
|
--gradient_accumulation_steps 4 \
|
|
--lr_scheduler_type cosine \
|
|
--logging_steps 10 \
|
|
--save_steps 1000 \
|
|
--learning_rate 1e-5 \
|
|
--num_train_epochs 1.0 \
|
|
--plot_loss \
|
|
--fp16
|
|
```
|
|
|
|
#### DPO Training
|
|
|
|
```bash
|
|
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
|
|
--stage dpo \
|
|
--model_name_or_path path_to_llama_model \
|
|
--do_train \
|
|
--dataset comparison_gpt4_en \
|
|
--template default \
|
|
--finetuning_type lora \
|
|
--lora_target q_proj,v_proj \
|
|
--resume_lora_training False \
|
|
--checkpoint_dir path_to_sft_checkpoint \
|
|
--output_dir path_to_dpo_checkpoint \
|
|
--per_device_train_batch_size 2 \
|
|
--gradient_accumulation_steps 4 \
|
|
--lr_scheduler_type cosine \
|
|
--logging_steps 10 \
|
|
--save_steps 1000 \
|
|
--learning_rate 1e-5 \
|
|
--num_train_epochs 1.0 \
|
|
--plot_loss \
|
|
--fp16
|
|
```
|
|
|
|
### Distributed Training
|
|
|
|
#### Use Huggingface Accelerate
|
|
|
|
```bash
|
|
accelerate config # configure the environment
|
|
accelerate launch src/train_bash.py # arguments (same as above)
|
|
```
|
|
|
|
<details><summary>Example config for LoRA training</summary>
|
|
|
|
```yaml
|
|
compute_environment: LOCAL_MACHINE
|
|
distributed_type: MULTI_GPU
|
|
downcast_bf16: 'no'
|
|
gpu_ids: all
|
|
machine_rank: 0
|
|
main_training_function: main
|
|
mixed_precision: fp16
|
|
num_machines: 1
|
|
num_processes: 4
|
|
rdzv_backend: static
|
|
same_network: true
|
|
tpu_env: []
|
|
tpu_use_cluster: false
|
|
tpu_use_sudo: false
|
|
use_cpu: false
|
|
```
|
|
|
|
</details>
|
|
|
|
#### Use DeepSpeed
|
|
|
|
```bash
|
|
deepspeed --num_gpus 8 --master_port=9901 src/train_bash.py \
|
|
--deepspeed ds_config.json \
|
|
... # arguments (same as above)
|
|
```
|
|
|
|
<details><summary>Example config for full-parameter training with DeepSpeed ZeRO-2</summary>
|
|
|
|
```json
|
|
{
|
|
"train_batch_size": "auto",
|
|
"train_micro_batch_size_per_gpu": "auto",
|
|
"gradient_accumulation_steps": "auto",
|
|
"gradient_clipping": "auto",
|
|
"zero_allow_untested_optimizer": true,
|
|
"fp16": {
|
|
"enabled": "auto",
|
|
"loss_scale": 0,
|
|
"initial_scale_power": 16,
|
|
"loss_scale_window": 1000,
|
|
"hysteresis": 2,
|
|
"min_loss_scale": 1
|
|
},
|
|
"zero_optimization": {
|
|
"stage": 2,
|
|
"allgather_partitions": true,
|
|
"allgather_bucket_size": 5e8,
|
|
"reduce_scatter": true,
|
|
"reduce_bucket_size": 5e8,
|
|
"overlap_comm": false,
|
|
"contiguous_gradients": true
|
|
}
|
|
}
|
|
```
|
|
|
|
</details>
|
|
|
|
### Export model
|
|
|
|
```bash
|
|
python src/export_model.py \
|
|
--model_name_or_path path_to_llama_model \
|
|
--template default \
|
|
--finetuning_type lora \
|
|
--checkpoint_dir path_to_checkpoint \
|
|
--export_dir path_to_export
|
|
```
|
|
|
|
### API Demo
|
|
|
|
```bash
|
|
python src/api_demo.py \
|
|
--model_name_or_path path_to_llama_model \
|
|
--template default \
|
|
--finetuning_type lora \
|
|
--checkpoint_dir path_to_checkpoint
|
|
```
|
|
|
|
> [!NOTE]
|
|
> Visit `http://localhost:8000/docs` for API documentation.
|
|
|
|
### CLI Demo
|
|
|
|
```bash
|
|
python src/cli_demo.py \
|
|
--model_name_or_path path_to_llama_model \
|
|
--template default \
|
|
--finetuning_type lora \
|
|
--checkpoint_dir path_to_checkpoint
|
|
```
|
|
|
|
### Web Demo
|
|
|
|
```bash
|
|
python src/web_demo.py \
|
|
--model_name_or_path path_to_llama_model \
|
|
--template default \
|
|
--finetuning_type lora \
|
|
--checkpoint_dir path_to_checkpoint
|
|
```
|
|
|
|
### Evaluation
|
|
|
|
```bash
|
|
CUDA_VISIBLE_DEVICES=0 python src/evaluate.py \
|
|
--model_name_or_path path_to_llama_model \
|
|
--finetuning_type lora \
|
|
--checkpoint_dir path_to_checkpoint \
|
|
--template vanilla \
|
|
--task mmlu \
|
|
--split test \
|
|
--lang en \
|
|
--n_shot 5 \
|
|
--batch_size 4
|
|
```
|
|
|
|
### Predict
|
|
|
|
```bash
|
|
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
|
|
--stage sft \
|
|
--model_name_or_path path_to_llama_model \
|
|
--do_predict \
|
|
--dataset alpaca_gpt4_en \
|
|
--template default \
|
|
--finetuning_type lora \
|
|
--checkpoint_dir path_to_checkpoint \
|
|
--output_dir path_to_predict_result \
|
|
--per_device_eval_batch_size 8 \
|
|
--max_samples 100 \
|
|
--predict_with_generate
|
|
```
|
|
|
|
> [!NOTE]
|
|
> We recommend using `--per_device_eval_batch_size=1` and `--max_target_length 128` at 4/8-bit predict.
|
|
|
|
## License
|
|
|
|
This repository is licensed under the [Apache-2.0 License](LICENSE).
|
|
|
|
Please follow the model licenses to use the corresponding model weights: [LLaMA](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) / [LLaMA-2](https://ai.meta.com/llama/license/) / [BLOOM](https://huggingface.co/spaces/bigscience/license) / [Falcon](LICENSE) / [Baichuan](https://huggingface.co/baichuan-inc/baichuan-7B/resolve/main/baichuan-7B%20%E6%A8%A1%E5%9E%8B%E8%AE%B8%E5%8F%AF%E5%8D%8F%E8%AE%AE.pdf) / [Baichuan2](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/resolve/main/Baichuan%202%E6%A8%A1%E5%9E%8B%E7%A4%BE%E5%8C%BA%E8%AE%B8%E5%8F%AF%E5%8D%8F%E8%AE%AE.pdf) / [InternLM](https://github.com/InternLM/InternLM#open-source-license) / [Qwen](https://huggingface.co/Qwen/Qwen-7B-Chat/blob/main/LICENSE) / [ChatGLM3](https://github.com/THUDM/ChatGLM3/blob/main/MODEL_LICENSE) / [Phi-1.5](https://huggingface.co/microsoft/phi-1_5/resolve/main/Research%20License.docx)
|
|
|
|
## Citation
|
|
|
|
If this work is helpful, please kindly cite as:
|
|
|
|
```bibtex
|
|
@Misc{llama-factory,
|
|
title = {LLaMA Factory},
|
|
author = {hiyouga},
|
|
howpublished = {\url{https://github.com/hiyouga/LLaMA-Factory}},
|
|
year = {2023}
|
|
}
|
|
```
|
|
|
|
## Acknowledgement
|
|
|
|
This repo benefits from [PEFT](https://github.com/huggingface/peft), [QLoRA](https://github.com/artidoro/qlora) and [FastChat](https://github.com/lm-sys/FastChat). Thanks for their wonderful works.
|
|
|
|
## Star History
|
|
|
|
![Star History Chart](https://api.star-history.com/svg?repos=hiyouga/LLaMA-Factory&type=Date)
|