Go to file
hiyouga 5f3ab3ddde fix webui 2023-09-21 19:55:38 +08:00
assets Update wechat.jpg 2023-09-21 13:52:02 +08:00
data add MathInstruct dataset 2023-09-13 22:30:14 +08:00
src fix webui 2023-09-21 19:55:38 +08:00
tests add tests.cal_flops.py 2023-09-16 23:40:41 +08:00
.gitattributes Update .gitattributes 2023-08-01 16:28:54 +08:00
.gitignore Update .gitignore 2023-08-18 01:43:42 +08:00
LICENSE Initial commit 2023-05-28 18:09:04 +08:00
README.md tiny fix 2023-09-21 15:25:29 +08:00
README_zh.md tiny fix 2023-09-21 15:25:29 +08:00
pyproject.toml modity code structure 2023-07-15 16:54:28 +08:00
requirements.txt fix #762 #814 2023-09-12 16:10:10 +08:00
setup.py modity code structure 2023-07-15 16:54:28 +08:00

README.md

LLaMA Efficient Tuning

GitHub Repo stars GitHub Code License GitHub last commit PyPI Downloads GitHub pull request Discord

👋 Join our WeChat.

 English | [中文](README_zh.md) 

Changelog

[23/09/10] Now we support using FlashAttention for the LLaMA models. Try --flash_attn argument to enable FlashAttention-2 if you are using RTX4090, A100 or H100 GPUs (experimental feature).

[23/08/18] Now we support resuming training, upgrade transformers to 4.31.0 to enjoy this feature.

[23/08/12] Now we support RoPE scaling to extend the context length of the LLaMA models. Try --rope_scaling linear argument in training and --rope_scaling dynamic argument at inference to extrapolate the position embeddings.

[23/08/11] Now we support DPO training for instruction-tuned models. See this example to train your models.

[23/07/31] Now we support dataset streaming. Try --streaming and --max_steps 10000 arguments to load your dataset in streaming mode.

[23/07/29] We release two instruction-tuned 13B models at Hugging Face. See these Hugging Face Repos (LLaMA-2 / Baichuan) for details.

[23/07/18] Now we develop an all-in-one Web UI for training, evaluation and inference. Try train_web.py to fine-tune models in your Web browser. Thank @KanadeSiina and @codemayq for their efforts in the development.

[23/07/09] Now we release FastEdit 🩹, an easy-to-use package for editing the factual knowledge of large language models efficiently. Please follow FastEdit if you are interested.

[23/06/29] We provide a reproducible example of training a chat model using instruction-following datasets, see Baichuan-7B-sft for details.

[23/06/22] Now we align the demo API with the OpenAI's format where you can insert the fine-tuned model in arbitrary ChatGPT-based applications.

[23/06/03] Now we support quantized training and inference (aka QLoRA). Try --quantization_bit 4/8 argument to work with quantized models.

Supported Models

Model Model size Default module Template
LLaMA 7B/13B/33B/65B q_proj,v_proj -
LLaMA-2 7B/13B/70B q_proj,v_proj llama2
BLOOM 560M/1.1B/1.7B/3B/7.1B/176B query_key_value -
BLOOMZ 560M/1.1B/1.7B/3B/7.1B/176B query_key_value -
Falcon 7B/40B query_key_value -
Baichuan 7B/13B W_pack baichuan
Baichuan2 7B/13B W_pack baichuan2
InternLM 7B/20B q_proj,v_proj intern
Qwen 7B c_attn chatml
XVERSE 13B q_proj,v_proj xverse
ChatGLM2 6B query_key_value chatglm2
Phi-1.5 1.5B Wqkv -

[!NOTE] Default module is used for the --lora_target argument, you can use --lora_target all to specify all the available modules.

For the "base" models, the --template argument can be chosen from default, alpaca, vicuna etc. But make sure to use the corresponding template for the "chat" models.

Supported Training Approaches

Approach Full-parameter Partial-parameter LoRA QLoRA
Pre-Training
Supervised Fine-Tuning
Reward Modeling
PPO Training
DPO Training

[!NOTE] Use --quantization_bit 4/8 argument to enable QLoRA.

Provided Datasets

Please refer to data/README.md for details.

Some datasets require confirmation before using them, so we recommend logging in with your Hugging Face account using these commands.

pip install --upgrade huggingface_hub
huggingface-cli login

Requirement

  • Python 3.8+ and PyTorch 1.13.1+
  • 🤗Transformers, Datasets, Accelerate, PEFT and TRL
  • sentencepiece, protobuf and tiktoken
  • jieba, rouge-chinese and nltk (used at evaluation)
  • gradio and matplotlib (used in web_demo.py)
  • uvicorn, fastapi and sse-starlette (used in api_demo.py)

And powerful GPUs!

Getting Started

Data Preparation (optional)

Please refer to data/example_dataset for checking the details about the format of dataset files. You can either use a single .json file or a dataset loading script with multiple files to create a custom dataset.

[!NOTE] Please update data/dataset_info.json to use your custom dataset. About the format of this file, please refer to data/README.md.

Dependence Installation (optional)

git clone https://github.com/hiyouga/LLaMA-Efficient-Tuning.git
conda create -n llama_etuning python=3.10
conda activate llama_etuning
cd LLaMA-Efficient-Tuning
pip install -r requirements.txt

If you want to enable the quantized LoRA (QLoRA) on the Windows platform, you will be required to install a pre-built version of bitsandbytes library, which supports CUDA 11.1 to 12.1.

pip install https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-0.39.1-py3-none-win_amd64.whl

All-in-one Web UI

CUDA_VISIBLE_DEVICES=0 python src/train_web.py

We strongly recommend using the all-in-one Web UI for newcomers since it can also generate training scripts automatically, even without a GPU environment.

[!WARNING] Currently the web UI only supports training on a single GPU.

Train on a single GPU

[!IMPORTANT] If you want to train models on multiple GPUs, please refer to Distributed Training.

Pre-Training

CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
    --stage pt \
    --model_name_or_path path_to_llama_model \
    --do_train \
    --dataset wiki_demo \
    --finetuning_type lora \
    --lora_target q_proj,v_proj \
    --output_dir path_to_pt_checkpoint \
    --overwrite_cache \
    --per_device_train_batch_size 4 \
    --gradient_accumulation_steps 4 \
    --lr_scheduler_type cosine \
    --logging_steps 10 \
    --save_steps 1000 \
    --learning_rate 5e-5 \
    --num_train_epochs 3.0 \
    --plot_loss \
    --fp16

Supervised Fine-Tuning

CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
    --stage sft \
    --model_name_or_path path_to_llama_model \
    --do_train \
    --dataset alpaca_gpt4_en \
    --template default \
    --finetuning_type lora \
    --lora_target q_proj,v_proj \
    --output_dir path_to_sft_checkpoint \
    --overwrite_cache \
    --per_device_train_batch_size 4 \
    --gradient_accumulation_steps 4 \
    --lr_scheduler_type cosine \
    --logging_steps 10 \
    --save_steps 1000 \
    --learning_rate 5e-5 \
    --num_train_epochs 3.0 \
    --plot_loss \
    --fp16

Reward Modeling

CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
    --stage rm \
    --model_name_or_path path_to_llama_model \
    --do_train \
    --dataset comparison_gpt4_en \
    --template default \
    --finetuning_type lora \
    --lora_target q_proj,v_proj \
    --resume_lora_training False \
    --checkpoint_dir path_to_sft_checkpoint \
    --output_dir path_to_rm_checkpoint \
    --per_device_train_batch_size 2 \
    --gradient_accumulation_steps 4 \
    --lr_scheduler_type cosine \
    --logging_steps 10 \
    --save_steps 1000 \
    --learning_rate 1e-6 \
    --num_train_epochs 1.0 \
    --plot_loss \
    --fp16

PPO Training

CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
    --stage ppo \
    --model_name_or_path path_to_llama_model \
    --do_train \
    --dataset alpaca_gpt4_en \
    --template default \
    --finetuning_type lora \
    --lora_target q_proj,v_proj \
    --resume_lora_training False \
    --checkpoint_dir path_to_sft_checkpoint \
    --reward_model path_to_rm_checkpoint \
    --output_dir path_to_ppo_checkpoint \
    --per_device_train_batch_size 2 \
    --gradient_accumulation_steps 4 \
    --lr_scheduler_type cosine \
    --logging_steps 10 \
    --save_steps 1000 \
    --learning_rate 1e-5 \
    --num_train_epochs 1.0 \
    --plot_loss \
    --fp16

DPO Training

CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
    --stage dpo \
    --model_name_or_path path_to_llama_model \
    --do_train \
    --dataset comparison_gpt4_en \
    --template default \
    --finetuning_type lora \
    --lora_target q_proj,v_proj \
    --resume_lora_training False \
    --checkpoint_dir path_to_sft_checkpoint \
    --output_dir path_to_dpo_checkpoint \
    --per_device_train_batch_size 2 \
    --gradient_accumulation_steps 4 \
    --lr_scheduler_type cosine \
    --logging_steps 10 \
    --save_steps 1000 \
    --learning_rate 1e-5 \
    --num_train_epochs 1.0 \
    --plot_loss \
    --fp16

Distributed Training

Use Huggingface Accelerate

accelerate config # configure the environment
accelerate launch src/train_bash.py # arguments (same as above)
Example config for LoRA training
compute_environment: LOCAL_MACHINE
distributed_type: MULTI_GPU
downcast_bf16: 'no'
gpu_ids: all
machine_rank: 0
main_training_function: main
mixed_precision: fp16
num_machines: 1
num_processes: 4
rdzv_backend: static
same_network: true
tpu_env: []
tpu_use_cluster: false
tpu_use_sudo: false
use_cpu: false

Use DeepSpeed

deepspeed --num_gpus 8 --master_port=9901 src/train_bash.py \
    --deepspeed ds_config.json \
    ... # arguments (same as above)
Example config for full-parameter training with DeepSpeed ZeRO-2
{
  "train_batch_size": "auto",
  "train_micro_batch_size_per_gpu": "auto",
  "gradient_accumulation_steps": "auto",
  "gradient_clipping": "auto",
  "zero_allow_untested_optimizer": true,
  "fp16": {
    "enabled": "auto",
    "loss_scale": 0,
    "initial_scale_power": 16,
    "loss_scale_window": 1000,
    "hysteresis": 2,
    "min_loss_scale": 1
  },  
  "zero_optimization": {
    "stage": 2,
    "allgather_partitions": true,
    "allgather_bucket_size": 5e8,
    "reduce_scatter": true,
    "reduce_bucket_size": 5e8,
    "overlap_comm": false,
    "contiguous_gradients": true
  }
}

Export model

python src/export_model.py \
    --model_name_or_path path_to_llama_model \
    --template default \
    --finetuning_type lora \
    --checkpoint_dir path_to_checkpoint \
    --output_dir path_to_export

API Demo

python src/api_demo.py \
    --model_name_or_path path_to_llama_model \
    --template default \
    --finetuning_type lora \
    --checkpoint_dir path_to_checkpoint

[!NOTE] Visit http://localhost:8000/docs for API documentation.

CLI Demo

python src/cli_demo.py \
    --model_name_or_path path_to_llama_model \
    --template default \
    --finetuning_type lora \
    --checkpoint_dir path_to_checkpoint

Web Demo

python src/web_demo.py \
    --model_name_or_path path_to_llama_model \
    --template default \
    --finetuning_type lora \
    --checkpoint_dir path_to_checkpoint

Evaluation (BLEU and ROUGE_CHINESE)

CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
    --stage sft \
    --model_name_or_path path_to_llama_model \
    --do_eval \
    --dataset alpaca_gpt4_en \
    --template default \
    --finetuning_type lora \
    --checkpoint_dir path_to_checkpoint \
    --output_dir path_to_eval_result \
    --per_device_eval_batch_size 8 \
    --max_samples 100 \
    --predict_with_generate

[!NOTE] We recommend using --per_device_eval_batch_size=1 and --max_target_length 128 at 4/8-bit evaluation.

Predict

CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
    --stage sft \
    --model_name_or_path path_to_llama_model \
    --do_predict \
    --dataset alpaca_gpt4_en \
    --template default \
    --finetuning_type lora \
    --checkpoint_dir path_to_checkpoint \
    --output_dir path_to_predict_result \
    --per_device_eval_batch_size 8 \
    --max_samples 100 \
    --predict_with_generate

License

This repository is licensed under the Apache-2.0 License.

Please follow the model licenses to use the corresponding model weights:

Citation

If this work is helpful, please kindly cite as:

@Misc{llama-efficient-tuning,
  title = {LLaMA Efficient Tuning},
  author = {hiyouga},
  howpublished = {\url{https://github.com/hiyouga/LLaMA-Efficient-Tuning}},
  year = {2023}
}

Acknowledgement

This repo benefits from PEFT, QLoRA, FastChat and OpenChatKit. Thanks for their wonderful works.

Star History

Star History Chart