LLaMA-Factory-310P3/README_zh.md

505 lines
21 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# LLaMA Factory: 轻松的大模型训练与评估
[![GitHub Repo stars](https://img.shields.io/github/stars/hiyouga/LLaMA-Factory?style=social)](https://github.com/hiyouga/LLaMA-Factory/stargazers)
[![GitHub Code License](https://img.shields.io/github/license/hiyouga/LLaMA-Factory)](LICENSE)
[![GitHub last commit](https://img.shields.io/github/last-commit/hiyouga/LLaMA-Factory)](https://github.com/hiyouga/LLaMA-Factory/commits/main)
[![PyPI](https://img.shields.io/pypi/v/llmtuner)](https://pypi.org/project/llmtuner/)
[![Downloads](https://static.pepy.tech/badge/llmtuner)](https://pypi.org/project/llmtuner/)
[![GitHub pull request](https://img.shields.io/badge/PRs-welcome-blue)](https://github.com/hiyouga/LLaMA-Factory/pulls)
[![Discord](https://dcbadge.vercel.app/api/server/c2EPEt5NU?compact=true&style=flat)](https://discord.gg/c2EPEt5NU)
[![Spaces](https://img.shields.io/badge/🤗-Open%20In%20Spaces-blue)](https://huggingface.co/spaces/hiyouga/LLaMA-Board)
👋 加入我们的[微信群](assets/wechat.jpg)。
\[ [English](README.md) | 中文 \]
## LLaMA Board: 通过一站式网页界面快速上手 LLaMA Factory
通过 **[🤗 Spaces](https://huggingface.co/spaces/hiyouga/LLaMA-Board)** 预览 LLaMA Board。
使用 `CUDA_VISIBLE_DEVICES=0 python src/train_web.py` 启动 LLaMA Board。该模式目前仅支持单卡训练
下面是使用单张 GPU 在 10 分钟内更改对话式大型语言模型自我认知的示例。
https://github.com/hiyouga/LLaMA-Factory/assets/16256802/6ba60acc-e2e2-4bec-b846-2d88920d5ba1
## 更新日志
[23/10/21] 我们支持了 **[NEFTune](https://arxiv.org/abs/2310.05914)** 训练技巧。请使用 `--neft_alpha` 参数启用 NEFTune例如 `--neft_alpha 5`
[23/09/27] 我们针对 LLaMA 模型支持了 [LongLoRA](https://github.com/dvlab-research/LongLoRA) 提出的 **$S^2$-Attn**。请使用 `--shift_attn` 参数以启用该功能。
[23/09/23] 我们在项目中集成了 MMLU、C-Eval 和 CMMLU 评估集。使用方法请参阅[此示例](#模型评估)。
[23/09/10] 我们针对 LLaMA 模型支持了 **[FlashAttention-2](https://github.com/Dao-AILab/flash-attention)**。如果您使用的是 RTX4090、A100 或 H100 GPU请使用 `--flash_attn` 参数以启用 FlashAttention-2。
[23/08/12] 我们支持了 **RoPE 插值**来扩展 LLaMA 模型的上下文长度。请使用 `--rope_scaling linear` 参数训练模型或使用 `--rope_scaling dynamic` 参数评估模型。
[23/08/11] 我们支持了指令模型的 **[DPO 训练](https://arxiv.org/abs/2305.18290)**。使用方法请参阅[此示例](#dpo-训练)。
[23/07/31] 我们支持了**数据流式加载**。请尝试使用 `--streaming``--max_steps 10000` 参数来流式加载数据集。
[23/07/29] 我们在 Hugging Face 发布了两个 13B 指令微调模型。详细内容请查阅我们的 Hugging Face 项目([LLaMA-2](https://huggingface.co/hiyouga/Llama-2-Chinese-13b-chat) / [Baichuan](https://huggingface.co/hiyouga/Baichuan-13B-sft))。
[23/07/18] 我们开发了支持训练和测试的**浏览器一体化界面**。请使用 `train_web.py` 在您的浏览器中微调模型。感谢 [@KanadeSiina](https://github.com/KanadeSiina) 和 [@codemayq](https://github.com/codemayq) 在该功能开发中付出的努力。
[23/07/09] 我们开源了 **[FastEdit](https://github.com/hiyouga/FastEdit)** ⚡🩹,一个简单易用的、能迅速编辑大模型事实记忆的工具包。如果您感兴趣请关注我们的 [FastEdit](https://github.com/hiyouga/FastEdit) 项目。
[23/06/29] 我们提供了一个**可复现的**指令模型微调示例,详细内容请查阅 [Baichuan-7B-sft](https://huggingface.co/hiyouga/Baichuan-7B-sft)。
[23/06/22] 我们对齐了[示例 API](src/api_demo.py) 与 [OpenAI API](https://platform.openai.com/docs/api-reference/chat) 的格式,您可以将微调模型接入**任意基于 ChatGPT 的应用**中。
[23/06/03] 我们实现了 4 比特的 LoRA 训练(也称 **[QLoRA](https://github.com/artidoro/qlora)**)。请使用 `--quantization_bit 4` 参数进行 4 比特量化微调。
## 模型
| 模型名 | 模型大小 | 默认模块 | Template |
| -------------------------------------------------------- | --------------------------- | ----------------- | --------- |
| [Baichuan](https://github.com/baichuan-inc/Baichuan-13B) | 7B/13B | W_pack | baichuan |
| [Baichuan2](https://github.com/baichuan-inc/Baichuan2) | 7B/13B | W_pack | baichuan2 |
| [BLOOM](https://huggingface.co/bigscience/bloom) | 560M/1.1B/1.7B/3B/7.1B/176B | query_key_value | - |
| [BLOOMZ](https://huggingface.co/bigscience/bloomz) | 560M/1.1B/1.7B/3B/7.1B/176B | query_key_value | - |
| [ChatGLM3](https://github.com/THUDM/ChatGLM3) | 6B | query_key_value | chatglm3 |
| [Falcon](https://huggingface.co/tiiuae/falcon-7b) | 7B/40B/180B | query_key_value | falcon |
| [InternLM](https://github.com/InternLM/InternLM) | 7B/20B | q_proj,v_proj | intern |
| [LLaMA](https://github.com/facebookresearch/llama) | 7B/13B/33B/65B | q_proj,v_proj | - |
| [LLaMA-2](https://huggingface.co/meta-llama) | 7B/13B/70B | q_proj,v_proj | llama2 |
| [Mistral](https://huggingface.co/mistralai) | 7B | q_proj,v_proj | mistral |
| [Phi-1.5](https://huggingface.co/microsoft/phi-1_5) | 1.3B | Wqkv | - |
| [Qwen](https://github.com/QwenLM/Qwen) | 7B/14B | c_attn | qwen |
| [XVERSE](https://github.com/xverse-ai) | 7B/13B/65B | q_proj,v_proj | xverse |
> [!NOTE]
> **默认模块**应作为 `--lora_target` 参数的默认值,可使用 `--lora_target all` 参数指定全部模块。
>
> 对于所有“基座”Base模型`--template` 参数可以是 `default`, `alpaca`, `vicuna` 等任意值。但“对话”Chat模型请务必使用**对应的模板**。
项目所支持模型的完整列表请参阅 [constants.py](src/llmtuner/extras/constants.py)。
## 训练方法
| 方法 | 全参数训练 | 部分参数训练 | LoRA | QLoRA |
| ---------------------- | ------------------ | ------------------ | ------------------ | ------------------ |
| 预训练 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| 指令监督微调 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| 奖励模型训练 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| PPO 训练 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| DPO 训练 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
> [!NOTE]
> 请使用 `--quantization_bit 4/8` 参数来启用 QLoRA 训练。
## 数据集
<details><summary>预训练数据集</summary>
- [Wiki Demo (en)](data/wiki_demo.txt)
- [RefinedWeb (en)](https://huggingface.co/datasets/tiiuae/falcon-refinedweb)
- [RedPajama V2 (en)](https://huggingface.co/datasets/togethercomputer/RedPajama-Data-V2)
- [Wikipedia (en)](https://huggingface.co/datasets/olm/olm-wikipedia-20221220)
- [Wikipedia (zh)](https://huggingface.co/datasets/pleisto/wikipedia-cn-20230720-filtered)
- [Pile (en)](https://huggingface.co/datasets/EleutherAI/pile)
- [SkyPile (zh)](https://huggingface.co/datasets/Skywork/SkyPile-150B)
- [The Stack (en)](https://huggingface.co/datasets/bigcode/the-stack)
- [StarCoder (en)](https://huggingface.co/datasets/bigcode/starcoderdata)
</details>
<details><summary>指令微调数据集</summary>
- [Stanford Alpaca (en)](https://github.com/tatsu-lab/stanford_alpaca)
- [Stanford Alpaca (zh)](https://github.com/ymcui/Chinese-LLaMA-Alpaca)
- [GPT-4 Generated Data (en&zh)](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM)
- [Self-cognition (zh)](data/self_cognition.json)
- [Open Assistant (multilingual)](https://huggingface.co/datasets/OpenAssistant/oasst1)
- [ShareGPT (zh)](https://huggingface.co/datasets/QingyiSi/Alpaca-CoT/tree/main/Chinese-instruction-collection)
- [Guanaco Dataset (multilingual)](https://huggingface.co/datasets/JosephusCheung/GuanacoDataset)
- [BELLE 2M (zh)](https://huggingface.co/datasets/BelleGroup/train_2M_CN)
- [BELLE 1M (zh)](https://huggingface.co/datasets/BelleGroup/train_1M_CN)
- [BELLE 0.5M (zh)](https://huggingface.co/datasets/BelleGroup/train_0.5M_CN)
- [BELLE Dialogue 0.4M (zh)](https://huggingface.co/datasets/BelleGroup/generated_chat_0.4M)
- [BELLE School Math 0.25M (zh)](https://huggingface.co/datasets/BelleGroup/school_math_0.25M)
- [BELLE Multiturn Chat 0.8M (zh)](https://huggingface.co/datasets/BelleGroup/multiturn_chat_0.8M)
- [UltraChat (en)](https://github.com/thunlp/UltraChat)
- [LIMA (en)](https://huggingface.co/datasets/GAIR/lima)
- [OpenPlatypus (en)](https://huggingface.co/datasets/garage-bAInd/Open-Platypus)
- [CodeAlpaca 20k (en)](https://huggingface.co/datasets/sahil2801/CodeAlpaca-20k)
- [Alpaca CoT (multilingual)](https://huggingface.co/datasets/QingyiSi/Alpaca-CoT)
- [OpenOrca (en)](https://huggingface.co/datasets/Open-Orca/OpenOrca)
- [MathInstruct (en)](https://huggingface.co/datasets/TIGER-Lab/MathInstruct)
- [Firefly 1.1M (zh)](https://huggingface.co/datasets/YeungNLP/firefly-train-1.1M)
- [Web QA (zh)](https://huggingface.co/datasets/suolyer/webqa)
- [WebNovel (zh)](https://huggingface.co/datasets/zxbsmk/webnovel_cn)
- [Ad Gen (zh)](https://huggingface.co/datasets/HasturOfficial/adgen)
- [ShareGPT Hyperfiltered (en)](https://huggingface.co/datasets/totally-not-an-llm/sharegpt-hyperfiltered-3k)
- [ShareGPT4 (en&zh)](https://huggingface.co/datasets/shibing624/sharegpt_gpt4)
- [UltraChat 200k (en)](https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k)
- [AgentInstruct (en)](https://huggingface.co/datasets/THUDM/AgentInstruct)
- [LMSYS Chat 1M (en)](https://huggingface.co/datasets/lmsys/lmsys-chat-1m)
- [Evol Instruct V2 (en)](https://huggingface.co/datasets/WizardLM/WizardLM_evol_instruct_V2_196k)
</details>
<details><summary>偏好数据集</summary>
- [HH-RLHF (en)](https://huggingface.co/datasets/Anthropic/hh-rlhf)
- [Open Assistant (multilingual)](https://huggingface.co/datasets/OpenAssistant/oasst1)
- [GPT-4 Generated Data (en&zh)](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM)
</details>
使用方法请参考 [data/README_zh.md](data/README_zh.md) 文件。
部分数据集的使用需要确认,我们推荐使用下述命令登录您的 Hugging Face 账户。
```bash
pip install --upgrade huggingface_hub
huggingface-cli login
```
## 软件依赖
- Python 3.8+ 和 PyTorch 1.13.1+
- 🤗Transformers, Datasets, Accelerate, PEFT 和 TRL
- sentencepiece, protobuf 和 tiktoken
- jieba, rouge-chinese 和 nltk (用于评估及预测)
- gradio 和 matplotlib (用于网页端交互)
- uvicorn, fastapi 和 sse-starlette (用于 API)
以及 **强而有力的 GPU**
## 如何使用
### 数据准备(可跳过)
关于数据集文件的格式,请参考 [data/README_zh.md](data/README_zh.md) 的内容。构建自定义数据集时,既可以使用单个 `.json` 文件,也可以使用一个[数据加载脚本](https://huggingface.co/docs/datasets/dataset_script)和多个文件。
> [!NOTE]
> 使用自定义数据集时,请更新 `data/dataset_info.json` 文件,该文件的格式请参考 `data/README_zh.md`。
### 环境搭建(可跳过)
```bash
git clone https://github.com/hiyouga/LLaMA-Factory.git
conda create -n llama_factory python=3.10
conda activate llama_factory
cd LLaMA-Factory
pip install -r requirements.txt
```
如果要在 Windows 平台上开启量化 LoRAQLoRA需要安装预编译的 `bitsandbytes` 库, 支持 CUDA 11.1 到 12.1.
```bash
pip install https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-0.39.1-py3-none-win_amd64.whl
```
### 单 GPU 训练
> [!IMPORTANT]
> 如果您使用多张 GPU 训练模型,请移步[多 GPU 分布式训练](#多-gpu-分布式训练)部分。
#### 预训练
```bash
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage pt \
--model_name_or_path path_to_llama_model \
--do_train \
--dataset wiki_demo \
--finetuning_type lora \
--lora_target q_proj,v_proj \
--output_dir path_to_pt_checkpoint \
--overwrite_cache \
--per_device_train_batch_size 4 \
--gradient_accumulation_steps 4 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--save_steps 1000 \
--learning_rate 5e-5 \
--num_train_epochs 3.0 \
--plot_loss \
--fp16
```
#### 指令监督微调
```bash
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage sft \
--model_name_or_path path_to_llama_model \
--do_train \
--dataset alpaca_gpt4_zh \
--template default \
--finetuning_type lora \
--lora_target q_proj,v_proj \
--output_dir path_to_sft_checkpoint \
--overwrite_cache \
--per_device_train_batch_size 4 \
--gradient_accumulation_steps 4 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--save_steps 1000 \
--learning_rate 5e-5 \
--num_train_epochs 3.0 \
--plot_loss \
--fp16
```
#### 奖励模型训练
```bash
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage rm \
--model_name_or_path path_to_llama_model \
--do_train \
--dataset comparison_gpt4_zh \
--template default \
--finetuning_type lora \
--lora_target q_proj,v_proj \
--resume_lora_training False \
--checkpoint_dir path_to_sft_checkpoint \
--output_dir path_to_rm_checkpoint \
--per_device_train_batch_size 2 \
--gradient_accumulation_steps 4 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--save_steps 1000 \
--learning_rate 1e-6 \
--num_train_epochs 1.0 \
--plot_loss \
--fp16
```
#### PPO 训练
```bash
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage ppo \
--model_name_or_path path_to_llama_model \
--do_train \
--dataset alpaca_gpt4_zh \
--template default \
--finetuning_type lora \
--lora_target q_proj,v_proj \
--resume_lora_training False \
--checkpoint_dir path_to_sft_checkpoint \
--reward_model path_to_rm_checkpoint \
--output_dir path_to_ppo_checkpoint \
--per_device_train_batch_size 2 \
--gradient_accumulation_steps 4 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--save_steps 1000 \
--learning_rate 1e-5 \
--num_train_epochs 1.0 \
--plot_loss
```
#### DPO 训练
```bash
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage dpo \
--model_name_or_path path_to_llama_model \
--do_train \
--dataset comparison_gpt4_zh \
--template default \
--finetuning_type lora \
--lora_target q_proj,v_proj \
--resume_lora_training False \
--checkpoint_dir path_to_sft_checkpoint \
--output_dir path_to_dpo_checkpoint \
--per_device_train_batch_size 2 \
--gradient_accumulation_steps 4 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--save_steps 1000 \
--learning_rate 1e-5 \
--num_train_epochs 1.0 \
--plot_loss \
--fp16
```
### 多 GPU 分布式训练
#### 使用 Huggingface Accelerate
```bash
accelerate config # 首先配置分布式环境
accelerate launch src/train_bash.py # 参数同上
```
<details><summary>LoRA 训练的 Accelerate 配置示例</summary>
```yaml
compute_environment: LOCAL_MACHINE
distributed_type: MULTI_GPU
downcast_bf16: 'no'
gpu_ids: all
machine_rank: 0
main_training_function: main
mixed_precision: fp16
num_machines: 1
num_processes: 4
rdzv_backend: static
same_network: true
tpu_env: []
tpu_use_cluster: false
tpu_use_sudo: false
use_cpu: false
```
</details>
#### 使用 DeepSpeed
```bash
deepspeed --num_gpus 8 --master_port=9901 src/train_bash.py \
--deepspeed ds_config.json \
... # 参数同上
```
<details><summary>使用 DeepSpeed ZeRO-2 进行全参数训练的 DeepSpeed 配置示例</summary>
```json
{
"train_batch_size": "auto",
"train_micro_batch_size_per_gpu": "auto",
"gradient_accumulation_steps": "auto",
"gradient_clipping": "auto",
"zero_allow_untested_optimizer": true,
"fp16": {
"enabled": "auto",
"loss_scale": 0,
"initial_scale_power": 16,
"loss_scale_window": 1000,
"hysteresis": 2,
"min_loss_scale": 1
},
"zero_optimization": {
"stage": 2,
"allgather_partitions": true,
"allgather_bucket_size": 5e8,
"reduce_scatter": true,
"reduce_bucket_size": 5e8,
"overlap_comm": false,
"contiguous_gradients": true
}
}
```
</details>
### 导出微调后的完整模型
```bash
python src/export_model.py \
--model_name_or_path path_to_llama_model \
--template default \
--finetuning_type lora \
--checkpoint_dir path_to_checkpoint \
--export_dir path_to_export
```
### API 服务
```bash
python src/api_demo.py \
--model_name_or_path path_to_llama_model \
--template default \
--finetuning_type lora \
--checkpoint_dir path_to_checkpoint
```
> [!NOTE]
> 关于 API 文档请见 `http://localhost:8000/docs`。
### 命令行测试
```bash
python src/cli_demo.py \
--model_name_or_path path_to_llama_model \
--template default \
--finetuning_type lora \
--checkpoint_dir path_to_checkpoint
```
### 浏览器测试
```bash
python src/web_demo.py \
--model_name_or_path path_to_llama_model \
--template default \
--finetuning_type lora \
--checkpoint_dir path_to_checkpoint
```
### 模型评估
```bash
CUDA_VISIBLE_DEVICES=0 python src/evaluate.py \
--model_name_or_path path_to_llama_model \
--finetuning_type lora \
--checkpoint_dir path_to_checkpoint \
--template vanilla \
--task ceval \
--split validation \
--lang zh \
--n_shot 5 \
--batch_size 4
```
### 模型预测
```bash
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage sft \
--model_name_or_path path_to_llama_model \
--do_predict \
--dataset alpaca_gpt4_zh \
--template default \
--finetuning_type lora \
--checkpoint_dir path_to_checkpoint \
--output_dir path_to_predict_result \
--per_device_eval_batch_size 8 \
--max_samples 100 \
--predict_with_generate
```
> [!NOTE]
> 我们建议在量化模型的预测中使用 `--per_device_eval_batch_size=1` 和 `--max_target_length 128`。
## 使用了 LLaMA Factory 的项目
- **[StarWhisper](https://github.com/Yu-Yang-Li/StarWhisper)**: 天文大模型 StarWhisper基于 ChatGLM2-6B 和 Qwen-14B 在天文数据上微调而得。
- **[DISC-LawLLM](https://github.com/FudanDISC/DISC-LawLLM)**: 中文法律领域大模型 DISC-LawLLM基于 Baichuan-13B 微调而得,具有法律推理和知识检索能力。
- **[Sunsimiao](https://github.com/thomas-yanxin/Sunsimiao)**: 孙思邈中文医疗大模型 Sumsimiao基于 Baichuan-7B 和 ChatGLM-6B 在中文医疗数据上微调而得。
- **[CareGPT](https://github.com/WangRongsheng/CareGPT)**: 医疗大模型项目 CareGPT基于 LLaMA2-7B 和 Baichuan-13B 在中文医疗数据上微调而得。
## 协议
本仓库的代码依照 [Apache-2.0](LICENSE) 协议开源。
使用模型权重时,请遵循对应的模型协议:[Baichuan](https://huggingface.co/baichuan-inc/Baichuan-13B-Base/resolve/main/Community%20License%20for%20Baichuan-13B%20Model.pdf) / [Baichuan2](https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat/resolve/main/Community%20License%20for%20Baichuan2%20Model.pdf) / [BLOOM](https://huggingface.co/spaces/bigscience/license) / [ChatGLM3](https://github.com/THUDM/ChatGLM3/blob/main/MODEL_LICENSE) / [Falcon](https://huggingface.co/tiiuae/falcon-180B/blob/main/LICENSE.txt) / [InternLM](https://github.com/InternLM/InternLM#license) / [LLaMA](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) / [LLaMA-2](https://ai.meta.com/llama/license/) / [Mistral](LICENSE) / [Phi-1.5](https://huggingface.co/microsoft/phi-1_5/resolve/main/Research%20License.docx) / [Qwen](https://github.com/QwenLM/Qwen/blob/main/LICENSE) / [XVERSE](https://github.com/xverse-ai/XVERSE-13B/blob/main/MODEL_LICENSE.pdf)
## 引用
如果您觉得此项目有帮助,请考虑以下列格式引用
```bibtex
@Misc{llama-factory,
title = {LLaMA Factory},
author = {hiyouga},
howpublished = {\url{https://github.com/hiyouga/LLaMA-Factory}},
year = {2023}
}
```
## 致谢
本项目受益于 [PEFT](https://github.com/huggingface/peft)、[QLoRA](https://github.com/artidoro/qlora) 和 [FastChat](https://github.com/lm-sys/FastChat),感谢以上诸位作者的付出。
## Star History
![Star History Chart](https://api.star-history.com/svg?repos=hiyouga/LLaMA-Factory&type=Date)