399 lines
15 KiB
Markdown
399 lines
15 KiB
Markdown
# LLaMA Efficient Tuning
|
|
|
|
[![GitHub Repo stars](https://img.shields.io/github/stars/hiyouga/LLaMA-Efficient-Tuning?style=social)](https://github.com/hiyouga/LLaMA-Efficient-Tuning/stargazers)
|
|
[![GitHub Code License](https://img.shields.io/github/license/hiyouga/LLaMA-Efficient-Tuning)](LICENSE)
|
|
[![GitHub last commit](https://img.shields.io/github/last-commit/hiyouga/LLaMA-Efficient-Tuning)](https://github.com/hiyouga/LLaMA-Efficient-Tuning/commits/main)
|
|
[![PyPI](https://img.shields.io/pypi/v/llmtuner)](https://pypi.org/project/llmtuner/)
|
|
[![GitHub pull request](https://img.shields.io/badge/PRs-welcome-blue)](https://github.com/hiyouga/LLaMA-Efficient-Tuning/pulls)
|
|
|
|
👋 Join our [WeChat](assets/wechat.jpg).
|
|
|
|
\[ English | [中文](README_zh.md) \]
|
|
|
|
## Changelog
|
|
|
|
[23/07/31] Now we support dataset streaming. Try `--streaming` and `--max_steps 100` arguments to stream your dataset.
|
|
|
|
[23/07/19] Now we support training the **LLaMA-2** models in this repo. Try `--model_name_or_path meta-llama/Llama-2-7b-hf` argument to use the LLaMA-2 model. Remember to use `--template llama2` argument when you are using the LLaMA-2-chat model.
|
|
|
|
[23/07/18] Now we develop an all-in-one Web UI for training, evaluation and inference. Try `train_web.py` to fine-tune models in your Web browser. Thank [@KanadeSiina](https://github.com/KanadeSiina) and [@codemayq](https://github.com/codemayq) for their efforts in the development.
|
|
|
|
[23/07/11] Now we support training the **Baichuan-13B** model in this repo. Try `--model_name_or_path baichuan-inc/Baichuan-13B-Base` and `--lora_target W_pack` arguments to train the Baichuan-13B model. Remember to use `--template baichuan` argument when you are using the Baichuan-13B-Chat model.
|
|
|
|
[23/07/09] Now we release [FastEdit](https://github.com/hiyouga/FastEdit)⚡🩹, an easy-to-use package for editing the factual knowledge of large language models efficiently. Please follow [FastEdit](https://github.com/hiyouga/FastEdit) if you are interested.
|
|
|
|
[23/07/07] Now we support training the **InternLM-7B** model in this repo. Try `--model_name_or_path internlm/internlm-7b` argument to use the InternLM model. Remember to use `--template intern` argument when you are using the InternLM-chat model.
|
|
|
|
[23/07/05] Now we support training the **Falcon-7B/40B** models in this repo. Try `--model_name_or_path tiiuae/falcon-7b` and `--lora_target query_key_value` arguments to use the Falcon model.
|
|
|
|
[23/06/29] We provide a **reproducible example** of training a chat model using instruction-following datasets, see this [Hugging Face Repo](https://huggingface.co/hiyouga/baichuan-7b-sft) for details.
|
|
|
|
[23/06/22] Now we align the [demo API](src/api_demo.py) with the [OpenAI's](https://platform.openai.com/docs/api-reference/chat) format where you can insert the fine-tuned model in **arbitrary ChatGPT-based applications**.
|
|
|
|
[23/06/15] Now we support training the **Baichuan-7B** model in this repo. Try `--model_name_or_path baichuan-inc/Baichuan-7B` and `--lora_target W_pack` arguments to use the Baichuan-7B model.
|
|
|
|
[23/06/03] Now we support quantized training and inference (aka **[QLoRA](https://github.com/artidoro/qlora)**). Try `--quantization_bit 4/8` argument to work with quantized model. (experimental feature)
|
|
|
|
[23/05/31] Now we support training the **BLOOM & BLOOMZ** models in this repo. Try `--model_name_or_path bigscience/bloomz-7b1-mt` and `--lora_target query_key_value` arguments to use the BLOOMZ model.
|
|
|
|
## Supported Models
|
|
|
|
- [LLaMA](https://github.com/facebookresearch/llama) (7B/13B/33B/65B)
|
|
- [LLaMA-2](https://huggingface.co/meta-llama) (7B/13B/70B)
|
|
- [BLOOM](https://huggingface.co/bigscience/bloom) & [BLOOMZ](https://huggingface.co/bigscience/bloomz) (560M/1.1B/1.7B/3B/7.1B/176B)
|
|
- [Falcon](https://huggingface.co/tiiuae/falcon-7b) (7B/40B)
|
|
- [Baichuan](https://huggingface.co/baichuan-inc/baichuan-7B) (7B/13B)
|
|
- [InternLM](https://github.com/InternLM/InternLM) (7B)
|
|
|
|
## Supported Training Approaches
|
|
|
|
- [(Continually) pre-training](https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf)
|
|
- Full-parameter tuning
|
|
- Partial-parameter tuning
|
|
- [LoRA](https://arxiv.org/abs/2106.09685)
|
|
- [QLoRA](https://arxiv.org/abs/2305.14314)
|
|
- [Supervised fine-tuning](https://arxiv.org/abs/2109.01652)
|
|
- Full-parameter tuning
|
|
- Partial-parameter tuning
|
|
- [LoRA](https://arxiv.org/abs/2106.09685)
|
|
- [QLoRA](https://arxiv.org/abs/2305.14314)
|
|
- [RLHF](https://arxiv.org/abs/2203.02155)
|
|
- [LoRA](https://arxiv.org/abs/2106.09685)
|
|
- [QLoRA](https://arxiv.org/abs/2305.14314)
|
|
|
|
## Provided Datasets
|
|
|
|
- For pre-training:
|
|
- [Wiki Demo (en)](data/wiki_demo.txt)
|
|
- [RefinedWeb (en)](https://huggingface.co/datasets/tiiuae/falcon-refinedweb)
|
|
- [StarCoder (en)](https://huggingface.co/datasets/bigcode/starcoderdata)
|
|
- [Wikipedia (en)](https://huggingface.co/datasets/olm/olm-wikipedia-20221220)
|
|
- [Wikipedia (zh)](https://huggingface.co/datasets/pleisto/wikipedia-cn-20230720-filtered)
|
|
- For supervised fine-tuning:
|
|
- [Stanford Alpaca (en)](https://github.com/tatsu-lab/stanford_alpaca)
|
|
- [Stanford Alpaca (zh)](https://github.com/ymcui/Chinese-LLaMA-Alpaca)
|
|
- [GPT-4 Generated Data (en&zh)](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM)
|
|
- [Open Assistant (multilingual)](https://huggingface.co/datasets/OpenAssistant/oasst1)
|
|
- [Self-cognition (zh)](data/self_cognition.json)
|
|
- [ShareGPT (zh)](https://huggingface.co/datasets/QingyiSi/Alpaca-CoT/tree/main/Chinese-instruction-collection)
|
|
- [RefGPT (zh)](https://github.com/sufengniu/RefGPT)
|
|
- [Guanaco Dataset (multilingual)](https://huggingface.co/datasets/JosephusCheung/GuanacoDataset)
|
|
- [BELLE 2M (zh)](https://huggingface.co/datasets/BelleGroup/train_2M_CN)
|
|
- [BELLE 1M (zh)](https://huggingface.co/datasets/BelleGroup/train_1M_CN)
|
|
- [BELLE 0.5M (zh)](https://huggingface.co/datasets/BelleGroup/train_0.5M_CN)
|
|
- [BELLE Dialogue 0.4M (zh)](https://huggingface.co/datasets/BelleGroup/generated_chat_0.4M)
|
|
- [BELLE School Math 0.25M (zh)](https://huggingface.co/datasets/BelleGroup/school_math_0.25M)
|
|
- [BELLE Multiturn Chat 0.8M (zh)](https://huggingface.co/datasets/BelleGroup/multiturn_chat_0.8M)
|
|
- [Firefly 1.1M (zh)](https://huggingface.co/datasets/YeungNLP/firefly-train-1.1M)
|
|
- [LIMA (en)](https://huggingface.co/datasets/GAIR/lima)
|
|
- [CodeAlpaca 20k (en)](https://huggingface.co/datasets/sahil2801/CodeAlpaca-20k)
|
|
- [Alpaca CoT (multilingual)](https://huggingface.co/datasets/QingyiSi/Alpaca-CoT)
|
|
- [Web QA (zh)](https://huggingface.co/datasets/suolyer/webqa)
|
|
- [UltraChat (en)](https://github.com/thunlp/UltraChat)
|
|
- [WebNovel (zh)](https://huggingface.co/datasets/zxbsmk/webnovel_cn)
|
|
- For reward modelling:
|
|
- [HH-RLHF (en)](https://huggingface.co/datasets/Anthropic/hh-rlhf)
|
|
- [Open Assistant (multilingual)](https://huggingface.co/datasets/OpenAssistant/oasst1)
|
|
- [GPT-4 Generated Data (en&zh)](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM)
|
|
|
|
Please refer to [data/README.md](data/README.md) for details.
|
|
|
|
Some datasets require confirmation before using them, so we recommend logging in with your Hugging Face account using these commands.
|
|
|
|
```bash
|
|
pip install --upgrade huggingface_hub
|
|
huggingface-cli login
|
|
```
|
|
|
|
## Requirement
|
|
|
|
- Python 3.8+ and PyTorch 1.13.1+
|
|
- 🤗Transformers, Datasets, Accelerate, PEFT and TRL
|
|
- jieba, rouge-chinese and nltk (used at evaluation)
|
|
- gradio and matplotlib (used in web_demo.py)
|
|
- uvicorn, fastapi and sse-starlette (used in api_demo.py)
|
|
|
|
And **powerful GPUs**!
|
|
|
|
## Getting Started
|
|
|
|
### Data Preparation (optional)
|
|
|
|
Please refer to `data/example_dataset` for checking the details about the format of dataset files. You can either use a single `.json` file or a [dataset loading script](https://huggingface.co/docs/datasets/dataset_script) with multiple files to create a custom dataset.
|
|
|
|
Note: please update `data/dataset_info.json` to use your custom dataset. About the format of this file, please refer to `data/README.md`.
|
|
|
|
### Dependence Installation (optional)
|
|
|
|
```bash
|
|
git clone https://github.com/hiyouga/LLaMA-Efficient-Tuning.git
|
|
conda create -n llama_etuning python=3.10
|
|
conda activate llama_etuning
|
|
cd LLaMA-Efficient-Tuning
|
|
pip install -r requirements.txt
|
|
```
|
|
|
|
If you want to enable the quantized LoRA (QLoRA) on the Windows platform, you will be required to install a pre-built version of `bitsandbytes` library, which supports CUDA 11.1 to 12.1.
|
|
|
|
```bash
|
|
pip install https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-0.39.1-py3-none-win_amd64.whl
|
|
```
|
|
|
|
### All-in-one Web UI
|
|
|
|
```bash
|
|
python src/train_web.py
|
|
```
|
|
|
|
Currently the web UI only supports training on a single GPU.
|
|
|
|
### (Continually) Pre-Training
|
|
|
|
```bash
|
|
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
|
|
--stage pt \
|
|
--model_name_or_path path_to_your_model \
|
|
--do_train \
|
|
--dataset wiki_demo \
|
|
--template default \
|
|
--finetuning_type lora \
|
|
--output_dir path_to_pt_checkpoint \
|
|
--overwrite_cache \
|
|
--per_device_train_batch_size 4 \
|
|
--gradient_accumulation_steps 4 \
|
|
--lr_scheduler_type cosine \
|
|
--logging_steps 10 \
|
|
--save_steps 1000 \
|
|
--learning_rate 5e-5 \
|
|
--num_train_epochs 3.0 \
|
|
--plot_loss \
|
|
--fp16
|
|
```
|
|
|
|
### Supervised Fine-Tuning
|
|
|
|
```bash
|
|
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
|
|
--stage sft \
|
|
--model_name_or_path path_to_your_model \
|
|
--do_train \
|
|
--dataset alpaca_gpt4_en \
|
|
--template default \
|
|
--finetuning_type lora \
|
|
--output_dir path_to_sft_checkpoint \
|
|
--overwrite_cache \
|
|
--per_device_train_batch_size 4 \
|
|
--gradient_accumulation_steps 4 \
|
|
--lr_scheduler_type cosine \
|
|
--logging_steps 10 \
|
|
--save_steps 1000 \
|
|
--learning_rate 5e-5 \
|
|
--num_train_epochs 3.0 \
|
|
--plot_loss \
|
|
--fp16
|
|
```
|
|
|
|
### Reward Model Training
|
|
|
|
```bash
|
|
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
|
|
--stage rm \
|
|
--model_name_or_path path_to_your_model \
|
|
--do_train \
|
|
--dataset comparison_gpt4_en \
|
|
--template default \
|
|
--finetuning_type lora \
|
|
--resume_lora_training False \
|
|
--checkpoint_dir path_to_sft_checkpoint \
|
|
--output_dir path_to_rm_checkpoint \
|
|
--per_device_train_batch_size 4 \
|
|
--gradient_accumulation_steps 4 \
|
|
--lr_scheduler_type cosine \
|
|
--logging_steps 10 \
|
|
--save_steps 1000 \
|
|
--learning_rate 1e-5 \
|
|
--num_train_epochs 1.0 \
|
|
--plot_loss \
|
|
--fp16
|
|
```
|
|
|
|
### PPO Training (RLHF)
|
|
|
|
```bash
|
|
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
|
|
--stage ppo \
|
|
--model_name_or_path path_to_your_model \
|
|
--do_train \
|
|
--dataset alpaca_gpt4_en \
|
|
--template default \
|
|
--finetuning_type lora \
|
|
--resume_lora_training False \
|
|
--checkpoint_dir path_to_sft_checkpoint \
|
|
--reward_model path_to_rm_checkpoint \
|
|
--output_dir path_to_ppo_checkpoint \
|
|
--per_device_train_batch_size 2 \
|
|
--gradient_accumulation_steps 4 \
|
|
--lr_scheduler_type cosine \
|
|
--logging_steps 10 \
|
|
--save_steps 1000 \
|
|
--learning_rate 1e-5 \
|
|
--num_train_epochs 1.0 \
|
|
--plot_loss
|
|
```
|
|
|
|
### Distributed Training
|
|
|
|
```bash
|
|
accelerate config # configure the environment
|
|
accelerate launch src/train_bash.py # arguments (same as above)
|
|
```
|
|
|
|
<details><summary>Example configuration for full-tuning with DeepSpeed ZeRO-2</summary>
|
|
|
|
```yaml
|
|
compute_environment: LOCAL_MACHINE
|
|
deepspeed_config:
|
|
gradient_accumulation_steps: 4
|
|
gradient_clipping: 0.5
|
|
offload_optimizer_device: none
|
|
offload_param_device: none
|
|
zero3_init_flag: false
|
|
zero_stage: 2
|
|
distributed_type: DEEPSPEED
|
|
downcast_bf16: 'no'
|
|
machine_rank: 0
|
|
main_training_function: main
|
|
mixed_precision: fp16
|
|
num_machines: 1
|
|
num_processes: 4
|
|
rdzv_backend: static
|
|
same_network: true
|
|
tpu_env: []
|
|
tpu_use_cluster: false
|
|
tpu_use_sudo: false
|
|
use_cpu: false
|
|
```
|
|
|
|
</details>
|
|
|
|
### Evaluation (BLEU and ROUGE_CHINESE)
|
|
|
|
```bash
|
|
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
|
|
--stage sft \
|
|
--model_name_or_path path_to_your_model \
|
|
--do_eval \
|
|
--dataset alpaca_gpt4_en \
|
|
--template default \
|
|
--finetuning_type lora \
|
|
--checkpoint_dir path_to_checkpoint \
|
|
--output_dir path_to_eval_result \
|
|
--per_device_eval_batch_size 8 \
|
|
--max_samples 100 \
|
|
--predict_with_generate
|
|
```
|
|
|
|
We recommend using `--per_device_eval_batch_size=1` and `--max_target_length 128` at 4/8-bit evaluation.
|
|
|
|
### Predict
|
|
|
|
```bash
|
|
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
|
|
--stage sft \
|
|
--model_name_or_path path_to_your_model \
|
|
--do_predict \
|
|
--dataset alpaca_gpt4_en \
|
|
--template default \
|
|
--finetuning_type lora \
|
|
--checkpoint_dir path_to_checkpoint \
|
|
--output_dir path_to_predict_result \
|
|
--per_device_eval_batch_size 8 \
|
|
--max_samples 100 \
|
|
--predict_with_generate
|
|
```
|
|
|
|
If you want to predict the samples with empty responses, please kindly fill the `response` column with **dummy tokens** to ensure the sample will not be discarded throughout the preprocessing phase.
|
|
|
|
### API Demo
|
|
|
|
```bash
|
|
python src/api_demo.py \
|
|
--model_name_or_path path_to_your_model \
|
|
--template default \
|
|
--finetuning_type lora \
|
|
--checkpoint_dir path_to_checkpoint
|
|
```
|
|
|
|
Visit `http://localhost:8000/docs` for API documentation.
|
|
|
|
### CLI Demo
|
|
|
|
```bash
|
|
python src/cli_demo.py \
|
|
--model_name_or_path path_to_your_model \
|
|
--template default \
|
|
--finetuning_type lora \
|
|
--checkpoint_dir path_to_checkpoint
|
|
```
|
|
|
|
### Web Demo
|
|
|
|
```bash
|
|
python src/web_demo.py \
|
|
--model_name_or_path path_to_your_model \
|
|
--template default \
|
|
--finetuning_type lora \
|
|
--checkpoint_dir path_to_checkpoint
|
|
```
|
|
|
|
### Export model
|
|
|
|
```bash
|
|
python src/export_model.py \
|
|
--model_name_or_path path_to_your_model \
|
|
--template default \
|
|
--finetuning_type lora \
|
|
--checkpoint_dir path_to_checkpoint \
|
|
--output_dir path_to_export
|
|
```
|
|
|
|
## TODO
|
|
|
|
- [ ] Supporting flash attention ([torch](https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html) / [xformers](https://github.com/facebookresearch/xformers) / [flashattn](https://github.com/Dao-AILab/flash-attention)).
|
|
- [ ] Implementing multi-query attention for faster inference.
|
|
- [ ] Supporting full-parameter RLHF training.
|
|
|
|
## License
|
|
|
|
This repository is licensed under the [Apache-2.0 License](LICENSE).
|
|
|
|
Please follow the model licenses to use the corresponding model weights:
|
|
|
|
- [LLaMA](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md)
|
|
- [LLaMA-2](https://ai.meta.com/llama/license/)
|
|
- [BLOOM](https://huggingface.co/spaces/bigscience/license)
|
|
- [Falcon](LICENSE)
|
|
- [baichuan](https://huggingface.co/baichuan-inc/baichuan-7B/resolve/main/baichuan-7B%20%E6%A8%A1%E5%9E%8B%E8%AE%B8%E5%8F%AF%E5%8D%8F%E8%AE%AE.pdf)
|
|
- [InternLM](https://github.com/InternLM/InternLM#open-source-license)
|
|
|
|
## Citation
|
|
|
|
If this work is helpful, please kindly cite as:
|
|
|
|
```bibtex
|
|
@Misc{llama-efficient-tuning,
|
|
title = {LLaMA Efficient Tuning},
|
|
author = {hiyouga},
|
|
howpublished = {\url{https://github.com/hiyouga/LLaMA-Efficient-Tuning}},
|
|
year = {2023}
|
|
}
|
|
```
|
|
|
|
## Acknowledgement
|
|
|
|
This repo is a sibling of [ChatGLM-Efficient-Tuning](https://github.com/hiyouga/ChatGLM-Efficient-Tuning). They share a similar code structure of efficient tuning on large language models.
|
|
|
|
## Star History
|
|
|
|
![Star History Chart](https://api.star-history.com/svg?repos=hiyouga/LLaMA-Efficient-Tuning&type=Date)
|