2023-07-21 16:57:58 +08:00
# LLaMA Efficient Tuning
[![GitHub Repo stars ](https://img.shields.io/github/stars/hiyouga/LLaMA-Efficient-Tuning?style=social )](https://github.com/hiyouga/LLaMA-Efficient-Tuning/stargazers)
[![GitHub Code License ](https://img.shields.io/github/license/hiyouga/LLaMA-Efficient-Tuning )](LICENSE)
[![GitHub last commit ](https://img.shields.io/github/last-commit/hiyouga/LLaMA-Efficient-Tuning )](https://github.com/hiyouga/LLaMA-Efficient-Tuning/commits/main)
[![PyPI ](https://img.shields.io/pypi/v/llmtuner )](https://pypi.org/project/llmtuner/)
2023-09-16 17:33:01 +08:00
[![Downloads ](https://static.pepy.tech/badge/llmtuner )](https://pypi.org/project/llmtuner/)
2023-07-21 16:57:58 +08:00
[![GitHub pull request ](https://img.shields.io/badge/PRs-welcome-blue )](https://github.com/hiyouga/LLaMA-Efficient-Tuning/pulls)
2023-09-16 17:33:01 +08:00
[![Discord ](https://dcbadge.vercel.app/api/server/7HGMsdxqJ?compact=true&style=flat )](https://discord.gg/7HGMsdxqJ)
2023-07-21 16:57:58 +08:00
2023-07-22 14:31:16 +08:00
👋 加入我们的[微信群](assets/wechat.jpg)。
2023-07-21 16:57:58 +08:00
\[ [English ](README.md ) | 中文 \]
## 更新日志
2023-09-10 20:43:56 +08:00
[23/09/10] 现在我们支持了 LLaMA 模型的 ** [FlashAttention ](https://github.com/Dao-AILab/flash-attention )**。如果您使用的是 RTX4090、A100 或 H100 GPU, 请使用 `--flash_attn` 参数以启用 FlashAttention-2( 实验性功能) 。
2023-08-18 01:41:17 +08:00
[23/08/18] 现在我们支持了**训练状态恢复**,请将 `transformers` 升级至 `4.31.0` 以启用此功能。
2023-09-10 20:43:56 +08:00
[23/08/12] 现在我们支持了 **RoPE 插值**来扩展 LLaMA 模型的上下文长度。请使用 `--rope_scaling linear` 参数训练模型或使用 `--rope_scaling dynamic` 参数评估模型。
2023-08-12 21:00:11 +08:00
2023-09-10 20:43:56 +08:00
[23/08/11] 现在我们支持了指令模型的 ** [DPO 训练 ](https://arxiv.org/abs/2305.18290 )**。详情请参阅[此示例](#dpo-训练)。
2023-08-11 03:02:53 +08:00
2023-08-12 21:23:05 +08:00
[23/07/31] 现在我们支持了**数据流式加载**。请尝试使用 `--streaming` 和 `--max_steps 10000` 参数来流式加载数据集。
2023-07-31 23:42:32 +08:00
2023-09-09 13:50:29 +08:00
[23/07/29] 我们在 Hugging Face 发布了两个 13B 指令微调模型。详细内容请查阅我们的 Hugging Face 项目([LLaMA-2](https://huggingface.co/hiyouga/Llama-2-Chinese-13b-chat) / [Baichuan ](https://huggingface.co/hiyouga/Baichuan-13B-sft ))。
2023-08-01 10:08:47 +08:00
2023-08-18 01:41:17 +08:00
[23/07/18] 我们开发了支持训练和测试的**浏览器一体化界面**。请尝试使用 `train_web.py` 在您的浏览器中微调模型。感谢 [@KanadeSiina ](https://github.com/KanadeSiina ) 和 [@codemayq ](https://github.com/codemayq ) 在该功能开发中付出的努力。
2023-07-21 16:57:58 +08:00
2023-08-12 21:29:06 +08:00
[23/07/09] 我们开源了 ** [FastEdit ](https://github.com/hiyouga/FastEdit )** ⚡🩹,一个简单易用的、能迅速编辑大模型事实记忆的工具包。如果您感兴趣请关注我们的 [FastEdit ](https://github.com/hiyouga/FastEdit ) 项目。
2023-07-21 16:57:58 +08:00
2023-09-09 13:50:29 +08:00
[23/06/29] 我们提供了一个**可复现的**指令模型微调示例,详细内容请查阅 [Baichuan-7B-sft ](https://huggingface.co/hiyouga/Baichuan-7B-sft )。
2023-07-21 16:57:58 +08:00
2023-08-12 21:23:05 +08:00
[23/06/22] 我们对齐了[示例 API](src/api_demo.py) 与 [OpenAI API ](https://platform.openai.com/docs/api-reference/chat ) 的格式,您可以将微调模型接入**任意基于 ChatGPT 的应用**中。
2023-07-21 16:57:58 +08:00
2023-08-12 21:23:05 +08:00
[23/06/03] 现在我们实现了 4 比特的 LoRA 训练(也称 ** [QLoRA ](https://github.com/artidoro/qlora )**)。请尝试使用 `--quantization_bit 4` 参数进行 4 比特量化微调。
2023-07-21 16:57:58 +08:00
2023-07-22 14:29:22 +08:00
## 模型
2023-08-07 15:02:02 +08:00
2023-09-06 21:43:06 +08:00
| 模型名 | 模型大小 | 默认模块 | Template |
| -------------------------------------------------------- | --------------------------- | ----------------- | --------- |
| [LLaMA ](https://github.com/facebookresearch/llama ) | 7B/13B/33B/65B | q_proj,v_proj | - |
| [LLaMA-2 ](https://huggingface.co/meta-llama ) | 7B/13B/70B | q_proj,v_proj | llama2 |
| [BLOOM ](https://huggingface.co/bigscience/bloom ) | 560M/1.1B/1.7B/3B/7.1B/176B | query_key_value | - |
| [BLOOMZ ](https://huggingface.co/bigscience/bloomz ) | 560M/1.1B/1.7B/3B/7.1B/176B | query_key_value | - |
| [Falcon ](https://huggingface.co/tiiuae/falcon-7b ) | 7B/40B | query_key_value | - |
2023-09-07 18:54:14 +08:00
| [Baichuan ](https://github.com/baichuan-inc/Baichuan-13B ) | 7B/13B | W_pack | baichuan |
2023-09-06 21:43:06 +08:00
| [Baichuan2 ](https://github.com/baichuan-inc/Baichuan2 ) | 7B/13B | W_pack | baichuan2 |
2023-09-21 15:25:29 +08:00
| [InternLM ](https://github.com/InternLM/InternLM ) | 7B/20B | q_proj,v_proj | intern |
2023-09-06 21:43:06 +08:00
| [Qwen ](https://github.com/QwenLM/Qwen-7B ) | 7B | c_attn | chatml |
| [XVERSE ](https://github.com/xverse-ai/XVERSE-13B ) | 13B | q_proj,v_proj | xverse |
| [ChatGLM2 ](https://github.com/THUDM/ChatGLM2-6B ) | 6B | query_key_value | chatglm2 |
2023-09-21 15:25:29 +08:00
| [Phi-1.5 ](https://huggingface.co/microsoft/phi-1_5 ) | 1.5B | Wqkv | - |
2023-08-07 15:02:02 +08:00
2023-09-10 21:01:20 +08:00
> [!NOTE]
2023-09-10 20:43:56 +08:00
> **默认模块**应作为 `--lora_target` 参数的默认值,可使用 `--lora_target all` 参数指定全部模块。
>
> 对于所有“基座”( Base) 模型, `--template` 参数可以是 `default`, `alpaca`, `vicuna` 等任意值。但“对话”( Chat) 模型请务必使用对应的模板。
2023-08-11 03:02:53 +08:00
## 训练方法
2023-08-17 11:00:22 +08:00
| 方法 | 全参数训练 | 部分参数训练 | LoRA | QLoRA |
| ---------------------- | ------------------ | ------------------ | ------------------ | ------------------ |
| 预训练 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| 指令监督微调 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| 奖励模型训练 | | | :white_check_mark: | :white_check_mark: |
| PPO 训练 | | | :white_check_mark: | :white_check_mark: |
| DPO 训练 | :white_check_mark: | | :white_check_mark: | :white_check_mark: |
2023-07-21 16:57:58 +08:00
2023-09-10 21:01:20 +08:00
> [!NOTE]
2023-09-10 20:43:56 +08:00
> 请使用 `--quantization_bit 4/8` 参数来启用 QLoRA 训练。
2023-08-12 21:23:05 +08:00
2023-07-22 14:29:22 +08:00
## 数据集
2023-07-21 16:57:58 +08:00
2023-08-11 03:02:53 +08:00
- 用于预训练:
2023-07-21 16:57:58 +08:00
- [Wiki Demo (en) ](data/wiki_demo.txt )
2023-07-23 20:01:43 +08:00
- [RefinedWeb (en) ](https://huggingface.co/datasets/tiiuae/falcon-refinedweb )
- [StarCoder (en) ](https://huggingface.co/datasets/bigcode/starcoderdata )
- [Wikipedia (en) ](https://huggingface.co/datasets/olm/olm-wikipedia-20221220 )
- [Wikipedia (zh) ](https://huggingface.co/datasets/pleisto/wikipedia-cn-20230720-filtered )
2023-08-11 03:02:53 +08:00
- 用于指令监督微调:
2023-07-21 16:57:58 +08:00
- [Stanford Alpaca (en) ](https://github.com/tatsu-lab/stanford_alpaca )
- [Stanford Alpaca (zh) ](https://github.com/ymcui/Chinese-LLaMA-Alpaca )
- [GPT-4 Generated Data (en&zh) ](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM )
- [Open Assistant (multilingual) ](https://huggingface.co/datasets/OpenAssistant/oasst1 )
- [Self-cognition (zh) ](data/self_cognition.json )
- [ShareGPT (zh) ](https://huggingface.co/datasets/QingyiSi/Alpaca-CoT/tree/main/Chinese-instruction-collection )
- [Guanaco Dataset (multilingual) ](https://huggingface.co/datasets/JosephusCheung/GuanacoDataset )
- [BELLE 2M (zh) ](https://huggingface.co/datasets/BelleGroup/train_2M_CN )
- [BELLE 1M (zh) ](https://huggingface.co/datasets/BelleGroup/train_1M_CN )
- [BELLE 0.5M (zh) ](https://huggingface.co/datasets/BelleGroup/train_0.5M_CN )
- [BELLE Dialogue 0.4M (zh) ](https://huggingface.co/datasets/BelleGroup/generated_chat_0.4M )
- [BELLE School Math 0.25M (zh) ](https://huggingface.co/datasets/BelleGroup/school_math_0.25M )
- [BELLE Multiturn Chat 0.8M (zh) ](https://huggingface.co/datasets/BelleGroup/multiturn_chat_0.8M )
2023-07-26 17:05:12 +08:00
- [LIMA (en) ](https://huggingface.co/datasets/GAIR/lima )
2023-07-21 16:57:58 +08:00
- [CodeAlpaca 20k (en) ](https://huggingface.co/datasets/sahil2801/CodeAlpaca-20k )
- [Alpaca CoT (multilingual) ](https://huggingface.co/datasets/QingyiSi/Alpaca-CoT )
2023-09-13 22:30:14 +08:00
- [MathInstruct (en) ](https://huggingface.co/datasets/TIGER-Lab/MathInstruct )
- [Firefly 1.1M (zh) ](https://huggingface.co/datasets/YeungNLP/firefly-train-1.1M )
2023-07-21 16:57:58 +08:00
- [Web QA (zh) ](https://huggingface.co/datasets/suolyer/webqa )
- [UltraChat (en) ](https://github.com/thunlp/UltraChat )
- [WebNovel (zh) ](https://huggingface.co/datasets/zxbsmk/webnovel_cn )
2023-09-01 19:00:45 +08:00
- [Ad Gen (zh) ](https://huggingface.co/datasets/HasturOfficial/adgen )
- 用于训练奖励模型或 DPO 训练:
2023-07-21 16:57:58 +08:00
- [HH-RLHF (en) ](https://huggingface.co/datasets/Anthropic/hh-rlhf )
- [Open Assistant (multilingual) ](https://huggingface.co/datasets/OpenAssistant/oasst1 )
- [GPT-4 Generated Data (en&zh) ](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM )
2023-07-22 14:29:22 +08:00
使用方法请参考 [data/README.md ](data/README_zh.md ) 文件。
2023-07-21 16:57:58 +08:00
2023-07-22 14:29:22 +08:00
部分数据集的使用需要确认,我们推荐使用下述命令登录您的 Hugging Face 账户。
2023-07-21 16:57:58 +08:00
```bash
pip install --upgrade huggingface_hub
huggingface-cli login
```
## 软件依赖
- Python 3.8+ 和 PyTorch 1.13.1+
- 🤗Transformers, Datasets, Accelerate, PEFT 和 TRL
2023-09-11 17:31:34 +08:00
- sentencepiece, protobuf 和 tiktoken
2023-07-21 16:57:58 +08:00
- jieba, rouge-chinese 和 nltk (用于评估)
- gradio 和 matplotlib (用于网页端交互)
- uvicorn, fastapi 和 sse-starlette (用于 API)
2023-07-22 14:29:22 +08:00
以及 **强而有力的 GPU** !
2023-07-21 16:57:58 +08:00
2023-07-22 14:29:22 +08:00
## 如何使用
2023-07-21 16:57:58 +08:00
2023-07-22 14:29:22 +08:00
### 数据准备(可跳过)
2023-07-21 16:57:58 +08:00
2023-07-22 14:29:22 +08:00
关于数据集文件的格式,请参考 `data/example_dataset` 文件夹的内容。构建自定义数据集时,既可以使用单个 `.json` 文件,也可以使用一个[数据加载脚本](https://huggingface.co/docs/datasets/dataset_script)和多个文件。
2023-07-21 16:57:58 +08:00
2023-09-10 21:01:20 +08:00
> [!NOTE]
2023-09-10 20:43:56 +08:00
> 使用自定义数据集时,请更新 `data/dataset_info.json` 文件,该文件的格式请参考 `data/README.md`。
2023-07-21 16:57:58 +08:00
2023-07-22 14:29:22 +08:00
### 环境搭建(可跳过)
2023-07-21 16:57:58 +08:00
```bash
git clone https://github.com/hiyouga/LLaMA-Efficient-Tuning.git
conda create -n llama_etuning python=3.10
conda activate llama_etuning
cd LLaMA-Efficient-Tuning
pip install -r requirements.txt
```
2023-07-22 14:29:22 +08:00
如果要在 Windows 平台上开启量化 LoRA( QLoRA) , 需要安装预编译的 `bitsandbytes` 库, 支持 CUDA 11.1 到 12.1.
```bash
pip install https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-0.39.1-py3-none-win_amd64.whl
```
2023-08-18 01:41:17 +08:00
### 浏览器一体化界面
2023-07-21 16:57:58 +08:00
```bash
2023-08-01 18:48:27 +08:00
CUDA_VISIBLE_DEVICES=0 python src/train_web.py
2023-07-21 16:57:58 +08:00
```
2023-09-21 15:25:29 +08:00
我们**极力推荐**新手使用浏览器一体化界面,因为它还可以不依赖 GPU 环境自动生成在 GPU 上运行的命令行脚本。
2023-08-18 01:41:17 +08:00
2023-09-10 21:01:20 +08:00
> [!WARNING]
2023-09-10 20:43:56 +08:00
> 目前网页 UI 仅支持**单卡训练**。
2023-07-22 14:29:22 +08:00
2023-08-18 01:51:55 +08:00
### 单 GPU 训练
2023-09-10 21:01:20 +08:00
> [!IMPORTANT]
2023-09-10 20:43:56 +08:00
> 如果您使用多张 GPU 训练模型,请移步[多 GPU 分布式训练](#多-gpu-分布式训练)部分。
2023-08-18 01:51:55 +08:00
#### 预训练
2023-07-21 16:57:58 +08:00
```bash
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage pt \
2023-08-18 11:43:10 +08:00
--model_name_or_path path_to_llama_model \
2023-07-21 16:57:58 +08:00
--do_train \
--dataset wiki_demo \
--finetuning_type lora \
2023-08-18 11:43:10 +08:00
--lora_target q_proj,v_proj \
2023-07-21 16:57:58 +08:00
--output_dir path_to_pt_checkpoint \
--overwrite_cache \
--per_device_train_batch_size 4 \
--gradient_accumulation_steps 4 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--save_steps 1000 \
--learning_rate 5e-5 \
--num_train_epochs 3.0 \
--plot_loss \
--fp16
```
2023-08-18 01:51:55 +08:00
#### 指令监督微调
2023-07-21 16:57:58 +08:00
```bash
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage sft \
2023-08-18 11:43:10 +08:00
--model_name_or_path path_to_llama_model \
2023-07-21 16:57:58 +08:00
--do_train \
2023-07-31 23:33:00 +08:00
--dataset alpaca_gpt4_zh \
--template default \
2023-07-21 16:57:58 +08:00
--finetuning_type lora \
2023-08-18 11:43:10 +08:00
--lora_target q_proj,v_proj \
2023-07-21 16:57:58 +08:00
--output_dir path_to_sft_checkpoint \
--overwrite_cache \
--per_device_train_batch_size 4 \
--gradient_accumulation_steps 4 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--save_steps 1000 \
--learning_rate 5e-5 \
--num_train_epochs 3.0 \
--plot_loss \
--fp16
```
2023-08-18 01:51:55 +08:00
#### 奖励模型训练
2023-07-21 16:57:58 +08:00
```bash
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage rm \
2023-08-18 11:43:10 +08:00
--model_name_or_path path_to_llama_model \
2023-07-21 16:57:58 +08:00
--do_train \
2023-07-31 23:33:00 +08:00
--dataset comparison_gpt4_zh \
--template default \
2023-07-21 16:57:58 +08:00
--finetuning_type lora \
2023-08-18 11:43:10 +08:00
--lora_target q_proj,v_proj \
2023-07-28 17:36:00 +08:00
--resume_lora_training False \
--checkpoint_dir path_to_sft_checkpoint \
2023-07-21 16:57:58 +08:00
--output_dir path_to_rm_checkpoint \
2023-08-11 03:02:53 +08:00
--per_device_train_batch_size 2 \
2023-07-21 16:57:58 +08:00
--gradient_accumulation_steps 4 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--save_steps 1000 \
2023-08-18 11:43:10 +08:00
--learning_rate 1e-6 \
2023-07-21 16:57:58 +08:00
--num_train_epochs 1.0 \
--plot_loss \
--fp16
```
2023-08-18 01:51:55 +08:00
#### PPO 训练
2023-07-21 16:57:58 +08:00
```bash
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage ppo \
2023-08-18 11:43:10 +08:00
--model_name_or_path path_to_llama_model \
2023-07-21 16:57:58 +08:00
--do_train \
2023-07-31 23:33:00 +08:00
--dataset alpaca_gpt4_zh \
--template default \
2023-07-21 16:57:58 +08:00
--finetuning_type lora \
2023-08-18 11:43:10 +08:00
--lora_target q_proj,v_proj \
2023-07-28 17:36:00 +08:00
--resume_lora_training False \
2023-07-21 16:57:58 +08:00
--checkpoint_dir path_to_sft_checkpoint \
--reward_model path_to_rm_checkpoint \
--output_dir path_to_ppo_checkpoint \
--per_device_train_batch_size 2 \
--gradient_accumulation_steps 4 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--save_steps 1000 \
--learning_rate 1e-5 \
--num_train_epochs 1.0 \
--plot_loss
```
2023-08-18 01:51:55 +08:00
#### DPO 训练
2023-08-11 03:02:53 +08:00
```bash
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage dpo \
2023-08-18 11:43:10 +08:00
--model_name_or_path path_to_llama_model \
2023-08-11 03:02:53 +08:00
--do_train \
--dataset comparison_gpt4_zh \
--template default \
--finetuning_type lora \
2023-08-18 11:43:10 +08:00
--lora_target q_proj,v_proj \
2023-08-11 03:02:53 +08:00
--resume_lora_training False \
--checkpoint_dir path_to_sft_checkpoint \
--output_dir path_to_dpo_checkpoint \
--per_device_train_batch_size 2 \
--gradient_accumulation_steps 4 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--save_steps 1000 \
--learning_rate 1e-5 \
--num_train_epochs 1.0 \
--plot_loss \
--fp16
```
2023-07-22 14:29:22 +08:00
### 多 GPU 分布式训练
2023-07-21 16:57:58 +08:00
2023-08-12 21:23:05 +08:00
#### 使用 Huggingface Accelerate
2023-07-21 16:57:58 +08:00
```bash
2023-07-22 14:29:22 +08:00
accelerate config # 首先配置分布式环境
accelerate launch src/train_bash.py # 参数同上
2023-07-21 16:57:58 +08:00
```
2023-09-10 20:43:56 +08:00
< details > < summary > LoRA 训练的 Accelerate 配置示例< / summary >
2023-07-21 16:57:58 +08:00
```yaml
compute_environment: LOCAL_MACHINE
2023-09-10 20:43:56 +08:00
distributed_type: MULTI_GPU
2023-07-21 16:57:58 +08:00
downcast_bf16: 'no'
2023-09-10 20:43:56 +08:00
gpu_ids: all
2023-07-21 16:57:58 +08:00
machine_rank: 0
main_training_function: main
mixed_precision: fp16
num_machines: 1
num_processes: 4
rdzv_backend: static
same_network: true
tpu_env: []
tpu_use_cluster: false
tpu_use_sudo: false
use_cpu: false
```
< / details >
2023-08-12 21:23:05 +08:00
#### 使用 DeepSpeed
```bash
2023-08-12 21:25:19 +08:00
deepspeed --num_gpus 8 --master_port=9901 src/train_bash.py \
--deepspeed ds_config.json \
... # 参数同上
2023-08-12 21:23:05 +08:00
```
2023-09-10 20:43:56 +08:00
< details > < summary > 使用 DeepSpeed ZeRO-2 进行全参数训练的 DeepSpeed 配置示例< / summary >
2023-08-12 21:23:05 +08:00
```json
{
2023-09-10 21:01:20 +08:00
"train_batch_size": "auto",
2023-08-12 21:23:05 +08:00
"train_micro_batch_size_per_gpu": "auto",
"gradient_accumulation_steps": "auto",
"gradient_clipping": "auto",
"zero_allow_untested_optimizer": true,
"fp16": {
"enabled": "auto",
"loss_scale": 0,
"initial_scale_power": 16,
"loss_scale_window": 1000,
"hysteresis": 2,
"min_loss_scale": 1
},
"zero_optimization": {
"stage": 2,
"allgather_partitions": true,
"allgather_bucket_size": 5e8,
"reduce_scatter": true,
"reduce_bucket_size": 5e8,
"overlap_comm": false,
"contiguous_gradients": true
}
}
```
< / details >
2023-08-18 01:51:55 +08:00
### 导出微调后的模型
2023-07-21 16:57:58 +08:00
```bash
2023-08-18 01:51:55 +08:00
python src/export_model.py \
2023-08-18 11:43:10 +08:00
--model_name_or_path path_to_llama_model \
2023-07-31 23:33:00 +08:00
--template default \
2023-07-21 16:57:58 +08:00
--finetuning_type lora \
--checkpoint_dir path_to_checkpoint \
2023-08-18 01:51:55 +08:00
--output_dir path_to_export
2023-07-21 16:57:58 +08:00
```
### API 服务
2023-07-22 14:29:22 +08:00
2023-07-21 16:57:58 +08:00
```bash
python src/api_demo.py \
2023-08-18 11:43:10 +08:00
--model_name_or_path path_to_llama_model \
2023-07-31 23:33:00 +08:00
--template default \
2023-07-21 16:57:58 +08:00
--finetuning_type lora \
--checkpoint_dir path_to_checkpoint
```
2023-09-10 21:01:20 +08:00
> [!NOTE]
2023-09-10 20:43:56 +08:00
> 关于 API 文档请见 `http://localhost:8000/docs`。
2023-07-21 16:57:58 +08:00
### 命令行测试
```bash
python src/cli_demo.py \
2023-08-18 11:43:10 +08:00
--model_name_or_path path_to_llama_model \
2023-07-31 23:33:00 +08:00
--template default \
2023-07-21 16:57:58 +08:00
--finetuning_type lora \
--checkpoint_dir path_to_checkpoint
```
### 浏览器测试
```bash
python src/web_demo.py \
2023-08-18 11:43:10 +08:00
--model_name_or_path path_to_llama_model \
2023-07-31 23:33:00 +08:00
--template default \
2023-07-21 16:57:58 +08:00
--finetuning_type lora \
--checkpoint_dir path_to_checkpoint
```
2023-08-18 01:51:55 +08:00
### 指标评估( BLEU 分数和汉语 ROUGE 分数)
2023-07-21 16:57:58 +08:00
```bash
2023-08-18 01:51:55 +08:00
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage sft \
2023-08-18 11:43:10 +08:00
--model_name_or_path path_to_llama_model \
2023-08-18 01:51:55 +08:00
--do_eval \
--dataset alpaca_gpt4_zh \
2023-07-31 23:33:00 +08:00
--template default \
2023-07-21 16:57:58 +08:00
--finetuning_type lora \
--checkpoint_dir path_to_checkpoint \
2023-08-18 01:51:55 +08:00
--output_dir path_to_eval_result \
--per_device_eval_batch_size 8 \
--max_samples 100 \
--predict_with_generate
```
2023-09-10 21:01:20 +08:00
> [!NOTE]
2023-09-10 20:43:56 +08:00
> 我们建议在量化模型的评估中使用 `--per_device_eval_batch_size=1` 和 `--max_target_length 128`。
2023-08-18 01:51:55 +08:00
### 模型预测
```bash
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage sft \
2023-08-18 11:43:10 +08:00
--model_name_or_path path_to_llama_model \
2023-08-18 01:51:55 +08:00
--do_predict \
--dataset alpaca_gpt4_zh \
--template default \
--finetuning_type lora \
--checkpoint_dir path_to_checkpoint \
--output_dir path_to_predict_result \
--per_device_eval_batch_size 8 \
--max_samples 100 \
--predict_with_generate
2023-07-21 16:57:58 +08:00
```
## 协议
2023-07-22 14:29:22 +08:00
本仓库的代码依照 [Apache-2.0 ](LICENSE ) 协议开源。
2023-07-21 16:57:58 +08:00
2023-07-22 14:29:22 +08:00
使用模型权重时,请遵循对应的模型协议:
2023-07-21 16:57:58 +08:00
- [LLaMA ](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md )
- [LLaMA-2 ](https://ai.meta.com/llama/license/ )
- [BLOOM ](https://huggingface.co/spaces/bigscience/license )
- [Falcon ](LICENSE )
2023-08-01 10:08:47 +08:00
- [Baichuan ](https://huggingface.co/baichuan-inc/baichuan-7B/resolve/main/baichuan-7B%20%E6%A8%A1%E5%9E%8B%E8%AE%B8%E5%8F%AF%E5%8D%8F%E8%AE%AE.pdf )
2023-09-06 18:40:11 +08:00
- [Baichuan2 ](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/resolve/main/Baichuan%202%E6%A8%A1%E5%9E%8B%E7%A4%BE%E5%8C%BA%E8%AE%B8%E5%8F%AF%E5%8D%8F%E8%AE%AE.pdf )
2023-07-21 16:57:58 +08:00
- [InternLM ](https://github.com/InternLM/InternLM#open-source-license )
2023-08-03 15:53:32 +08:00
- [Qwen ](https://huggingface.co/Qwen/Qwen-7B-Chat/blob/main/LICENSE )
2023-08-18 01:41:17 +08:00
- [XVERSE ](https://github.com/xverse-ai/XVERSE-13B/blob/main/MODEL_LICENSE.pdf )
- [ChatGLM2 ](https://github.com/THUDM/ChatGLM2-6B/blob/main/MODEL_LICENSE )
2023-09-21 15:25:29 +08:00
- [Phi-1.5 ](https://huggingface.co/microsoft/phi-1_5/resolve/main/Research%20License.docx )
2023-07-21 16:57:58 +08:00
## 引用
2023-07-22 14:29:22 +08:00
如果您觉得此项目有帮助,请考虑以下列格式引用
2023-07-21 16:57:58 +08:00
```bibtex
@Misc {llama-efficient-tuning,
title = {LLaMA Efficient Tuning},
author = {hiyouga},
howpublished = {\url{https://github.com/hiyouga/LLaMA-Efficient-Tuning}},
year = {2023}
}
```
## 致谢
2023-09-12 16:10:10 +08:00
本项目受益于 [PEFT ](https://github.com/huggingface/peft )、[QLoRA](https://github.com/artidoro/qlora)、[FastChat](https://github.com/lm-sys/FastChat) 和 [OpenChatKit ](https://github.com/togethercomputer/OpenChatKit ),感谢以上诸位作者的付出。
2023-07-21 16:57:58 +08:00
## Star History
![Star History Chart ](https://api.star-history.com/svg?repos=hiyouga/LLaMA-Efficient-Tuning&type=Date )