set dev version

This commit is contained in:
hiyouga 2024-06-08 06:46:09 +08:00
parent 5aa4ce4756
commit 3ac11e77cc
2 changed files with 73 additions and 1 deletions

View File

@ -12,7 +12,7 @@ from transformers.utils import is_bitsandbytes_available, is_torch_cuda_availabl
from .packages import is_vllm_available
VERSION = "0.8.0"
VERSION = "0.8.1.dev0"
def print_env() -> None:

72
tests/model/test_lora.py Normal file
View File

@ -0,0 +1,72 @@
import os
import torch
from llamafactory.hparams import get_train_args
from llamafactory.model import load_model, load_tokenizer
TINY_LLAMA = os.environ.get("TINY_LLAMA", "llamafactory/tiny-random-LlamaForCausalLM")
TRAINING_ARGS = {
"model_name_or_path": TINY_LLAMA,
"stage": "sft",
"do_train": True,
"finetuning_type": "lora",
"dataset": "llamafactory/tiny_dataset",
"dataset_dir": "ONLINE",
"template": "llama3",
"cutoff_len": 1024,
"overwrite_cache": True,
"output_dir": "dummy_dir",
"overwrite_output_dir": True,
"fp16": True,
}
def test_lora_all_modules():
model_args, _, _, finetuning_args, _ = get_train_args(
{
"lora_target": "all",
**TRAINING_ARGS,
}
)
tokenizer_module = load_tokenizer(model_args)
model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=True)
linear_modules = set()
for name, param in model.named_parameters():
if any(module in name for module in ["lora_A", "lora_B"]):
linear_modules.add(name.split(".lora_", maxsplit=1)[0].split(".")[-1])
assert param.requires_grad is True
assert param.dtype == torch.float32
else:
assert param.requires_grad is False
assert param.dtype == torch.float16
assert linear_modules == {"q_proj", "k_proj", "v_proj", "o_proj", "up_proj", "gate_proj", "down_proj"}
def test_lora_extra_modules():
model_args, _, _, finetuning_args, _ = get_train_args(
{
"lora_target": "all",
"additional_target": "embed_tokens,lm_head",
**TRAINING_ARGS,
}
)
tokenizer_module = load_tokenizer(model_args)
model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=True)
extra_modules = set()
for name, param in model.named_parameters():
if any(module in name for module in ["lora_A", "lora_B"]):
assert param.requires_grad is True
assert param.dtype == torch.float32
elif "modules_to_save" in name:
extra_modules.add(name.split(".modules_to_save", maxsplit=1)[0].split(".")[-1])
assert param.requires_grad is True
assert param.dtype == torch.float32
else:
assert param.requires_grad is False
assert param.dtype == torch.float16
assert extra_modules == {"embed_tokens", "lm_head"}