add yi-vl
This commit is contained in:
parent
b033232aea
commit
64dac4085e
|
@ -856,6 +856,20 @@ _register_template(
|
|||
)
|
||||
|
||||
|
||||
_register_template(
|
||||
name="yi-vl",
|
||||
format_user=StringFormatter(slots=["### Human:\n{{content}}\n### Assistant: "]),
|
||||
stop_words=["###"],
|
||||
default_system=(
|
||||
"This is a chat between an inquisitive human and an AI assistant. "
|
||||
"Assume the role of the AI assistant. "
|
||||
"Read all the images carefully, and respond to the human's questions with informative, helpful, detailed and polite answers."
|
||||
"这是一个好奇的人类和一个人工智能助手之间的对话。"
|
||||
"假设你扮演这个AI助手的角色。仔细阅读所有的图像,并对人类的问题做出信息丰富、有帮助、详细的和礼貌的回答。"
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
_register_template(
|
||||
name="yuan",
|
||||
format_user=StringFormatter(slots=["{{content}}", {"token": "<sep>"}]),
|
||||
|
|
|
@ -16,7 +16,7 @@ from .utils.moe import add_z3_leaf_module, configure_moe
|
|||
from .utils.quantization import configure_quantization
|
||||
from .utils.rope import configure_rope
|
||||
from .utils.valuehead import prepare_valuehead_model
|
||||
from .utils.visual import autocast_projector_dtype, configure_hidden_size
|
||||
from .utils.visual import autocast_projector_dtype, configure_hidden_size, configure_visual
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
|
@ -50,6 +50,7 @@ def patch_config(
|
|||
configure_quantization(config, tokenizer, model_args, init_kwargs)
|
||||
configure_moe(config, model_args, is_trainable)
|
||||
configure_hidden_size(config)
|
||||
configure_visual(config, model_args)
|
||||
|
||||
if model_args.use_cache and not is_trainable:
|
||||
setattr(config, "use_cache", True)
|
||||
|
|
|
@ -1,12 +1,14 @@
|
|||
from typing import TYPE_CHECKING, Tuple
|
||||
|
||||
import torch
|
||||
import transformers
|
||||
from torch import nn
|
||||
|
||||
from ...extras.logging import get_logger
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import PretrainedConfig, PreTrainedModel
|
||||
from transformers import PretrainedConfig, PreTrainedModel, LlavaConfig
|
||||
|
||||
from ...hparams import ModelArguments
|
||||
|
||||
|
@ -31,3 +33,25 @@ def autocast_projector_dtype(
|
|||
logger.info("Casting multimodal projector outputs in {}.".format(model_args.compute_dtype))
|
||||
mm_projector: "torch.nn.Module" = getattr(model, mm_projector_name)
|
||||
mm_projector.register_forward_hook(_mm_projector_forward_post_hook)
|
||||
|
||||
|
||||
class LlavaMultiModalProjectorYiVL(nn.Module):
|
||||
def __init__(self, config: "LlavaConfig"):
|
||||
super().__init__()
|
||||
self.linear_1 = nn.Linear(config.vision_config.hidden_size, config.text_config.hidden_size, bias=True)
|
||||
self.linear_2 = nn.LayerNorm(config.text_config.hidden_size, bias=True)
|
||||
self.linear_3 = nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size, bias=True)
|
||||
self.linear_4 = nn.LayerNorm(config.text_config.hidden_size, bias=True)
|
||||
self.act = nn.GELU()
|
||||
self.proj = nn.Sequential(*[self.linear_1, self.linear_2, self.act, self.linear_3, self.linear_4])
|
||||
|
||||
def forward(self, image_features):
|
||||
hidden_states = self.proj(image_features)
|
||||
return hidden_states
|
||||
|
||||
|
||||
def configure_visual(config: "PretrainedConfig", model_args: "ModelArguments") -> None:
|
||||
logger = get_logger(__name__)
|
||||
if model_args.visual_inputs and "Yi" in getattr(config.text_config, "_name_or_path", None):
|
||||
transformers.models.llava.modeling_llava.LlavaMultiModalProjector = LlavaMultiModalProjectorYiVL
|
||||
logger.info("Patched Multimodal Projector for Yi-VL.")
|
||||
|
|
|
@ -5,7 +5,7 @@ from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
|
|||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import Seq2SeqTrainer
|
||||
from transformers import Seq2SeqTrainer, ProcessorMixin
|
||||
|
||||
from ...extras.constants import IGNORE_INDEX
|
||||
from ...extras.logging import get_logger
|
||||
|
@ -26,9 +26,10 @@ class CustomSeq2SeqTrainer(Seq2SeqTrainer):
|
|||
Inherits Seq2SeqTrainer to compute generative metrics such as BLEU and ROUGE.
|
||||
"""
|
||||
|
||||
def __init__(self, finetuning_args: "FinetuningArguments", **kwargs) -> None:
|
||||
def __init__(self, finetuning_args: "FinetuningArguments", processor: "ProcessorMixin", **kwargs) -> None:
|
||||
super().__init__(**kwargs)
|
||||
self.finetuning_args = finetuning_args
|
||||
self.processor = processor
|
||||
if finetuning_args.use_badam:
|
||||
from badam import clip_grad_norm_for_sparse_tensor
|
||||
|
||||
|
@ -120,3 +121,10 @@ class CustomSeq2SeqTrainer(Seq2SeqTrainer):
|
|||
for label, pred in zip(decoded_labels, decoded_preds):
|
||||
res.append(json.dumps({"label": label, "predict": pred}, ensure_ascii=False))
|
||||
writer.write("\n".join(res))
|
||||
|
||||
def save_model(self, output_dir: Optional[str] = None, _internal_call: bool = False):
|
||||
super().save_model(output_dir, _internal_call)
|
||||
if self.processor is not None:
|
||||
if output_dir is None:
|
||||
output_dir = self.args.output_dir
|
||||
getattr(self.processor, "image_processor").save_pretrained(output_dir)
|
|
@ -30,6 +30,7 @@ def run_sft(
|
|||
):
|
||||
tokenizer_module = load_tokenizer(model_args)
|
||||
tokenizer = tokenizer_module["tokenizer"]
|
||||
processor = tokenizer_module["processor"]
|
||||
dataset = get_dataset(model_args, data_args, training_args, stage="sft", **tokenizer_module)
|
||||
model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train)
|
||||
|
||||
|
@ -55,6 +56,7 @@ def run_sft(
|
|||
model=model,
|
||||
args=training_args,
|
||||
finetuning_args=finetuning_args,
|
||||
processor=processor,
|
||||
tokenizer=tokenizer,
|
||||
data_collator=data_collator,
|
||||
callbacks=callbacks,
|
||||
|
|
Loading…
Reference in New Issue