221 lines
4.8 KiB
Markdown
221 lines
4.8 KiB
Markdown
我们提供了多样化的大模型微调示例脚本。
|
|
|
|
请确保在 `LLaMA-Factory` 目录下执行下述命令。
|
|
|
|
## 目录
|
|
|
|
- [单 GPU LoRA 微调](#单-gpu-lora-微调)
|
|
- [单 GPU QLoRA 微调](#单-gpu-qlora-微调)
|
|
- [多 GPU LoRA 微调](#多-gpu-lora-微调)
|
|
- [多 GPU 全参数微调](#多-gpu-全参数微调)
|
|
- [合并 LoRA 适配器与模型量化](#合并-lora-适配器与模型量化)
|
|
- [推理 LoRA 模型](#推理-lora-模型)
|
|
- [杂项](#杂项)
|
|
|
|
## 示例
|
|
|
|
### 单 GPU LoRA 微调
|
|
|
|
#### (增量)预训练
|
|
|
|
```bash
|
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_pretrain.yaml
|
|
```
|
|
|
|
#### 指令监督微调
|
|
|
|
```bash
|
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_sft.yaml
|
|
```
|
|
|
|
#### 奖励模型训练
|
|
|
|
```bash
|
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_reward.yaml
|
|
```
|
|
|
|
#### PPO 训练
|
|
|
|
```bash
|
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_ppo.yaml
|
|
```
|
|
|
|
#### DPO 训练
|
|
|
|
```bash
|
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_dpo.yaml
|
|
```
|
|
|
|
#### ORPO 训练
|
|
|
|
```bash
|
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_orpo.yaml
|
|
```
|
|
|
|
#### 多模态指令监督微调
|
|
|
|
```bash
|
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llava1_5_lora_sft.yaml
|
|
```
|
|
|
|
#### 预处理数据集
|
|
|
|
对于大数据集有帮助,在配置中使用 `tokenized_path` 以加载预处理后的数据集。
|
|
|
|
```bash
|
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_preprocess.yaml
|
|
```
|
|
|
|
#### 在 MMLU/CMMLU/C-Eval 上评估
|
|
|
|
```bash
|
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli eval examples/lora_single_gpu/llama3_lora_eval.yaml
|
|
```
|
|
|
|
#### 批量预测并计算 BLEU 和 ROUGE 分数
|
|
|
|
```bash
|
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_predict.yaml
|
|
```
|
|
|
|
### 单 GPU QLoRA 微调
|
|
|
|
#### 基于 4/8 比特 Bitsandbytes 量化进行指令监督微调(推荐)
|
|
|
|
```bash
|
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/qlora_single_gpu/llama3_lora_sft_bitsandbytes.yaml
|
|
```
|
|
|
|
#### 基于 4/8 比特 GPTQ 量化进行指令监督微调
|
|
|
|
```bash
|
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/qlora_single_gpu/llama3_lora_sft_gptq.yaml
|
|
```
|
|
|
|
#### 基于 4 比特 AWQ 量化进行指令监督微调
|
|
|
|
```bash
|
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/qlora_single_gpu/llama3_lora_sft_awq.yaml
|
|
```
|
|
|
|
#### 基于 2 比特 AQLM 量化进行指令监督微调
|
|
|
|
```bash
|
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/qlora_single_gpu/llama3_lora_sft_aqlm.yaml
|
|
```
|
|
|
|
### 多 GPU LoRA 微调
|
|
|
|
#### 使用 Accelerate 进行单节点训练
|
|
|
|
```bash
|
|
bash examples/lora_multi_gpu/single_node.sh
|
|
```
|
|
|
|
#### 使用 Accelerate 进行多节点训练
|
|
|
|
```bash
|
|
bash examples/lora_multi_gpu/multi_node.sh
|
|
```
|
|
|
|
#### 使用 DeepSpeed ZeRO-3 平均分配显存
|
|
|
|
```bash
|
|
bash examples/lora_multi_gpu/ds_zero3.sh
|
|
```
|
|
|
|
### 多 GPU 全参数微调
|
|
|
|
#### 使用 DeepSpeed 进行单节点训练
|
|
|
|
```bash
|
|
bash examples/full_multi_gpu/single_node.sh
|
|
```
|
|
|
|
#### 使用 DeepSpeed 进行多节点训练
|
|
|
|
```bash
|
|
bash examples/full_multi_gpu/multi_node.sh
|
|
```
|
|
|
|
#### 批量预测并计算 BLEU 和 ROUGE 分数
|
|
|
|
```bash
|
|
bash examples/full_multi_gpu/predict.sh
|
|
```
|
|
|
|
### 合并 LoRA 适配器与模型量化
|
|
|
|
#### 合并 LoRA 适配器
|
|
|
|
注:请勿使用量化后的模型或 `quantization_bit` 参数来合并 LoRA 适配器。
|
|
|
|
```bash
|
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml
|
|
```
|
|
|
|
#### 使用 AutoGPTQ 量化模型
|
|
|
|
```bash
|
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli export examples/merge_lora/llama3_gptq.yaml
|
|
```
|
|
|
|
### 推理 LoRA 模型
|
|
|
|
#### 使用命令行接口
|
|
|
|
```bash
|
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli chat examples/merge_lora/llama3_lora_sft.yaml
|
|
```
|
|
|
|
#### 使用浏览器界面
|
|
|
|
```bash
|
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli webchat examples/merge_lora/llama3_lora_sft.yaml
|
|
```
|
|
|
|
#### 启动 OpenAI 风格 API
|
|
|
|
```bash
|
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli api examples/merge_lora/llama3_lora_sft.yaml
|
|
```
|
|
|
|
### 杂项
|
|
|
|
#### 使用 GaLore 进行全参数训练
|
|
|
|
```bash
|
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/extras/galore/llama3_full_sft.yaml
|
|
```
|
|
|
|
#### 使用 BAdam 进行全参数训练
|
|
|
|
```bash
|
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/extras/badam/llama3_full_sft.yaml
|
|
```
|
|
|
|
#### LoRA+ 微调
|
|
|
|
```bash
|
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/extras/loraplus/llama3_lora_sft.yaml
|
|
```
|
|
|
|
#### 深度混合微调
|
|
|
|
```bash
|
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/extras/mod/llama3_full_sft.yaml
|
|
```
|
|
|
|
#### LLaMA-Pro 微调
|
|
|
|
```bash
|
|
bash examples/extras/llama_pro/expand.sh
|
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/extras/llama_pro/llama3_freeze_sft.yaml
|
|
```
|
|
|
|
#### FSDP+QLoRA 微调
|
|
|
|
```bash
|
|
bash examples/extras/fsdp_qlora/single_node.sh
|
|
```
|