forked from p04798526/LLaMA-Factory-Mirror
add cal_lr.py
This commit is contained in:
parent
d125ef5535
commit
42c8fc4fb9
|
@ -84,10 +84,9 @@ def load_model_and_tokenizer(
|
|||
tokenizer._pad = MethodType(PreTrainedTokenizerBase._pad, tokenizer)
|
||||
|
||||
# Set model dtype
|
||||
if model_args.compute_dtype is not None: # for training
|
||||
setattr(config, "torch_dtype", model_args.compute_dtype)
|
||||
else: # for evaluation, priority: bf16 > fp16 > fp32
|
||||
if model_args.compute_dtype is None: # priority: bf16 > fp16 > fp32
|
||||
model_args.compute_dtype = infer_optim_dtype(model_dtype=getattr(config, "torch_dtype", None))
|
||||
setattr(config, "torch_dtype", model_args.compute_dtype)
|
||||
|
||||
# Fix config (for Qwen)
|
||||
if getattr(config, "model_type", None) == "qwen":
|
||||
|
|
|
@ -12,7 +12,7 @@ from deepspeed.profiling.flops_profiler import get_model_profile # type: ignore
|
|||
from llmtuner import ChatModel
|
||||
|
||||
|
||||
def calculate(
|
||||
def calculate_flops(
|
||||
model_name_or_path: str,
|
||||
batch_size: Optional[int] = 1,
|
||||
seq_length: Optional[int] = 256,
|
||||
|
@ -41,4 +41,4 @@ def calculate(
|
|||
|
||||
|
||||
if __name__ == "__main__":
|
||||
fire.Fire(calculate)
|
||||
fire.Fire(calculate_flops)
|
||||
|
|
|
@ -0,0 +1,63 @@
|
|||
# coding=utf-8
|
||||
# Calculates the optimal learning rate for 7B/13B models using LLaMA's hyper-parameters.
|
||||
# Usage: python cal_lr.py --model_name_or_path path_to_model --dataset alpaca_en --cutoff_len 1024 --batch_size 16
|
||||
# Inspired by: https://github.com/imoneoi/openchat/blob/master/ochat/training_deepspeed/train.py
|
||||
|
||||
import fire
|
||||
import math
|
||||
import torch
|
||||
from tqdm import tqdm
|
||||
from torch.utils.data import DataLoader
|
||||
from transformers import DataCollatorForSeq2Seq
|
||||
|
||||
from llmtuner.dsets import get_dataset, preprocess_dataset
|
||||
from llmtuner.extras.constants import IGNORE_INDEX
|
||||
from llmtuner.tuner.core import get_train_args, load_model_and_tokenizer
|
||||
|
||||
|
||||
BASE_LR = 3e-4
|
||||
BASE_BS = 4_000_000
|
||||
|
||||
|
||||
def calculate_lr(
|
||||
model_name_or_path: str,
|
||||
dataset: str,
|
||||
cutoff_len: int,
|
||||
batch_size: int
|
||||
):
|
||||
model_args, data_args, training_args, finetuning_args, _ = get_train_args(dict(
|
||||
stage="sft",
|
||||
model_name_or_path=model_name_or_path,
|
||||
dataset=dataset,
|
||||
template="default",
|
||||
cutoff_len=cutoff_len,
|
||||
output_dir="dummy_dir",
|
||||
fp16=True
|
||||
))
|
||||
trainset = get_dataset(model_args, data_args)
|
||||
_, tokenizer = load_model_and_tokenizer(model_args, finetuning_args, is_trainable=False, stage="sft")
|
||||
trainset = preprocess_dataset(trainset, tokenizer, data_args, training_args, stage="sft")
|
||||
data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, label_pad_token_id=IGNORE_INDEX)
|
||||
dataloader = DataLoader(
|
||||
dataset=trainset,
|
||||
batch_size=batch_size,
|
||||
shuffle=True,
|
||||
collate_fn=data_collator,
|
||||
pin_memory=True
|
||||
)
|
||||
valid_tokens, total_tokens = 0, 0
|
||||
for batch in tqdm(dataloader):
|
||||
valid_tokens += torch.sum(batch["labels"] != IGNORE_INDEX).item()
|
||||
total_tokens += torch.numel(batch["labels"])
|
||||
|
||||
batch_max_len = cutoff_len * batch_size # max tokens in a batch
|
||||
valid_ratio = valid_tokens / total_tokens
|
||||
batch_valid_len = batch_max_len * valid_ratio
|
||||
lr = BASE_LR * math.sqrt(batch_valid_len / BASE_BS)
|
||||
print("Optimal learning rate is {:.2e} for valid ratio% {:.2f} and effective batch size {:.2f}".format(
|
||||
lr, valid_ratio * 100, batch_valid_len
|
||||
))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
fire.Fire(calculate_lr)
|
|
@ -4,7 +4,6 @@
|
|||
# --max_length 1024 --max_samples 1024
|
||||
# dataset format: instruction (string), input (string), output (string), history (List[string])
|
||||
|
||||
|
||||
import fire
|
||||
from datasets import load_dataset
|
||||
from transformers import AutoTokenizer
|
||||
|
|
Loading…
Reference in New Issue