forked from p04798526/LLaMA-Factory-Mirror
add cal_lr.py
This commit is contained in:
parent
d125ef5535
commit
42c8fc4fb9
|
@ -84,10 +84,9 @@ def load_model_and_tokenizer(
|
||||||
tokenizer._pad = MethodType(PreTrainedTokenizerBase._pad, tokenizer)
|
tokenizer._pad = MethodType(PreTrainedTokenizerBase._pad, tokenizer)
|
||||||
|
|
||||||
# Set model dtype
|
# Set model dtype
|
||||||
if model_args.compute_dtype is not None: # for training
|
if model_args.compute_dtype is None: # priority: bf16 > fp16 > fp32
|
||||||
setattr(config, "torch_dtype", model_args.compute_dtype)
|
|
||||||
else: # for evaluation, priority: bf16 > fp16 > fp32
|
|
||||||
model_args.compute_dtype = infer_optim_dtype(model_dtype=getattr(config, "torch_dtype", None))
|
model_args.compute_dtype = infer_optim_dtype(model_dtype=getattr(config, "torch_dtype", None))
|
||||||
|
setattr(config, "torch_dtype", model_args.compute_dtype)
|
||||||
|
|
||||||
# Fix config (for Qwen)
|
# Fix config (for Qwen)
|
||||||
if getattr(config, "model_type", None) == "qwen":
|
if getattr(config, "model_type", None) == "qwen":
|
||||||
|
|
|
@ -12,7 +12,7 @@ from deepspeed.profiling.flops_profiler import get_model_profile # type: ignore
|
||||||
from llmtuner import ChatModel
|
from llmtuner import ChatModel
|
||||||
|
|
||||||
|
|
||||||
def calculate(
|
def calculate_flops(
|
||||||
model_name_or_path: str,
|
model_name_or_path: str,
|
||||||
batch_size: Optional[int] = 1,
|
batch_size: Optional[int] = 1,
|
||||||
seq_length: Optional[int] = 256,
|
seq_length: Optional[int] = 256,
|
||||||
|
@ -41,4 +41,4 @@ def calculate(
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
fire.Fire(calculate)
|
fire.Fire(calculate_flops)
|
||||||
|
|
|
@ -0,0 +1,63 @@
|
||||||
|
# coding=utf-8
|
||||||
|
# Calculates the optimal learning rate for 7B/13B models using LLaMA's hyper-parameters.
|
||||||
|
# Usage: python cal_lr.py --model_name_or_path path_to_model --dataset alpaca_en --cutoff_len 1024 --batch_size 16
|
||||||
|
# Inspired by: https://github.com/imoneoi/openchat/blob/master/ochat/training_deepspeed/train.py
|
||||||
|
|
||||||
|
import fire
|
||||||
|
import math
|
||||||
|
import torch
|
||||||
|
from tqdm import tqdm
|
||||||
|
from torch.utils.data import DataLoader
|
||||||
|
from transformers import DataCollatorForSeq2Seq
|
||||||
|
|
||||||
|
from llmtuner.dsets import get_dataset, preprocess_dataset
|
||||||
|
from llmtuner.extras.constants import IGNORE_INDEX
|
||||||
|
from llmtuner.tuner.core import get_train_args, load_model_and_tokenizer
|
||||||
|
|
||||||
|
|
||||||
|
BASE_LR = 3e-4
|
||||||
|
BASE_BS = 4_000_000
|
||||||
|
|
||||||
|
|
||||||
|
def calculate_lr(
|
||||||
|
model_name_or_path: str,
|
||||||
|
dataset: str,
|
||||||
|
cutoff_len: int,
|
||||||
|
batch_size: int
|
||||||
|
):
|
||||||
|
model_args, data_args, training_args, finetuning_args, _ = get_train_args(dict(
|
||||||
|
stage="sft",
|
||||||
|
model_name_or_path=model_name_or_path,
|
||||||
|
dataset=dataset,
|
||||||
|
template="default",
|
||||||
|
cutoff_len=cutoff_len,
|
||||||
|
output_dir="dummy_dir",
|
||||||
|
fp16=True
|
||||||
|
))
|
||||||
|
trainset = get_dataset(model_args, data_args)
|
||||||
|
_, tokenizer = load_model_and_tokenizer(model_args, finetuning_args, is_trainable=False, stage="sft")
|
||||||
|
trainset = preprocess_dataset(trainset, tokenizer, data_args, training_args, stage="sft")
|
||||||
|
data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, label_pad_token_id=IGNORE_INDEX)
|
||||||
|
dataloader = DataLoader(
|
||||||
|
dataset=trainset,
|
||||||
|
batch_size=batch_size,
|
||||||
|
shuffle=True,
|
||||||
|
collate_fn=data_collator,
|
||||||
|
pin_memory=True
|
||||||
|
)
|
||||||
|
valid_tokens, total_tokens = 0, 0
|
||||||
|
for batch in tqdm(dataloader):
|
||||||
|
valid_tokens += torch.sum(batch["labels"] != IGNORE_INDEX).item()
|
||||||
|
total_tokens += torch.numel(batch["labels"])
|
||||||
|
|
||||||
|
batch_max_len = cutoff_len * batch_size # max tokens in a batch
|
||||||
|
valid_ratio = valid_tokens / total_tokens
|
||||||
|
batch_valid_len = batch_max_len * valid_ratio
|
||||||
|
lr = BASE_LR * math.sqrt(batch_valid_len / BASE_BS)
|
||||||
|
print("Optimal learning rate is {:.2e} for valid ratio% {:.2f} and effective batch size {:.2f}".format(
|
||||||
|
lr, valid_ratio * 100, batch_valid_len
|
||||||
|
))
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
fire.Fire(calculate_lr)
|
|
@ -4,7 +4,6 @@
|
||||||
# --max_length 1024 --max_samples 1024
|
# --max_length 1024 --max_samples 1024
|
||||||
# dataset format: instruction (string), input (string), output (string), history (List[string])
|
# dataset format: instruction (string), input (string), output (string), history (List[string])
|
||||||
|
|
||||||
|
|
||||||
import fire
|
import fire
|
||||||
from datasets import load_dataset
|
from datasets import load_dataset
|
||||||
from transformers import AutoTokenizer
|
from transformers import AutoTokenizer
|
||||||
|
|
Loading…
Reference in New Issue