forked from p04798526/LLaMA-Factory-Mirror
6.0 KiB
6.0 KiB
如果您使用自定义数据集,请务必按照以下格式在 dataset_info.json
文件中添加数据集描述。我们在下面也提供了一些例子。
"数据集名称": {
"hf_hub_url": "Hugging Face 的数据集仓库地址(若指定,则忽略 script_url 和 file_name)",
"ms_hub_url": "ModelScope 的数据集仓库地址(若指定,则忽略 script_url 和 file_name)",
"script_url": "包含数据加载脚本的本地文件夹名称(若指定,则忽略 file_name)",
"file_name": "该目录下数据集文件的名称(若上述参数未指定,则此项必需)",
"file_sha1": "数据集文件的 SHA-1 哈希值(可选,留空不影响训练)",
"subset": "数据集子集的名称(可选,默认:None)",
"folder": "Hugging Face 仓库的文件夹名称(可选,默认:None)",
"ranking": "是否为偏好数据集(可选,默认:False)",
"formatting": "数据集格式(可选,默认:alpaca,可以为 alpaca 或 sharegpt)",
"columns(可选)": {
"prompt": "数据集代表提示词的表头名称(默认:instruction)",
"query": "数据集代表请求的表头名称(默认:input)",
"response": "数据集代表回答的表头名称(默认:output)",
"history": "数据集代表历史对话的表头名称(默认:None)",
"messages": "数据集代表消息列表的表头名称(默认:conversations)",
"system": "数据集代表系统提示的表头名称(默认:None)",
"tools": "数据集代表工具描述的表头名称(默认:None)",
"images": "数据集代表图像输入的表头名称(默认:None)"
},
"tags(可选,用于 sharegpt 格式)": {
"role_tag": "消息中代表发送者身份的键名(默认:from)",
"content_tag": "消息中代表文本内容的键名(默认:value)",
"user_tag": "消息中代表用户的 role_tag(默认:human)",
"assistant_tag": "消息中代表助手的 role_tag(默认:gpt)",
"observation_tag": "消息中代表工具返回结果的 role_tag(默认:observation)",
"function_tag": "消息中代表工具调用的 role_tag(默认:function_call)",
"system_tag": "消息中代表系统提示的 role_tag(默认:system,会覆盖 system 列)"
}
}
然后,可通过使用 --dataset 数据集名称
参数加载自定义数据集。
该项目目前支持两种格式的数据集:alpaca 和 sharegpt,其中 alpaca 格式的数据集按照以下方式组织:
[
{
"instruction": "用户指令(必填)",
"input": "用户输入(选填)",
"output": "模型回答(必填)",
"system": "系统提示词(选填)",
"history": [
["第一轮指令(选填)", "第一轮回答(选填)"],
["第二轮指令(选填)", "第二轮回答(选填)"]
]
}
]
对于上述格式的数据,dataset_info.json
中的描述应为:
"数据集名称": {
"file_name": "data.json",
"columns": {
"prompt": "instruction",
"query": "input",
"response": "output",
"system": "system",
"history": "history"
}
}
其中 query
列对应的内容会与 prompt
列对应的内容拼接后作为用户指令,即用户指令为 prompt\nquery
。response
列对应的内容为模型回答。
system
列对应的内容将被作为系统提示词。history
列是由多个字符串二元组构成的列表,分别代表历史消息中每轮的指令和回答。注意在指令监督学习时,历史消息中的回答也会被用于训练。
对于预训练数据集,仅 prompt
列中的内容会用于模型训练,例如:
[
{"text": "document"},
{"text": "document"}
]
对于上述格式的数据,dataset_info.json
中的描述应为:
"数据集名称": {
"file_name": "data.json",
"columns": {
"prompt": "text"
}
}
对于偏好数据集,response
列应当是一个长度为 2 的字符串列表,排在前面的代表更优的回答,例如:
[
{
"instruction": "用户指令",
"input": "用户输入",
"output": [
"优质回答",
"劣质回答"
]
}
]
对于上述格式的数据,dataset_info.json
中的描述应为:
"数据集名称": {
"file_name": "data.json",
"ranking": true,
"columns": {
"prompt": "instruction",
"query": "input",
"response": "output",
}
}
而 sharegpt 格式的数据集按照以下方式组织:
[
{
"conversations": [
{
"from": "human",
"value": "用户指令"
},
{
"from": "gpt",
"value": "模型回答"
}
],
"system": "系统提示词(选填)",
"tools": "工具描述(选填)"
}
]
对于上述格式的数据,dataset_info.json
中的描述应为:
"数据集名称": {
"file_name": "data.json",
"formatting": "sharegpt",
"columns": {
"messages": "conversations",
"system": "system",
"tools": "tools"
},
"tags": {
"role_tag": "from",
"content_tag": "value",
"user_tag": "human",
"assistant_tag": "gpt"
}
}
其中 messages
列应当是一个列表,且符合 用户/模型/用户/模型/用户/模型
的顺序。
我们同样支持 openai 格式的数据集:
[
{
"messages": [
{
"role": "system",
"content": "系统提示词(选填)"
},
{
"role": "user",
"content": "用户指令"
},
{
"role": "assistant",
"content": "模型回答"
}
]
}
]
对于上述格式的数据,dataset_info.json
中的描述应为:
"数据集名称": {
"file_name": "data.json",
"formatting": "sharegpt",
"columns": {
"messages": "messages"
},
"tags": {
"role_tag": "role",
"content_tag": "content",
"user_tag": "user",
"assistant_tag": "assistant",
"system_tag": "system"
}
}
预训练数据集和偏好数据集尚不支持 sharegpt 格式。