2030 lines
58 KiB
Markdown
2030 lines
58 KiB
Markdown
# __Nasal Scripting Language__
|
|
|
|
```C++
|
|
__ _
|
|
/\ \ \__ _ ___ __ _| |
|
|
/ \/ / _` / __|/ _` | |
|
|
/ /\ / (_| \__ \ (_| | |
|
|
\_\ \/ \__,_|___/\__,_|_|
|
|
```
|
|
|
|
![GitHub code size in bytes](https://img.shields.io/github/languages/code-size/ValKmjolnir/Nasal-Interpreter?style=flat-square&logo=github)
|
|
![GitHub release (latest by date)](https://img.shields.io/github/v/release/ValKmjolnir/Nasal-Interpreter?style=flat-square&logo=github)
|
|
![in dev](https://img.shields.io/badge/dev-v10.0-blue?style=flat-square&logo=github)
|
|
[![license](https://img.shields.io/badge/license-MIT-green?style=flat-square&logo=github)](./LICENSE)
|
|
|
|
> This document is also available in: [__中文__](./doc/README_zh.md) | [__English__](./README.md)
|
|
|
|
## __Contents__
|
|
|
|
* [__Introduction__](#introduction)
|
|
* [__Compile__](#how-to-compile)
|
|
* [__Usage__](#how-to-use)
|
|
* [__Tutorial__](#tutorial)
|
|
* [basic value type](#basic-value-type)
|
|
* [operators](#operators)
|
|
* [definition](#definition)
|
|
* [multi-assignment](#multi-assignment)
|
|
* [conditional expression](#conditional-expression)
|
|
* [loop](#loop)
|
|
* [subvec](#subvec)
|
|
* [special function call](#special-function-call)
|
|
* [lambda](#lambda)
|
|
* [closure](#closure)
|
|
* [trait](#trait)
|
|
* [native functions](#native-functions)
|
|
* [modules](#modulesfor-library-developers)
|
|
* [__Release Notes__](#release-notes)
|
|
* [v8.0](#version-80-release)
|
|
* [__Parser__](#parser)
|
|
* [v1.0](#version-10-parser-last-update-20191014)
|
|
* [__Abstract Syntax Tree__](#abstract-syntax-tree)
|
|
* [v1.2](#version-12-ast-last-update-20191031)
|
|
* [v2.0](#version-20-ast-last-update-2020831)
|
|
* [v3.0](#version-30-ast-last-update-20201023)
|
|
* [v5.0](#version-50-ast-last-update-202137)
|
|
* [__Bytecode VM__](#bytecode-virtual-machine)
|
|
* [v4.0](#version-40-vm-last-update-20201217)
|
|
* [v5.0](#version-50-vm-last-update-202137)
|
|
* [v6.0](#version-60-vm-last-update-202161)
|
|
* [v6.5](#version-65-vm-last-update-2021624)
|
|
* [v7.0](#version-70-vm-last-update-2021108)
|
|
* [v8.0](#version-80-vm-last-update-2022212)
|
|
* [v9.0](#version-90-vm-last-update-2022518)
|
|
* [v10.0](#version-100-vm-latest)
|
|
* [__Benchmark__](#benchmark)
|
|
* [v6.5 (i5-8250U windows 10)](#version-65-i5-8250u-windows10-2021619)
|
|
* [v6.5 (i5-8250U ubuntu-WSL)](#version-70-i5-8250u-ubuntu-wsl-on-windows10-2021629)
|
|
* [v8.0 (R9-5900HX ubuntu-WSL)](#version-80-r9-5900hx-ubuntu-wsl-2022123)
|
|
* [v9.0 (R9-5900HX ubuntu-WSL)](#version-90-r9-5900hx-ubuntu-wsl-2022213)
|
|
* [__Difference__](#difference-between-andys-and-this-interpreter)
|
|
* [strict definition](#1-must-use-var-to-define-variables)
|
|
* [(outdated)use after definition](#2-now-supported-couldnt-use-variables-before-definitions)
|
|
* [default dynamic arguments](#3-default-dynamic-arguments-not-supported)
|
|
* [__Trace Back Info__](#trace-back-info)
|
|
* [native function 'die'](#1-native-function-die)
|
|
* [stack overflow](#2-stack-overflow-crash-info)
|
|
* [runtime error](#3-normal-vm-error-crash-info)
|
|
* [detailed crash info](#4-detailed-crash-info)
|
|
* [__Debugger__](#debugger)
|
|
|
|
__Contact us if having great ideas to share!__
|
|
|
|
* __E-mail__: __lhk101lhk101@qq.com__
|
|
|
|
* __QQ__: __896693328__
|
|
|
|
## __Introduction__
|
|
|
|
__[Nasal](http://wiki.flightgear.org/Nasal_scripting_language)__
|
|
is an ECMAscript-like programming language that used in __[FlightGear](https://www.flightgear.org/)__.
|
|
This language is designed by __[Andy Ross](https://github.com/andyross)__.
|
|
|
|
The interpreter is totally rewritten by __[ValKmjolnir](https://github.com/ValKmjolnir)__ using `C++`(`-std=c++11`)
|
|
without reusing the code in __[Andy Ross's nasal interpreter](<https://github.com/andyross/nasal>)__.
|
|
But we really appreciate that Andy created this amazing programming language and his interpreter project.
|
|
|
|
Now this project uses __MIT license__ (2021/5/4).
|
|
Edit it if you want,
|
|
use this project to learn or create more interesting things
|
|
(But don't forget me XD).
|
|
|
|
__Why writing this nasal interpreter?__
|
|
In 2019 summer holiday,
|
|
members in __[FGPRC](https://www.fgprc.org/)__ told me that it is hard to debug with nasal-console in Flightgear,
|
|
especially when checking syntax errors.
|
|
So i tried to write a new interpreter to help them checking syntax error and even, runtime error.
|
|
|
|
I wrote the lexer,
|
|
parser and
|
|
bytecode virtual machine(there was an ast-interpreter,
|
|
but deleted after v4.0) to help checking errors.
|
|
We found it much easier to check syntax and runtime
|
|
errors before copying nasal-codes in nasal-console in Flightgear to test.
|
|
|
|
Also, you could use this language to write some
|
|
interesting programs and run them without the lib of Flightgear.
|
|
You could add your own modules to make
|
|
this interpreter a useful tool in your own projects (such as a script in a game just as Flightgear does).
|
|
|
|
## __How to Compile__
|
|
|
|
![windows](https://img.shields.io/badge/Microsoft-Windows-green?style=flat-square&logo=windows)
|
|
![macOS](https://img.shields.io/badge/Apple%20Inc.-MacOS-green?style=flat-square&logo=apple)
|
|
![linux](https://img.shields.io/badge/GNU-Linux-green?style=flat-square&logo=GNU)
|
|
|
|
Better choose the latest update of the interpreter.
|
|
Download the source and build it! It's quite easy to build this interpreter.
|
|
|
|
__CAUTION__: If want to use the release zip/tar.gz file to build the interpreter, please read the [__Release Notes__](#release-notes) below to make sure this release file has no fatal bugs. There are some tips to fix the release manually.
|
|
|
|
[![please use MinGW](https://www.mingw-w64.org/header.svg)](https://www.mingw-w64.org/ "PLEASE USE MINGW ON WINDOWS!")
|
|
|
|
__PLEASE USE MINGW ON WINDOWS!__
|
|
|
|
![g++](https://img.shields.io/badge/GNU-g++-A42E2B?style=flat-square&logo=GNU)
|
|
![clang++](https://img.shields.io/badge/LLVM-clang++-262D3A?style=flat-square&logo=LLVM)
|
|
|
|
Use g++ on __`Windows`__(`MinGW-w64`) platform. Download MinGW-w64 [__HERE__](https://www.mingw-w64.org/downloads/). (otherwise don't blame me for not reminding YOU 👿 )
|
|
|
|
> g++ -std=c++11 -O3 main.cpp -o nasal.exe -fno-exceptions -static
|
|
|
|
Or use g++/clang++ on __`linux/macOS/Unix`__ platform.
|
|
|
|
> [cpp compiler] -std=c++11 -O3 main.cpp -o nasal -fno-exceptions -ldl
|
|
|
|
Or using makefile,`mingw32-make` is __`Windows(MinGW-w64)`__ platform's `make`:
|
|
|
|
> mingw32-make nasal.exe
|
|
>
|
|
> mingw32-make.exe nasal.exe
|
|
|
|
on __`linux/macOS/Unix`__:
|
|
|
|
> make nasal
|
|
|
|
## __How to Use__
|
|
|
|
First we should learn how to write and run a program using this language,
|
|
click to see the [__tutorial__](#tutorial).
|
|
|
|
Input this command to run scripts __directly__:
|
|
|
|
> ./nasal filename
|
|
|
|
Use these commands to get version of interpreter:
|
|
|
|
> ./nasal -v | --version
|
|
|
|
```bash
|
|
__ _
|
|
/\ \ \__ _ ___ __ _| |
|
|
/ \/ / _` / __|/ _` | |
|
|
/ /\ / (_| \__ \ (_| | |
|
|
\_\ \/ \__,_|___/\__,_|_|
|
|
nasal ver : 10.0
|
|
c++ std : 201103
|
|
thanks to : https://github.com/andyross/nasal
|
|
code repo : https://github.com/ValKmjolnir/Nasal-Interpreter
|
|
code repo : https://gitee.com/valkmjolnir/Nasal-Interpreter
|
|
lang info : http://wiki.flightgear.org/Nasal_scripting_language
|
|
input <nasal -h> to get help .
|
|
```
|
|
|
|
Use these commands to get help(see more debug commands in help):
|
|
|
|
> ./nasal -h | --help
|
|
|
|
```bash
|
|
,--#-,
|
|
<3 / \____\ <3
|
|
|_|__A_|
|
|
nasal <option>
|
|
option:
|
|
-h, --help | get help.
|
|
-v, --version | get version of nasal interpreter.
|
|
|
|
nasal <file>
|
|
file:
|
|
input file name to execute script file.
|
|
|
|
nasal [options...] <file>
|
|
option:
|
|
-l, --lex | view token info.
|
|
-a, --ast | view abstract syntax tree.
|
|
-c, --code | view bytecode.
|
|
-e, --exec | execute.
|
|
-t, --time | execute and get the running time.
|
|
-o, --opcnt | execute and count used operands.
|
|
-d, --detail | execute and get detail crash info.
|
|
| get garbage collector info if did not crash.
|
|
-op, --optimize| use optimizer(beta).
|
|
| if want to use -op and run, please use -op -e/-t/-o/-d.
|
|
-dbg, --debug | debug mode (this will ignore -t -o -d).
|
|
file:
|
|
input file name to execute script file.
|
|
```
|
|
|
|
If your system is __`Windows`__ and you want to output unicode,please use this command before running nasal interpreter:
|
|
|
|
> chcp 65001
|
|
|
|
or you could write this in your nasal code:
|
|
|
|
```javascript
|
|
if(os.platform()=="windows")
|
|
system("chcp 65001");
|
|
```
|
|
|
|
## __Tutorial__
|
|
|
|
Nasal is really __easy__ to learn.
|
|
Reading this tutorial will not takes you over 15 minutes.
|
|
__If you have learnt C/C++/Javascript before, this will take less time.__
|
|
You could totally use it after reading this simple tutorial:
|
|
|
|
### __basic value type__
|
|
|
|
__`vm_none`__ is error type.
|
|
This type is used to interrupt the execution of virtual machine and will not be created by user program.
|
|
|
|
__`vm_nil`__ is a null type. It means nothing.
|
|
|
|
```javascript
|
|
var spc=nil;
|
|
```
|
|
|
|
__`vm_num`__ has 3 formats: `dec`, `hex` and `oct`. Using IEEE754 double to store.
|
|
|
|
```javascript
|
|
# this language use '#' to write notes
|
|
var n=1; # dec
|
|
var n=2.71828; # dec
|
|
var n=2.147e16; # dec
|
|
var n=1e-10; # dec
|
|
var n=0x7fffffff; # hex
|
|
var n=0xAA55; # hex
|
|
var n=0o170001; # oct
|
|
```
|
|
|
|
__`vm_str`__ has 3 formats. The third one is used to declare a character.
|
|
|
|
```javascript
|
|
var s='str';
|
|
var s="another string";
|
|
var s=`c`;
|
|
|
|
# some special characters is allowed in this language:
|
|
|
|
'\a';
|
|
'\b';
|
|
'\e';
|
|
'\f';
|
|
'\n';
|
|
'\r';
|
|
'\t';
|
|
'\v';
|
|
'\0';
|
|
'\\';
|
|
'\?';
|
|
'\'';
|
|
'\"';
|
|
```
|
|
|
|
__`vm_vec`__ has unlimited length and can store all types of values.
|
|
|
|
```javascript
|
|
var vec=[];
|
|
var vec=[
|
|
0,
|
|
nil,
|
|
{},
|
|
[],
|
|
func(){return 0;}
|
|
];
|
|
append(vec,0,1,2);
|
|
```
|
|
|
|
__`vm_hash`__ is a hashmap(or like a dict in `python`) that stores values with strings/identifiers as the key.
|
|
|
|
```javascript
|
|
var hash={
|
|
member1:nil,
|
|
member2:'str',
|
|
'member3':'member\'s name can also be a string constant',
|
|
"member4":"also this",
|
|
function:func(){
|
|
var a=me.member2~me.member3;
|
|
return a;
|
|
}
|
|
};
|
|
```
|
|
|
|
__`vm_func`__ is a function type (in fact it is lambda).
|
|
|
|
```javascript
|
|
var f=func(x,y,z){
|
|
return nil;
|
|
}
|
|
var f=func{
|
|
return 1024;
|
|
}
|
|
var f=func(x,y,z,default1=1,default2=2){
|
|
return x+y+z+default1+default2;
|
|
}
|
|
var f=func(args...){
|
|
var sum=0;
|
|
foreach(var i;args)
|
|
sum+=i;
|
|
return sum;
|
|
}
|
|
```
|
|
|
|
__`vm_upval`__ is a special type that used to store upvalues.
|
|
This type is only used in `nasal_vm` to make sure closure runs correctly.
|
|
|
|
__`vm_obj`__ is a special type that stores user data.
|
|
This means you could use other complex C/C++ data types in nasal.
|
|
This type is used when you are trying to add a new data structure into nasal,
|
|
so this type is often created by native-function that programmed in C/C++ by library developers.
|
|
You could see how to write your own native-functions below.
|
|
|
|
```javascript
|
|
var my_new_obj=func(){
|
|
return __builtin_my_obj();
|
|
}
|
|
var obj=my_new_obj();
|
|
```
|
|
|
|
### __operators__
|
|
|
|
Nasal has basic math operators `+` `-` `*` `/` and a special operator `~` that links two strings together.
|
|
|
|
```javascript
|
|
1+2-1*2/1;
|
|
'str1'~'str2';
|
|
(1+2)*(3+4)
|
|
```
|
|
|
|
For conditional expressions, operators `==` `!=` `<` `>` `<=` `>=` are used to compare two values.
|
|
`and` `or` have the same function as C/C++ `&&` `||`, link comparations together.
|
|
|
|
```javascript
|
|
1+1 and 0;
|
|
1<0 or 1>0;
|
|
1<=0 and 1>=0;
|
|
1==0 or 1!=0;
|
|
```
|
|
|
|
Unary operators `-` `!` have the same function as C/C++.
|
|
|
|
```javascript
|
|
-1;
|
|
!0;
|
|
```
|
|
|
|
Operators `=` `+=` `-=` `*=` `/=` `~=` are used in assignment expressions.
|
|
|
|
```javascript
|
|
a=b=c=d=1;
|
|
a+=1;
|
|
a-=1;
|
|
a*=1;
|
|
a/=1;
|
|
a~='string';
|
|
```
|
|
|
|
### __definition__
|
|
|
|
```javascript
|
|
var a=1;
|
|
var (a,b,c)=[0,1,2];
|
|
var (a,b,c)=(0,1,2);
|
|
(var a,b,c)=[0,1,2];
|
|
(var a,b,c)=(0,1,2);
|
|
```
|
|
|
|
### __multi-assignment__
|
|
|
|
The last one is often used to swap two variables.
|
|
|
|
```javascript
|
|
(a,b[0],c.d)=[0,1,2];
|
|
(a,b[1],c.e)=(0,1,2);
|
|
(a,b)=(b,a);
|
|
```
|
|
|
|
### __conditional expression__
|
|
|
|
In nasal there's a new key word `elsif`.
|
|
It has the same functions as `else if`.
|
|
|
|
```javascript
|
|
if(1){
|
|
;
|
|
}elsif(2){
|
|
;
|
|
}else if(3){
|
|
;
|
|
}else{
|
|
;
|
|
}
|
|
```
|
|
|
|
### __loop__
|
|
|
|
While loop and for loop is simalar to C/C++.
|
|
|
|
```javascript
|
|
while(condition)
|
|
continue;
|
|
|
|
for(var i=0;i<10;i+=1)
|
|
break;
|
|
```
|
|
|
|
Nasal has another two kinds of loops that iterates through a vector:
|
|
|
|
`forindex` will get the index of a vector. Index will be `0` to `size(elem)-1`.
|
|
|
|
```javascript
|
|
forindex(var i;elem)
|
|
print(elem[i]);
|
|
```
|
|
|
|
`foreach` will get the element of a vector. Element will be `elem[0]` to `elem[size(elem)-1]`.
|
|
|
|
```javascript
|
|
foreach(var i;elem)
|
|
print(i);
|
|
```
|
|
|
|
### __subvec__
|
|
|
|
Nasal provides this special syntax to help user generate a new vector by getting values by one index or getting values by indexes in a range from an old vector.
|
|
If there's only one index in the bracket, then we will get the value directly.
|
|
Use index to search one element in the string will get the __ascii number__ of this character.
|
|
If you want to get the character, use built-in function `chr()`.
|
|
|
|
```javascript
|
|
a[0];
|
|
a[-1,1,0:2,0:,:3,:,nil:8,3:nil,nil:nil];
|
|
"hello world"[0];
|
|
```
|
|
|
|
### __special function call__
|
|
|
|
This is of great use but is not very efficient
|
|
(because hashmap use string as the key to compare).
|
|
|
|
```javascript
|
|
f(x:0,y:nil,z:[]);
|
|
```
|
|
|
|
### __lambda__
|
|
|
|
Also functions have this kind of use:
|
|
|
|
```javascript
|
|
func(x,y){return x+y}(0,1);
|
|
func(x){return 1/(1+math.exp(-x));}(0.5);
|
|
```
|
|
|
|
There's an interesting test file `y-combinator.nas`,
|
|
try it for fun:
|
|
|
|
```javascript
|
|
var fib=func(f){
|
|
return f(f);
|
|
}(
|
|
func(f){
|
|
return func(x){
|
|
if(x<2) return x;
|
|
return f(f)(x-1)+f(f)(x-2);
|
|
}
|
|
}
|
|
);
|
|
```
|
|
|
|
### __closure__
|
|
|
|
Closure means you could get the variable that is not in the local scope of a function that you called.
|
|
Here is an example, result is `1`:
|
|
|
|
```javascript
|
|
var f=func(){
|
|
var a=1;
|
|
return func(){return a;};
|
|
}
|
|
print(f()());
|
|
```
|
|
|
|
Using closure makes it easier to OOP.
|
|
|
|
```javascript
|
|
var student=func(n,a){
|
|
var (name,age)=(n,a);
|
|
return {
|
|
print_info:func() {println(name,' ',age);},
|
|
set_age: func(a){age=a;},
|
|
get_age: func() {return age;},
|
|
set_name: func(n){name=n;},
|
|
get_name: func() {return name;}
|
|
};
|
|
}
|
|
```
|
|
|
|
### __trait__
|
|
|
|
Also there's another way to OOP, that is `trait`.
|
|
|
|
When a hash has a member named `parents` and the value type is vector,
|
|
then when you are trying to find a member that is not in this hash,
|
|
virtual machine will search the member in `parents`.
|
|
If there is a hash that has the member, you will get the member's value.
|
|
|
|
Using this mechanism, we could OOP like this, the result is `114514`:
|
|
|
|
```javascript
|
|
var trait={
|
|
get:func{return me.val;},
|
|
set:func(x){me.val=x;}
|
|
};
|
|
|
|
var class={
|
|
new:func(){
|
|
return {
|
|
val:nil,
|
|
parents:[trait]
|
|
};
|
|
}
|
|
};
|
|
var a=class.new();
|
|
a.set(114514);
|
|
println(a.get());
|
|
```
|
|
|
|
First virtual machine cannot find member `set` in hash `a`, but in `a.parents` there's a hash `trait` has the member `set`, so we get the `set`.
|
|
variable `me` points to hash `a`, so we change the `a.val`.
|
|
And `get` has the same process.
|
|
|
|
And we must remind you that if you do this:
|
|
|
|
```javascript
|
|
var trait={
|
|
get:func{return me.val;},
|
|
set:func(x){me.val=x;}
|
|
};
|
|
|
|
var class={
|
|
new:func(){
|
|
return {
|
|
val:nil,
|
|
parents:[trait]
|
|
};
|
|
}
|
|
};
|
|
var a=class.new();
|
|
var b=class.new();
|
|
a.set(114);
|
|
b.set(514);
|
|
println(a.get());
|
|
println(b.get());
|
|
|
|
var c=a.get;
|
|
var d=b.get;
|
|
|
|
println(c());
|
|
println(c());
|
|
println(d());
|
|
println(d());
|
|
```
|
|
|
|
You will get this result now:
|
|
|
|
```bash
|
|
114
|
|
514
|
|
514
|
|
514
|
|
514
|
|
514
|
|
```
|
|
|
|
Because `a.get` will set `me=a` in the `trait.get`. Then `b.get` do the `me=b`. So in fact c is `b.get` too after running `var d=b.get`.
|
|
If you want to use this trick to make the program running more efficiently, you must know this special mechanism.
|
|
|
|
### __native functions__
|
|
|
|
This part shows how we add native functions in this nasal interpreter.
|
|
If you are interested in this part, this may help you.
|
|
And...
|
|
|
|
__CAUTION:__ If you want to add your own functions __without__ changing the source code of the interpreter, see the __`module`__ after this part.
|
|
|
|
If you really want to change source code, check built-in functions in `lib.nas` and see the example below.
|
|
|
|
Definition:
|
|
|
|
```C++
|
|
nasal_ref builtin_print(nasal_ref*,nasal_gc&);
|
|
// you could also use a macro to define one.
|
|
nas_native(builtin_print);
|
|
```
|
|
|
|
Then complete this function using C++:
|
|
|
|
```C++
|
|
nasal_ref builtin_print(nasal_ref* local,nasal_gc& gc)
|
|
{
|
|
// find value with index begin from 1
|
|
// because local[0] is reserved for value 'me'
|
|
nasal_ref vec=local[1];
|
|
// main process
|
|
// also check number of arguments and type here
|
|
// if get an error,use builtin_err
|
|
for(auto& i:vec.vec().elems)
|
|
switch(i.type)
|
|
{
|
|
case vm_none: std::cout<<"undefined"; break;
|
|
case vm_nil: std::cout<<"nil"; break;
|
|
case vm_num: std::cout<<i.num(); break;
|
|
case vm_str: std::cout<<i.str(); break;
|
|
case vm_vec: i.vec().print(); break;
|
|
case vm_hash: i.hash().print(); break;
|
|
case vm_func: std::cout<<"func(...){...}"; break;
|
|
case vm_obj: std::cout<<"<object>"; break;
|
|
}
|
|
std::cout<<std::flush;
|
|
// generate return value,
|
|
// use gc::alloc(type) to make a new value
|
|
// or use reserved reference nil/one/zero
|
|
return nil;
|
|
}
|
|
```
|
|
|
|
After that, register the built-in function's name(in nasal) and the function's pointer in this table:
|
|
|
|
```C++
|
|
struct func
|
|
{
|
|
const char* name;
|
|
nasal_ref (*func)(nasal_ref*,nasal_gc&);
|
|
} builtin[]=
|
|
{
|
|
{"__builtin_print",builtin_print},
|
|
{nullptr, nullptr }
|
|
};
|
|
```
|
|
|
|
At last,warp the `__builtin_print` in a nasal file:
|
|
|
|
```javascript
|
|
var print=func(elems...){
|
|
return __builtin_print(elems);
|
|
};
|
|
```
|
|
|
|
In fact the arguments that `__builtin_print` uses are not necessary.
|
|
So writting it like this is also right:
|
|
|
|
```javascript
|
|
var print=func(elems...){
|
|
return __builtin_print;
|
|
};
|
|
```
|
|
|
|
If you don't warp built-in function in a normal nasal function,
|
|
this built-in function may cause a fault when searching arguments,
|
|
which will cause __segmentation error__.
|
|
|
|
Use `import("filename.nas")` to get the nasal file including your built-in functions,
|
|
then you could use it.
|
|
|
|
version 6.5 update:
|
|
|
|
Use `gc::builtin_alloc` in builtin function if this function uses alloc more than one time.
|
|
|
|
When running a builtin function,alloc will run more than one time,
|
|
this may cause mark-sweep in `gc::alloc`.
|
|
|
|
The value got before will be collected,but stil in use in this builtin function,
|
|
this is a fatal error.
|
|
|
|
So use `gc::builtin_alloc` in builtin functions to allocate a new object.
|
|
|
|
Or use `gc::alloc` like this to avoid sweeping objects incorrectly:
|
|
|
|
```C++
|
|
nasal_ref builtin_keys(nasal_ref* local,nasal_gc& gc)
|
|
{
|
|
nasal_ref hash=local[1];
|
|
if(hash.type!=vm_hash)
|
|
return builtin_err("keys","\"hash\" must be hash");
|
|
// push vector into local scope to avoid being sweeped
|
|
if(gc.top+1>=gc.canary)
|
|
return builtin_err("keys","expand temporary space error:stackoverflow");
|
|
(++gc.top)[0]=gc.alloc(vm_vec);
|
|
auto& vec=gc.top[0].vec().elems;
|
|
for(auto& iter:hash.hash().elems)
|
|
{
|
|
nasal_ref str=gc.alloc(vm_str);
|
|
str.str()=iter.first;
|
|
vec.push_back(str);
|
|
}
|
|
--gc.top;
|
|
return gc.top[1];
|
|
}
|
|
```
|
|
|
|
### __modules(for library developers)__
|
|
|
|
If there is only one way to add your own functions into nasal,
|
|
that is really inconvenient.
|
|
|
|
Luckily, we have developed some useful native-functions to help you add modules that created by you.
|
|
|
|
After 2021/12/3, there are some new functions added to `lib.nas`:
|
|
|
|
```javascript
|
|
var dylib=
|
|
{
|
|
dlopen: func(libname){return __builtin_dlopen;},
|
|
dlsym: func(lib,sym){return __builtin_dlsym; },
|
|
dlclose: func(lib){return __builtin_dlclose; },
|
|
dlcall: func(funcptr,args...){return __builtin_dlcall}
|
|
};
|
|
```
|
|
|
|
Aha, as you could see, these functions are used to load dynamic libraries into the nasal runtime and execute.
|
|
Let's see how they work.
|
|
|
|
First, write a cpp file that you want to generate the dynamic lib, take the `fib.cpp` as the example(example codes are in `./module`):
|
|
|
|
```C++
|
|
// add header file nasal.h to get api
|
|
#include "nasal.h"
|
|
double fibonaci(double x){
|
|
if(x<=2)
|
|
return x;
|
|
return fibonaci(x-1)+fibonaci(x-2);
|
|
}
|
|
// remember to use extern "C",
|
|
// so you could search the symbol quickly
|
|
extern "C" nasal_ref fib(std::vector<nasal_ref>& args,nasal_gc& gc){
|
|
// the arguments are generated into a vm_vec: args
|
|
// get values from the vector that must be used here
|
|
nasal_ref num=args[0];
|
|
// if you want your function safer, try this
|
|
// builtin_err will print the error info on screen
|
|
// and return vm_null for runtime to interrupt
|
|
if(num.type!=vm_num)
|
|
return builtin_err("extern_fib","\"num\" must be number");
|
|
// ok, you must know that vm_num now is not managed by gc
|
|
// if want to return a gc object, use gc.alloc(type)
|
|
// usage of gc is the same as adding a native function
|
|
return {vm_num,fibonaci(num.to_number())};
|
|
}
|
|
```
|
|
|
|
Next, compile this `fib.cpp` into dynamic lib.
|
|
|
|
Linux(`.so`):
|
|
|
|
`clang++ -c -O3 fib.cpp -fPIC -o fib.o`
|
|
|
|
`clang++ -shared -o libfib.so fib.o`
|
|
|
|
Mac(`.so` & `.dylib`): same as Linux.
|
|
|
|
Windows(`.dll`):
|
|
|
|
`g++ -c -O3 fib.cpp -fPIC -o fib.o`
|
|
|
|
`g++ -shared -o libfib.dll fib.o`
|
|
|
|
Then we write a test nasal file to run this fib function, using `os.platform()` we could write a program that runs on three different OS:
|
|
|
|
```javascript
|
|
import("lib.nas");
|
|
var dlhandle=dylib.dlopen("./module/libfib."~(os.platform()=="windows"?"dll":"so"));
|
|
var fib=dylib.dlsym(dlhandle,"fib");
|
|
for(var i=1;i<30;i+=1)
|
|
println(dylib.dlcall(fib,i));
|
|
dylib.dlclose(dlhandle);
|
|
```
|
|
|
|
`dylib.dlopen` is used to load dynamic library.
|
|
|
|
`dylib.dlsym` is used to get the function address.
|
|
|
|
`dylib.dlcall` is used to call the function, the first argument is the function address, make sure this argument is vm_obj and type=obj_extern.
|
|
|
|
`dylib.dlclose` is used to unload the library, at the moment that you call the function, all the function addresses that got from it are invalid.
|
|
|
|
If get this, Congratulations!
|
|
|
|
```bash
|
|
./nasal a.nas
|
|
1
|
|
2
|
|
3
|
|
5
|
|
8
|
|
13
|
|
21
|
|
34
|
|
55
|
|
89
|
|
144
|
|
233
|
|
377
|
|
610
|
|
987
|
|
1597
|
|
2584
|
|
4181
|
|
6765
|
|
10946
|
|
17711
|
|
28657
|
|
46368
|
|
75025
|
|
121393
|
|
196418
|
|
317811
|
|
514229
|
|
832040
|
|
```
|
|
|
|
## __Release Notes__
|
|
|
|
### __version 8.0 release__
|
|
|
|
I made a __big mistake__ in `v8.0` release:
|
|
|
|
in __`nasal_dbg.h:215`__: `auto canary=gc.stack+STACK_MAX_DEPTH-1;`
|
|
|
|
this will cause incorrect `stackoverflow` error.
|
|
please change it to:
|
|
|
|
`canary=gc.stack+STACK_MAX_DEPTH-1;`
|
|
|
|
If do not change this line, only the debugger runs abnormally. this bug is fixed in `v9.0`.
|
|
|
|
Another bug is that in `nasal_err.h:class nasal_err`, we should add a constructor for this class:
|
|
|
|
```C++
|
|
nasal_err():error(0){}
|
|
```
|
|
|
|
This bug is fixed in `v9.0`.
|
|
|
|
## __Parser__
|
|
|
|
`LL(1)` parser with special check.
|
|
|
|
```javascript
|
|
(var a,b,c)=[{b:nil},[1,2],func return 0;];
|
|
(a.b,b[0],c)=(1,2,3);
|
|
```
|
|
|
|
These two expressions have the same first set,so `LL(1)` is useless for this language. We add some special checks in it.
|
|
|
|
Problems mentioned above have been solved for a long time, but recently i found a new problem here:
|
|
|
|
```javascript
|
|
var f=func(x,y,z){return x+y+z}
|
|
(a,b,c)=(0,1,2);
|
|
```
|
|
|
|
This will be recognized as this:
|
|
|
|
```javascript
|
|
var f=func(x,y,z){return x+y+z}(a,b,c)
|
|
=(0,1,2);
|
|
```
|
|
|
|
and causes fatal syntax error.
|
|
And i tried this program in flightgear nasal console.
|
|
It also found this is a syntax error.
|
|
I think this is a serious design fault.
|
|
To avoid this syntax error, change program like this, just add a semicolon:
|
|
|
|
```javascript
|
|
var f=func(x,y,z){return x+y+z};
|
|
^ here
|
|
(a,b,c)=(0,1,2);
|
|
```
|
|
|
|
### version 1.0 parser (last update 2019/10/14)
|
|
|
|
First fully functional version of nasal_parser.
|
|
|
|
Before version 1.0,i tried many times to create a correct parser.
|
|
|
|
Finally i learned `LL(1)` and `LL(k)` and wrote a parser for math formulas in version 0.16(last update 2019/9/14).
|
|
|
|
In version 0.17(2019/9/15) 0.18(2019/9/18) 0.19(2019/10/1)i was playing the parser happily and after that i wrote version 1.0.
|
|
|
|
__This project began at 2019/7/25__.
|
|
|
|
## __Abstract Syntax Tree__
|
|
|
|
### version 1.2 ast (last update 2019/10/31)
|
|
|
|
The ast has been completed in this version.
|
|
|
|
### version 2.0 ast (last update 2020/8/31)
|
|
|
|
A completed ast-interpreter with unfinished lib functions.
|
|
|
|
### version 3.0 ast (last update 2020/10/23)
|
|
|
|
The ast is refactored and is now easier to read and maintain.
|
|
|
|
Ast-interpreter uses new techniques so it can run codes more efficiently.
|
|
|
|
Now you can add your own functions as builtin-functions in this interpreter!
|
|
|
|
I decide to save the ast interpreter after releasing v4.0. Because it took me a long time to think and write...
|
|
|
|
### version 5.0 ast (last update 2021/3/7)
|
|
|
|
I change my mind.
|
|
AST interpreter leaves me too much things to do.
|
|
|
|
If i continue saving this interpreter,
|
|
it will be harder for me to make the bytecode vm become more efficient.
|
|
|
|
## __Bytecode Virtual Machine__
|
|
|
|
### version 4.0 vm (last update 2020/12/17)
|
|
|
|
I have just finished the first version of bytecode-interpreter.
|
|
|
|
This interpreter is still in test.
|
|
After this test, i will release version 4.0!
|
|
|
|
Now i am trying to search hidden bugs in this interpreter.
|
|
Hope you could help me! :)
|
|
|
|
There's an example of byte code below:
|
|
|
|
```javascript
|
|
for(var i=0;i<4000000;i+=1);
|
|
```
|
|
|
|
```x86asm
|
|
.number 0
|
|
.number 4e+006
|
|
.number 1
|
|
.symbol i
|
|
0x00000000: pzero 0x00000000
|
|
0x00000001: loadg 0x00000000 (i)
|
|
0x00000002: callg 0x00000000 (i)
|
|
0x00000003: pnum 0x00000001 (4e+006)
|
|
0x00000004: less 0x00000000
|
|
0x00000005: jf 0x0000000b
|
|
0x00000006: pone 0x00000000
|
|
0x00000007: mcallg 0x00000000 (i)
|
|
0x00000008: addeq 0x00000000
|
|
0x00000009: pop 0x00000000
|
|
0x0000000a: jmp 0x00000002
|
|
0x0000000b: nop 0x00000000
|
|
```
|
|
|
|
### version 5.0 vm (last update 2021/3/7)
|
|
|
|
I decide to optimize bytecode vm in this version.
|
|
|
|
Because it takes more than 1.5s to count i from `0` to `4000000-1`.This is not efficient at all!
|
|
|
|
2021/1/23 update: Now it can count from `0` to `4000000-1` in 1.5s.
|
|
|
|
### version 6.0 vm (last update 2021/6/1)
|
|
|
|
Use `loadg`/`loadl`/`callg`/`calll`/`mcallg`/`mcalll` to avoid branches.
|
|
|
|
Delete type `vm_scop`.
|
|
|
|
Use const `vm_num` to avoid frequently new & delete.
|
|
|
|
Change garbage collector from reference-counting to mark-sweep.
|
|
|
|
`vapp` and `newf` operand use .num to reduce the size of `exec_code`.
|
|
|
|
2021/4/3 update: Now it can count from `0` to `4e6-1` in 0.8s.
|
|
|
|
2021/4/19 update: Now it can count from `0` to `4e6-1` in 0.4s.
|
|
|
|
In this update i changed global and local scope from `unordered_map` to `vector`.
|
|
|
|
So the bytecode generator changed a lot.
|
|
|
|
```javascript
|
|
for(var i=0;i<4000000;i+=1);
|
|
```
|
|
|
|
```x86asm
|
|
.number 4e+006
|
|
0x00000000: intg 0x00000001
|
|
0x00000001: pzero 0x00000000
|
|
0x00000002: loadg 0x00000000
|
|
0x00000003: callg 0x00000000
|
|
0x00000004: pnum 0x00000000 (4e+006)
|
|
0x00000005: less 0x00000000
|
|
0x00000006: jf 0x0000000c
|
|
0x00000007: pone 0x00000000
|
|
0x00000008: mcallg 0x00000000
|
|
0x00000009: addeq 0x00000000
|
|
0x0000000a: pop 0x00000000
|
|
0x0000000b: jmp 0x00000003
|
|
0x0000000c: nop 0x00000000
|
|
```
|
|
|
|
### version 6.5 vm (last update 2021/6/24)
|
|
|
|
2021/5/31 update:
|
|
|
|
Now gc can collect garbage correctly without re-collecting,
|
|
which will cause fatal error.
|
|
|
|
Add `builtin_alloc` to avoid mark-sweep when running a built-in function,
|
|
which will mark useful items as useless garbage to collect.
|
|
|
|
Better use setsize and assignment to get a big array,
|
|
`append` is very slow in this situation.
|
|
|
|
2021/6/3 update:
|
|
|
|
Fixed a bug that gc still re-collects garbage,
|
|
this time i use three mark states to make sure garbage is ready to be collected.
|
|
|
|
Change `callf` to `callfv` and `callfh`.
|
|
And `callfv` fetches arguments from `val_stack` directly instead of using `vm_vec`,
|
|
a not very efficient way.
|
|
|
|
Better use `callfv` instead of `callfh`,
|
|
`callfh` will fetch a `vm_hash` from stack and parse it,
|
|
making this process slow.
|
|
|
|
```javascript
|
|
var f=func(x,y){return x+y;}
|
|
f(1024,2048);
|
|
```
|
|
|
|
```x86asm
|
|
.number 1024
|
|
.number 2048
|
|
.symbol x
|
|
.symbol y
|
|
0x00000000: intg 0x00000001
|
|
0x00000001: newf 0x00000007
|
|
0x00000002: intl 0x00000003
|
|
0x00000003: offset 0x00000001
|
|
0x00000004: para 0x00000000 (x)
|
|
0x00000005: para 0x00000001 (y)
|
|
0x00000006: jmp 0x0000000b
|
|
0x00000007: calll 0x00000001
|
|
0x00000008: calll 0x00000002
|
|
0x00000009: add 0x00000000
|
|
0x0000000a: ret 0x00000000
|
|
0x0000000b: loadg 0x00000000
|
|
0x0000000c: callg 0x00000000
|
|
0x0000000d: pnum 0x00000000 (1024)
|
|
0x0000000e: pnum 0x00000001 (2048)
|
|
0x0000000f: callfv 0x00000002
|
|
0x00000010: pop 0x00000000
|
|
0x00000011: nop 0x00000000
|
|
```
|
|
|
|
2021/6/21 update: Now gc will not collect nullptr.
|
|
And the function of assignment is complete,
|
|
now these kinds of assignment is allowed:
|
|
|
|
```javascript
|
|
var f=func()
|
|
{
|
|
var _=[{_:0},{_:1}];
|
|
return func(x)
|
|
{
|
|
return _[x];
|
|
}
|
|
}
|
|
var m=f();
|
|
m(0)._=m(1)._=10;
|
|
|
|
[0,1,2][1:2][0]=0;
|
|
```
|
|
|
|
In the old version,
|
|
parser will check this left-value and tells that these kinds of left-value are not allowed(bad lvalue).
|
|
|
|
But now it can work.
|
|
And you could see its use by reading the code above.
|
|
To make sure this assignment works correctly,
|
|
codegen will generate byte code by `nasal_codegen::call_gen()` instead of `nasal_codegen::mcall_gen()`,
|
|
and the last child of the ast will be generated by `nasal_codegen::mcall_gen()`.
|
|
So the bytecode is totally different now:
|
|
|
|
```x86asm
|
|
.number 10
|
|
.number 2
|
|
.symbol _
|
|
.symbol x
|
|
0x00000000: intg 0x00000002
|
|
0x00000001: newf 0x00000005
|
|
0x00000002: intl 0x00000002
|
|
0x00000003: offset 0x00000001
|
|
0x00000004: jmp 0x00000017
|
|
0x00000005: newh 0x00000000
|
|
0x00000006: pzero 0x00000000
|
|
0x00000007: happ 0x00000000 (_)
|
|
0x00000008: newh 0x00000000
|
|
0x00000009: pone 0x00000000
|
|
0x0000000a: happ 0x00000000 (_)
|
|
0x0000000b: newv 0x00000002
|
|
0x0000000c: loadl 0x00000001
|
|
0x0000000d: newf 0x00000012
|
|
0x0000000e: intl 0x00000003
|
|
0x0000000f: offset 0x00000002
|
|
0x00000010: para 0x00000001 (x)
|
|
0x00000011: jmp 0x00000016
|
|
0x00000012: calll 0x00000001
|
|
0x00000013: calll 0x00000002
|
|
0x00000014: callv 0x00000000
|
|
0x00000015: ret 0x00000000
|
|
0x00000016: ret 0x00000000
|
|
0x00000017: loadg 0x00000000
|
|
0x00000018: callg 0x00000000
|
|
0x00000019: callfv 0x00000000
|
|
0x0000001a: loadg 0x00000001
|
|
0x0000001b: pnum 0x00000000 (10.000000)
|
|
0x0000001c: callg 0x00000001
|
|
0x0000001d: pone 0x00000000
|
|
0x0000001e: callfv 0x00000001
|
|
0x0000001f: mcallh 0x00000000 (_)
|
|
0x00000020: meq 0x00000000
|
|
0x00000021: callg 0x00000001
|
|
0x00000022: pzero 0x00000000
|
|
0x00000023: callfv 0x00000001
|
|
0x00000024: mcallh 0x00000000 (_)
|
|
0x00000025: meq 0x00000000
|
|
0x00000026: pop 0x00000000
|
|
0x00000027: pzero 0x00000000
|
|
0x00000028: pzero 0x00000000
|
|
0x00000029: pone 0x00000000
|
|
0x0000002a: pnum 0x00000001 (2.000000)
|
|
0x0000002b: newv 0x00000003
|
|
0x0000002c: slcbeg 0x00000000
|
|
0x0000002d: pone 0x00000000
|
|
0x0000002e: pnum 0x00000001 (2.000000)
|
|
0x0000002f: slc2 0x00000000
|
|
0x00000030: slcend 0x00000000
|
|
0x00000031: pzero 0x00000000
|
|
0x00000032: mcallv 0x00000000
|
|
0x00000033: meq 0x00000000
|
|
0x00000034: pop 0x00000000
|
|
0x00000035: nop 0x00000000
|
|
```
|
|
|
|
As you could see from the bytecode above,
|
|
`mcall`/`mcallv`/`mcallh` operands' using frequency will reduce,
|
|
`call`/`callv`/`callh`/`callfv`/`callfh` at the opposite.
|
|
|
|
And because of the new structure of `mcall`,
|
|
`addr_stack`, a stack used to store the memory address,
|
|
is deleted from `nasal_vm`,
|
|
and now `nasal_vm` use `nasal_val** mem_addr` to store the memory address.
|
|
This will not cause fatal errors because the memory address is used __immediately__ after getting it.
|
|
|
|
### version 7.0 vm (last update 2021/10/8)
|
|
|
|
2021/6/26 update:
|
|
|
|
Instruction dispatch is changed from call-threading to computed-goto(with inline function).
|
|
After changing the way of instruction dispatch,
|
|
there is a great improvement in nasal_vm.
|
|
Now vm can run test/bigloop and test/pi in 0.2s!
|
|
And vm runs test/fib in 0.8s on linux.
|
|
You could see the time use data below,
|
|
in Test data section.
|
|
|
|
This version uses g++ extension "labels as values",
|
|
which is also supported by clang++.
|
|
(But i don't know if MSVC supports this)
|
|
|
|
There is also a change in nasal_gc:
|
|
`std::vector` global is deleted,
|
|
now the global values are all stored on stack(from `val_stack+0` to `val_stack+intg-1`).
|
|
|
|
2021/6/29 update:
|
|
|
|
Add some instructions that execute const values:
|
|
`op_addc`,`op_subc`,`op_mulc`,`op_divc`,`op_lnkc`,`op_addeqc`,`op_subeqc`,`op_muleqc`,`op_diveqc`,`op_lnkeqc`.
|
|
|
|
Now the bytecode of test/bigloop.nas seems like this:
|
|
|
|
```x86asm
|
|
.number 4e+006
|
|
.number 1
|
|
0x00000000: intg 0x00000001
|
|
0x00000001: pzero 0x00000000
|
|
0x00000002: loadg 0x00000000
|
|
0x00000003: callg 0x00000000
|
|
0x00000004: pnum 0x00000000 (4000000)
|
|
0x00000005: less 0x00000000
|
|
0x00000006: jf 0x0000000b
|
|
0x00000007: mcallg 0x00000000
|
|
0x00000008: addeqc 0x00000001 (1)
|
|
0x00000009: pop 0x00000000
|
|
0x0000000a: jmp 0x00000003
|
|
0x0000000b: nop 0x00000000
|
|
```
|
|
|
|
And this test file runs in 0.1s after this update.
|
|
Most of the calculations are accelerated.
|
|
|
|
Also, assignment bytecode has changed a lot.
|
|
Now the first identifier that called in assignment will use `op_load` to assign,
|
|
instead of `op_meq`,`op_pop`.
|
|
|
|
```javascript
|
|
var (a,b)=(1,2);
|
|
a=b=0;
|
|
```
|
|
|
|
```x86asm
|
|
.number 2
|
|
0x00000000: intg 0x00000002
|
|
0x00000001: pone 0x00000000
|
|
0x00000002: loadg 0x00000000
|
|
0x00000003: pnum 0x00000000 (2)
|
|
0x00000004: loadg 0x00000001
|
|
0x00000005: pzero 0x00000000
|
|
0x00000006: mcallg 0x00000001
|
|
0x00000007: meq 0x00000000 (b=2 use meq,pop->a)
|
|
0x00000008: loadg 0x00000000 (a=b use loadg)
|
|
0x00000009: nop 0x00000000
|
|
```
|
|
|
|
### version 8.0 vm (last update 2022/2/12)
|
|
|
|
2021/10/8 update:
|
|
|
|
In this version vm_nil and vm_num now is not managed by `nasal_gc`,
|
|
this will decrease the usage of `gc::alloc` and increase the efficiency of execution.
|
|
|
|
New value type is added: `vm_obj`.
|
|
This type is reserved for user to define their own value types.
|
|
Related API will be added in the future.
|
|
|
|
Fully functional closure:
|
|
Add new operands that get and set upvalues.
|
|
Delete an old operand `op_offset`.
|
|
|
|
2021/10/13 update:
|
|
|
|
The format of output information of bytecodes changes to this:
|
|
|
|
```x86asm
|
|
0x000002e6: newf 0x2ea
|
|
0x000002e7: intl 0x2
|
|
0x000002e8: para 0x6e ("f")
|
|
0x000002e9: jmp 0x2ee
|
|
0x000002ea: calll 0x1
|
|
0x000002eb: calll 0x1
|
|
0x000002ec: callfv 0x1
|
|
0x000002ed: ret
|
|
0x000002ee: newf 0x2f2
|
|
0x000002ef: intl 0x2
|
|
0x000002f0: para 0x6e ("f")
|
|
0x000002f1: jmp 0x30a
|
|
0x000002f2: newf 0x2f6
|
|
0x000002f3: intl 0x2
|
|
0x000002f4: para 0x3e ("x")
|
|
0x000002f5: jmp 0x309
|
|
0x000002f6: calll 0x1
|
|
0x000002f7: lessc 0x0 (2)
|
|
0x000002f8: jf 0x2fb
|
|
0x000002f9: calll 0x1
|
|
0x000002fa: ret
|
|
0x000002fb: upval 0x0[0x1]
|
|
0x000002fc: upval 0x0[0x1]
|
|
0x000002fd: callfv 0x1
|
|
0x000002fe: calll 0x1
|
|
0x000002ff: subc 0x1d (1)
|
|
0x00000300: callfv 0x1
|
|
0x00000301: upval 0x0[0x1]
|
|
0x00000302: upval 0x0[0x1]
|
|
0x00000303: callfv 0x1
|
|
0x00000304: calll 0x1
|
|
0x00000305: subc 0x0 (2)
|
|
0x00000306: callfv 0x1
|
|
0x00000307: add
|
|
0x00000308: ret
|
|
0x00000309: ret
|
|
0x0000030a: callfv 0x1
|
|
0x0000030b: loadg 0x32
|
|
```
|
|
|
|
2022/1/22 update:
|
|
|
|
Delete `op_pone` and `op_pzero`.
|
|
Both of them are meaningless and will be replaced by `op_pnum`.
|
|
|
|
### version 9.0 vm (last update 2022/5/18)
|
|
|
|
2022/2/12 update:
|
|
|
|
Local values now are __stored on stack__.
|
|
So function calling will be faster than before.
|
|
Because in v8.0 when calling a function,
|
|
new `vm_vec` will be allocated by `nasal_gc`, this makes gc doing mark-sweep too many times and spends a quite lot of time.
|
|
In test file `test/bf.nas`, it takes too much time to test the file because this file has too many function calls(see test data below in table `version 8.0 (R9-5900HX ubuntu-WSL 2022/1/23)`).
|
|
|
|
Upvalue now is generated when creating first new function in the local scope, using `vm_vec`.
|
|
And after that when creating new functions, they share the same upvalue, and the upvalue will synchronize with the local scope each time creating a new function.
|
|
|
|
2022/3/27 update:
|
|
|
|
In this month's updates we change upvalue from `vm_vec` to `vm_upval`,
|
|
a special gc-managed object,
|
|
which has almost the same structure of that upvalue object in another programming language __`Lua`__.
|
|
|
|
Today we change the output format of bytecode.
|
|
New output format looks like `objdump`:
|
|
|
|
```x86asm
|
|
0x0000029b: 0a 00 00 00 00 newh
|
|
|
|
func <0x29c>:
|
|
0x0000029c: 0b 00 00 02 a0 newf 0x2a0
|
|
0x0000029d: 02 00 00 00 02 intl 0x2
|
|
0x0000029e: 0d 00 00 00 66 para 0x66 ("libname")
|
|
0x0000029f: 32 00 00 02 a2 jmp 0x2a2
|
|
0x000002a0: 40 00 00 00 42 callb 0x42 <__builtin_dlopen@0x41dc40>
|
|
0x000002a1: 4a 00 00 00 00 ret
|
|
<0x29c>;
|
|
|
|
0x000002a2: 0c 00 00 00 67 happ 0x67 ("dlopen")
|
|
|
|
func <0x2a3>:
|
|
0x000002a3: 0b 00 00 02 a8 newf 0x2a8
|
|
0x000002a4: 02 00 00 00 03 intl 0x3
|
|
0x000002a5: 0d 00 00 00 68 para 0x68 ("lib")
|
|
0x000002a6: 0d 00 00 00 69 para 0x69 ("sym")
|
|
0x000002a7: 32 00 00 02 aa jmp 0x2aa
|
|
0x000002a8: 40 00 00 00 43 callb 0x43 <__builtin_dlsym@0x41df00>
|
|
0x000002a9: 4a 00 00 00 00 ret
|
|
<0x2a3>;
|
|
|
|
0x000002aa: 0c 00 00 00 6a happ 0x6a ("dlsym")
|
|
|
|
func <0x2ab>:
|
|
0x000002ab: 0b 00 00 02 af newf 0x2af
|
|
0x000002ac: 02 00 00 00 02 intl 0x2
|
|
0x000002ad: 0d 00 00 00 68 para 0x68 ("lib")
|
|
0x000002ae: 32 00 00 02 b1 jmp 0x2b1
|
|
0x000002af: 40 00 00 00 44 callb 0x44 <__builtin_dlclose@0x41e2a0>
|
|
0x000002b0: 4a 00 00 00 00 ret
|
|
<0x2ab>;
|
|
|
|
0x000002b1: 0c 00 00 00 6b happ 0x6b ("dlclose")
|
|
|
|
func <0x2b2>:
|
|
0x000002b2: 0b 00 00 02 b7 newf 0x2b7
|
|
0x000002b3: 02 00 00 00 03 intl 0x3
|
|
0x000002b4: 0d 00 00 00 6c para 0x6c ("funcptr")
|
|
0x000002b5: 0f 00 00 00 6d dyn 0x6d ("args")
|
|
0x000002b6: 32 00 00 02 b9 jmp 0x2b9
|
|
0x000002b7: 40 00 00 00 45 callb 0x45 <__builtin_dlcall@0x41e3d0>
|
|
0x000002b8: 4a 00 00 00 00 ret
|
|
<0x2b2>;
|
|
|
|
0x000002b9: 0c 00 00 00 6e happ 0x6e ("dlcall")
|
|
0x000002ba: 03 00 00 00 21 loadg 0x21
|
|
0x000002bb: 0a 00 00 00 00 newh
|
|
|
|
func <0x2bc>:
|
|
0x000002bc: 0b 00 00 02 bf newf 0x2bf
|
|
0x000002bd: 02 00 00 00 01 intl 0x1
|
|
0x000002be: 32 00 00 02 c1 jmp 0x2c1
|
|
0x000002bf: 40 00 00 00 46 callb 0x46 <__builtin_platform@0x41e4f0>
|
|
0x000002c0: 4a 00 00 00 00 ret
|
|
<0x2bc>;
|
|
|
|
0x000002c1: 0c 00 00 00 6f happ 0x6f ("platform")
|
|
0x000002c2: 03 00 00 00 22 loadg 0x22
|
|
0x000002c3: 0a 00 00 00 00 newh
|
|
|
|
func <0x2c4>:
|
|
0x000002c4: 0b 00 00 02 c7 newf 0x2c7
|
|
0x000002c5: 02 00 00 00 01 intl 0x1
|
|
0x000002c6: 32 00 00 02 c9 jmp 0x2c9
|
|
0x000002c7: 40 00 00 00 47 callb 0x47 <__builtin_gc@0x41e530>
|
|
0x000002c8: 4a 00 00 00 00 ret
|
|
<0x2c4>;
|
|
|
|
0x000002c9: 0c 00 00 00 70 happ 0x70 ("gc")
|
|
0x000002ca: 03 00 00 00 23 loadg 0x23
|
|
```
|
|
|
|
### version 10.0 vm (latest)
|
|
|
|
2022/5/19 update:
|
|
|
|
Now we add coroutine in this runtime:
|
|
|
|
```javascript
|
|
var coroutine={
|
|
create: func(function){return __builtin_cocreate;},
|
|
resume: func(co) {return __builtin_coresume;},
|
|
yield: func(args...) {return __builtin_coyield; },
|
|
status: func(co) {return __builtin_costatus;},
|
|
running:func() {return __builtin_corun; }
|
|
};
|
|
```
|
|
|
|
`coroutine.create` is used to create a new coroutine object using a function.
|
|
But this coroutine will not run immediately.
|
|
|
|
`coroutine.resume` is used to continue running a coroutine.
|
|
|
|
`coroutine.yield` is used to interrupt the running of a coroutine and throw some values.
|
|
These values will be accepted and returned by `coroutine.resume`.
|
|
And `coroutine.yield` it self returns `vm_nil` in the coroutine function.
|
|
|
|
`coroutine.status` is used to see the status of a coroutine.
|
|
There are 3 types of status:`suspended` means waiting for running,`running` means is running,`dead` means finished running.
|
|
|
|
`coroutine.running` is used to judge if there is a coroutine running now.
|
|
|
|
__CAUTION:__ coroutine should not be created or running inside another coroutine.
|
|
|
|
__We will explain how resume and yield work here:__
|
|
|
|
When `op_callb` is called, the stack frame is like this:
|
|
|
|
```C++
|
|
+----------------------------+(main stack)
|
|
| old pc(vm_ret) | <- top[0]
|
|
+----------------------------+
|
|
| old localr(vm_addr) | <- top[-1]
|
|
+----------------------------+
|
|
| old upvalr(vm_upval) | <- top[-2]
|
|
+----------------------------+
|
|
| local scope(nasal_ref) |
|
|
| ... |
|
|
+----------------------------+ <- local pointer stored in localr
|
|
| old funcr(vm_func) | <- old function stored in funcr
|
|
+----------------------------+
|
|
```
|
|
|
|
In `op_callb`'s progress, next step the stack frame is:
|
|
|
|
```C++
|
|
+----------------------------+(main stack)
|
|
| nil(vm_nil) | <- push nil
|
|
+----------------------------+
|
|
| old pc(vm_ret) |
|
|
+----------------------------+
|
|
| old localr(vm_addr) |
|
|
+----------------------------+
|
|
| old upvalr(vm_upval) |
|
|
+----------------------------+
|
|
| local scope(nasal_ref) |
|
|
| ... |
|
|
+----------------------------+ <- local pointer stored in localr
|
|
| old funcr(vm_func) | <- old function stored in funcr
|
|
+----------------------------+
|
|
```
|
|
|
|
Then we call `resume`, this function will change stack.
|
|
As we can see, coroutine stack already has some values on it,
|
|
but if we first enter it, the stack top will be `vm_ret`, and the return `pc` is `0`.
|
|
|
|
So for safe running, `resume` will return `gc.top[0]`.
|
|
`op_callb` will do `top[0]=resume()`, so the value does not change.
|
|
|
|
```C++
|
|
+----------------------------+(coroutine stack)
|
|
| pc:0(vm_ret) | <- now gc.top[0]
|
|
+----------------------------+
|
|
```
|
|
|
|
When we call `yield`, the function will do like this.
|
|
And we find that `op_callb` has put the `nil` at the top.
|
|
but where is the returned `local[1]` sent?
|
|
|
|
```C++
|
|
+----------------------------+(coroutine stack)
|
|
| nil(vm_nil) | <- push nil
|
|
+----------------------------+
|
|
| old pc(vm_ret) |
|
|
+----------------------------+
|
|
| old localr(vm_addr) |
|
|
+----------------------------+
|
|
| old upvalr(vm_upval) |
|
|
+----------------------------+
|
|
| local scope(nasal_ref) |
|
|
| ... |
|
|
+----------------------------+ <- local pointer stored in localr
|
|
| old funcr(vm_func) | <- old function stored in funcr
|
|
+----------------------------+
|
|
```
|
|
|
|
When `builtin_coyield` is finished, the stack is set to main stack,
|
|
and the returned `local[1]` in fact is set to the top of the main stack by `op_callb`:
|
|
|
|
```C++
|
|
+----------------------------+(main stack)
|
|
| return_value(nasal_ref) |
|
|
+----------------------------+
|
|
| old pc(vm_ret) |
|
|
+----------------------------+
|
|
| old localr(vm_addr) |
|
|
+----------------------------+
|
|
| old upvalr(vm_upval) |
|
|
+----------------------------+
|
|
| local scope(nasal_ref) |
|
|
| ... |
|
|
+----------------------------+ <- local pointer stored in localr
|
|
| old funcr(vm_func) | <- old function stored in funcr
|
|
+----------------------------+
|
|
```
|
|
|
|
so the main progress feels the value on the top is the returned value of `resume`.
|
|
but in fact the `resume`'s returned value is set on coroutine stack.
|
|
so we conclude this:
|
|
|
|
```C++
|
|
resume (main->coroutine) return coroutine.top[0]. coroutine.top[0] = coroutine.top[0];
|
|
yield (coroutine->main) return a vector. main.top[0] = vector;
|
|
```
|
|
|
|
## Benchmark
|
|
|
|
![benchmark](./pic/benchmark.png)
|
|
|
|
### version 6.5 (i5-8250U windows10 2021/6/19)
|
|
|
|
running time and gc time:
|
|
|
|
|file|call gc|total time|gc time|
|
|
|:----|:----|:----|:----|
|
|
|pi.nas|12000049|0.593s|0.222s|
|
|
|fib.nas|10573747|2.838s|0.187s|
|
|
|bp.nas|4419829|1.99s|0.18s|
|
|
|bigloop.nas|4000000|0.419s|0.039s|
|
|
|mandelbrot.nas|1044630|0.433s|0.041s|
|
|
|life.nas|817112|8.557s|0.199s|
|
|
|ascii-art.nas|45612|0.48s|0.027s|
|
|
|calc.nas|8089|0.068s|0.006s|
|
|
|quick_sort.nas|2768|0.107s|0s|
|
|
|bfs.nas|2471|1.763s|0.003s|
|
|
|
|
operands calling frequency:
|
|
|
|
|file|1st|2nd|3rd|4th|5th|
|
|
|:----|:----|:----|:----|:----|:----|
|
|
|pi.nas|callg|pop|mcallg|pnum|pone|
|
|
|fib.nas|calll|pnum|callg|less|jf|
|
|
|bp.nas|calll|callg|pop|callv|addeq|
|
|
|bigloop.nas|pnum|less|jf|callg|pone|
|
|
|mandelbrot.nas|callg|mult|loadg|pnum|pop|
|
|
|life.nas|calll|callv|pnum|jf|callg|
|
|
|ascii-art.nas|calll|pop|mcalll|callg|callb|
|
|
|calc.nas|calll|pop|pstr|mcalll|jmp|
|
|
|quick_sort.nas|calll|pop|jt|jf|less|
|
|
|bfs.nas|calll|pop|callv|mcalll|jf|
|
|
|
|
operands calling total times:
|
|
|
|
|file|1st|2nd|3rd|4th|5th|
|
|
|:----|:----|:----|:----|:----|:----|
|
|
|pi.nas|6000004|6000003|6000000|4000005|4000002|
|
|
|fib.nas|17622792|10573704|7049218|7049155|7049155|
|
|
|bp.nas|7081480|4227268|2764676|2617112|2065441|
|
|
|bigloop.nas|4000001|4000001|4000001|4000001|4000000|
|
|
|mandelbrot.nas|1519632|563856|290641|286795|284844|
|
|
|life.nas|2114371|974244|536413|534794|489743|
|
|
|ascii-art.nas|37906|22736|22402|18315|18292|
|
|
|calc.nas|191|124|109|99|87|
|
|
|quick_sort.nas|16226|5561|4144|3524|2833|
|
|
|bfs.nas|24707|16297|14606|14269|8672|
|
|
|
|
### version 7.0 (i5-8250U ubuntu-WSL on windows10 2021/6/29)
|
|
|
|
running time:
|
|
|
|
|file|total time|info|
|
|
|:----|:----|:----|
|
|
|pi.nas|0.15625s|great improvement|
|
|
|fib.nas|0.75s|great improvement|
|
|
|bp.nas|0.4218s(7162 epoch)|good improvement|
|
|
|bigloop.nas|0.09375s|great improvement|
|
|
|mandelbrot.nas|0.0312s|great improvement|
|
|
|life.nas|8.80s(windows) 1.25(ubuntu WSL)|little improvement|
|
|
|ascii-art.nas|0.015s|little improvement|
|
|
|calc.nas|0.0468s|little improvement|
|
|
|quick_sort.nas|0s|great improvement|
|
|
|bfs.nas|0.0156s|great improvement|
|
|
|
|
### version 8.0 (R9-5900HX ubuntu-WSL 2022/1/23)
|
|
|
|
running time:
|
|
|
|
|file|total time|info|
|
|
|:----|:----|:----|
|
|
|bf.nas|1100.19s||
|
|
|mandel.nas|28.98s||
|
|
|life.nas|0.56s|0.857s(windows)|
|
|
|ycombinator.nas|0.64s||
|
|
|fib.nas|0.28s||
|
|
|bfs.nas|0.156s|random result|
|
|
|pi.nas|0.0625s||
|
|
|bigloop.nas|0.047s||
|
|
|calc.nas|0.03125s|changed test file|
|
|
|mandelbrot.nas|0.0156s||
|
|
|ascii-art.nas|0s||
|
|
|quick_sort.nas|0s||
|
|
|
|
### version 9.0 (R9-5900HX ubuntu-WSL 2022/2/13)
|
|
|
|
running time:
|
|
|
|
|file|total time|info|
|
|
|:----|:----|:----|
|
|
|bf.nas|276.55s|great improvement|
|
|
|mandel.nas|28.16s||
|
|
|ycombinator.nas|0.59s||
|
|
|life.nas|0.2s|0.649s(windows)|
|
|
|fib.nas|0.234s|little improvement|
|
|
|bfs.nas|0.14s|random result|
|
|
|pi.nas|0.0625s||
|
|
|bigloop.nas|0.047s||
|
|
|calc.nas|0.0469s|changed test file|
|
|
|quick_sort.nas|0.016s|changed test file:100->1e4|
|
|
|mandelbrot.nas|0.0156s||
|
|
|ascii-art.nas|0s||
|
|
|
|
`bf.nas` is a very interesting test file that there is a brainfuck interpreter written in nasal.
|
|
And we use this bf interpreter to draw a mandelbrot set.
|
|
|
|
In 2022/2/17 update we added `\e` into the lexer. And the `bfcolored.nas` uses this special ASCII code. Here is the result:
|
|
|
|
![mandelbrot](./pic/mandelbrot.png)
|
|
|
|
## __Difference Between Andy's and This Interpreter__
|
|
|
|
### 1. must use `var` to define variables
|
|
|
|
This interpreter uses more strict syntax to make sure it is easier for you to program and debug.
|
|
|
|
In Andy's interpreter:
|
|
|
|
```javascript
|
|
import("lib.nas");
|
|
foreach(i;[0,1,2,3])
|
|
print(i)
|
|
```
|
|
|
|
This program can run normally with output 0 1 2 3.
|
|
But take a look at the iterator 'i',
|
|
this symbol is defined in foreach without using keyword 'var'.
|
|
I think this design will make programmers filling confused.
|
|
This is ambiguous that programmers maybe difficult to find the 'i' is defined here.
|
|
Without 'var', programmers may think this 'i' is defined anywhere else.
|
|
|
|
So in this new interpreter i use a more strict syntax to force users to use 'var' to define iterator of forindex and foreach.
|
|
If you forget to add the keyword 'var',
|
|
and you haven't defined this symbol before,
|
|
you will get this:
|
|
|
|
```javascript
|
|
[code] test.nas:2 undefined symbol "i".
|
|
foreach(i;[0,1,2,3])
|
|
[code] test.nas:3 undefined symbol "i".
|
|
print(i)
|
|
```
|
|
|
|
### 2. (now supported) couldn't use variables before definitions
|
|
|
|
(__Outdated__: this is now supported) Also there's another difference.
|
|
In Andy's interpreter:
|
|
|
|
```javascript
|
|
var a=func {print(b);}
|
|
var b=1;
|
|
a();
|
|
```
|
|
|
|
This program runs normally with output 1.
|
|
But in this new interpreter, it will get:
|
|
|
|
```javascript
|
|
[code] test.nas:1 undefined symbol "b".
|
|
var a=func {print(b);}
|
|
```
|
|
|
|
This difference is caused by different kinds of ways of lexical analysis.
|
|
In most script language interpreters,
|
|
they use dynamic analysis to check if this symbol is defined yet.
|
|
However, this kind of analysis is at the cost of lower efficiency.
|
|
To make sure the interpreter runs at higher efficiency,
|
|
i choose static analysis to manage the memory space of each symbol.
|
|
By this way, runtime will never need to check if a symbol exists or not.
|
|
But this causes a difference.
|
|
You will get an error of 'undefined symbol',
|
|
instead of nothing happening in most script language interpreters.
|
|
|
|
This change is __controversial__ among FGPRC's members.
|
|
So maybe in the future i will use dynamic analysis again to cater to the habits of senior programmers.
|
|
|
|
(2021/8/3 update) __Now i use scanning ast twice to reload symbols.
|
|
So this difference does not exist from this update.__
|
|
But a new difference is that if you call a variable before defining it,
|
|
you'll get nil instead of 'undefined error'.
|
|
|
|
### 3. default dynamic arguments not supported
|
|
|
|
In this new interpreter,
|
|
function doesn't put dynamic arguments into vector `arg` automatically.
|
|
So if you use `arg` without definition,
|
|
you'll get an error of `undefined symbol`.
|
|
|
|
## __Trace Back Info__
|
|
|
|
When the interpreter crashes,
|
|
it will print trace back information:
|
|
|
|
### 1. native function `die`
|
|
|
|
Function `die` is used to throw error and crash immediately.
|
|
|
|
```javascript
|
|
func()
|
|
{
|
|
println("hello");
|
|
die("error occurred this line");
|
|
return;
|
|
}();
|
|
```
|
|
|
|
```javascript
|
|
hello
|
|
[vm] error: error occurred this line
|
|
[vm] native function error.
|
|
trace back:
|
|
0x000000ac: 40 00 00 00 25 callb 0x25 <__builtin_die@0x41afc0> (lib.nas:131)
|
|
0x000004f6: 3e 00 00 00 01 callfv 0x1 (a.nas:4)
|
|
0x000004fa: 3e 00 00 00 00 callfv 0x0 (a.nas:6)
|
|
vm stack(0x7fffcd21bc68<sp+80>, limit 10, total 12):
|
|
0x0000005b | null |
|
|
0x0000005a | pc | 0x4f6
|
|
0x00000059 | addr | 0x7fffcd21bc78
|
|
0x00000058 | nil |
|
|
0x00000057 | str | <0x138ff60> error occurred t...
|
|
0x00000056 | nil |
|
|
0x00000055 | func | <0x13445b0> entry:0x4f0
|
|
0x00000054 | pc | 0x4fa
|
|
0x00000053 | addr | 0x0
|
|
0x00000052 | nil |
|
|
```
|
|
|
|
### 2. stack overflow crash info
|
|
|
|
Here is an example of stack overflow:
|
|
|
|
```javascript
|
|
func(f){
|
|
return f(f);
|
|
}(
|
|
func(f){
|
|
f(f);
|
|
}
|
|
)();
|
|
```
|
|
|
|
```javascript
|
|
[vm] stack overflow
|
|
trace back:
|
|
0x000004fb: 3e 00 00 00 01 callfv 0x1 (a.nas:5)
|
|
0x000004fb: 1349 same call(s)
|
|
0x000004f3: 3e 00 00 00 01 callfv 0x1 (a.nas:2)
|
|
0x000004ff: 3e 00 00 00 01 callfv 0x1 (a.nas:3)
|
|
vm stack(0x7fffd3781d58<sp+80>, limit 10, total 8108):
|
|
0x00001ffb | func | <0x15f8d90> entry:0x4f9
|
|
0x00001ffa | func | <0x15f8d90> entry:0x4f9
|
|
0x00001ff9 | pc | 0x4fb
|
|
0x00001ff8 | addr | 0x7fffd37a1748
|
|
0x00001ff7 | nil |
|
|
0x00001ff6 | func | <0x15f8d90> entry:0x4f9
|
|
0x00001ff5 | nil |
|
|
0x00001ff4 | func | <0x15f8d90> entry:0x4f9
|
|
0x00001ff3 | pc | 0x4fb
|
|
0x00001ff2 | addr | 0x7fffd37a16e8
|
|
```
|
|
|
|
### 3. normal vm error crash info
|
|
|
|
Error will be thrown if there's a fatal error when executing:
|
|
|
|
```javascript
|
|
func(){
|
|
return 0;
|
|
}()[1];
|
|
```
|
|
|
|
```javascript
|
|
[vm] callv: must call a vector/hash/string
|
|
trace back:
|
|
0x000004f4: 3b 00 00 00 00 callv 0x0 (a.nas:3)
|
|
vm stack(0x7fffff539c28<sp+80>, limit 10, total 1):
|
|
0x00000050 | num | 0
|
|
```
|
|
|
|
### 4. detailed crash info
|
|
|
|
Use command __`-d`__ or __`--detail`__ the trace back info will show more details:
|
|
|
|
```javascript
|
|
hello
|
|
[vm] error: error occurred this line
|
|
[vm] native function error.
|
|
trace back:
|
|
0x000000ac: 40 00 00 00 25 callb 0x25 <__builtin_die@0x41afc0> (lib.nas:131)
|
|
0x000004f6: 3e 00 00 00 01 callfv 0x1 (a.nas:4)
|
|
0x000004fa: 3e 00 00 00 00 callfv 0x0 (a.nas:6)
|
|
vm stack(0x7ffff42f3d08<sp+80>, limit 10, total 12):
|
|
0x0000005b | null |
|
|
0x0000005a | pc | 0x4f6
|
|
0x00000059 | addr | 0x7ffff42f3d18
|
|
0x00000058 | nil |
|
|
0x00000057 | str | <0x1932480> error occurred t...
|
|
0x00000056 | nil |
|
|
0x00000055 | func | <0x18e6ad0> entry:0x4f0
|
|
0x00000054 | pc | 0x4fa
|
|
0x00000053 | addr | 0x0
|
|
0x00000052 | nil |
|
|
registers(main):
|
|
[ pc ] | pc | 0xac
|
|
[ global ] | addr | 0x7ffff42f3808
|
|
[ localr ] | addr | 0x7ffff42f3d68
|
|
[ memr ] | addr | 0x0
|
|
[ funcr ] | func | <0x18fbe50> entry:0xac
|
|
[ upvalr ] | nil |
|
|
[ canary ] | addr | 0x7ffff43137f8
|
|
[ top ] | addr | 0x7ffff42f3db8
|
|
global(0x7ffff42f3808<sp+0>):
|
|
0x00000000 | func | <0x18d62d0> entry:0x5
|
|
0x00000001 | func | <0x18d7e40> entry:0xc
|
|
0x00000002 | func | <0x18d63f0> entry:0x14
|
|
0x00000003 | func | <0x18d6490> entry:0x1c
|
|
0x00000004 | func | <0x18d6530> entry:0x23
|
|
0x00000005 | func | <0x18d65d0> entry:0x29
|
|
0x00000006 | func | <0x18d6670> entry:0x31
|
|
0x00000007 | func | <0x18d6710> entry:0x39
|
|
0x00000008 | func | <0x18d67b0> entry:0x40
|
|
0x00000009 | func | <0x18d6850> entry:0x47
|
|
0x0000000a | func | <0x18d7e60> entry:0x4e
|
|
0x0000000b | func | <0x18cb4e0> entry:0x54
|
|
0x0000000c | func | <0x18cb580> entry:0x5d
|
|
0x0000000d | func | <0x18cb620> entry:0x6a
|
|
0x0000000e | func | <0x18cb6c0> entry:0x71
|
|
0x0000000f | func | <0x18cb760> entry:0x78
|
|
0x00000010 | func | <0x18cb800> entry:0x7f
|
|
0x00000011 | func | <0x18cb8a0> entry:0x87
|
|
0x00000012 | func | <0x18cb940> entry:0x8f
|
|
0x00000013 | func | <0x18cb9e0> entry:0x96
|
|
0x00000014 | func | <0x18cba80> entry:0x9d
|
|
0x00000015 | func | <0x18fbdb0> entry:0xa3
|
|
0x00000016 | func | <0x18fbe50> entry:0xac
|
|
0x00000017 | func | <0x18fbef0> entry:0xb4
|
|
0x00000018 | func | <0x18fbf90> entry:0xbb
|
|
0x00000019 | func | <0x18fc030> entry:0xc5
|
|
0x0000001a | func | <0x18fc0d0> entry:0xdc
|
|
0x0000001b | func | <0x18fc170> entry:0xe4
|
|
0x0000001c | func | <0x18fc210> entry:0xec
|
|
0x0000001d | func | <0x18fc2b0> entry:0xf4
|
|
0x0000001e | func | <0x18fc350> entry:0xfc
|
|
0x0000001f | func | <0x18cbaa0> entry:0x103
|
|
0x00000020 | func | <0x18f3630> entry:0x10a
|
|
0x00000021 | func | <0x18f36d0> entry:0x111
|
|
0x00000022 | func | <0x18f3770> entry:0x11e
|
|
0x00000023 | func | <0x18f3810> entry:0x125
|
|
0x00000024 | func | <0x18f38b0> entry:0x131
|
|
0x00000025 | func | <0x18f3950> entry:0x13c
|
|
0x00000026 | func | <0x18f39f0> entry:0x147
|
|
0x00000027 | func | <0x18f3a90> entry:0x152
|
|
0x00000028 | func | <0x18f3b30> entry:0x15d
|
|
0x00000029 | func | <0x18f3bd0> entry:0x174
|
|
0x0000002a | func | <0x18f3c70> entry:0x18d
|
|
0x0000002b | func | <0x18f6710> entry:0x198
|
|
0x0000002c | func | <0x18f67b0> entry:0x1a4
|
|
0x0000002d | func | <0x18f6850> entry:0x1bd
|
|
0x0000002e | func | <0x18f68f0> entry:0x1e9
|
|
0x0000002f | func | <0x18f6990> entry:0x1fb
|
|
0x00000030 | func | <0x18f6a30> entry:0x20c
|
|
0x00000031 | func | <0x18f6ad0> entry:0x237
|
|
0x00000032 | hash | <0x191f780> {14 val}
|
|
0x00000033 | func | <0x18df660> entry:0x29b
|
|
0x00000034 | hash | <0x191f7a0> {9 val}
|
|
0x00000035 | hash | <0x191f7c0> {18 val}
|
|
0x00000036 | hash | <0x191f7e0> {16 val}
|
|
0x00000037 | hash | <0x191f800> {4 val}
|
|
0x00000038 | hash | <0x191f820> {1 val}
|
|
0x00000039 | hash | <0x191f840> {1 val}
|
|
0x0000003a | num | 0.0174533
|
|
0x0000003b | num | 0.5925
|
|
0x0000003c | num | 0.3048
|
|
0x0000003d | num | 3.7854
|
|
0x0000003e | num | 0.0254
|
|
0x0000003f | num | 2.2046
|
|
0x00000040 | num | 1.6878
|
|
0x00000041 | num | 0.5144
|
|
0x00000042 | num | 0.2642
|
|
0x00000043 | num | 0.4536
|
|
0x00000044 | num | 3.2808
|
|
0x00000045 | num | 39.3701
|
|
0x00000046 | num | 0.00054
|
|
0x00000047 | num | 1.9438
|
|
0x00000048 | num | 1852
|
|
0x00000049 | num | 57.2958
|
|
0x0000004a | func | <0x18e6490> entry:0x489
|
|
0x0000004b | func | <0x18e6530> entry:0x49c
|
|
0x0000004c | func | <0x18e65d0> entry:0x4a8
|
|
0x0000004d | func | <0x18e6670> entry:0x4b5
|
|
0x0000004e | func | <0x18e6710> entry:0x4c2
|
|
0x0000004f | hash | <0x191f8b0> {5 val}
|
|
local(0x7ffff42f3d68<sp+86>):
|
|
0x00000000 | nil |
|
|
0x00000001 | str | <0x1932480> error occurred t...
|
|
```
|
|
|
|
## __Debugger__
|
|
|
|
In nasal v8.0 we added a debugger.
|
|
Now we could see both source code and bytecode when testing program.
|
|
|
|
Use command `./nasal -dbg xxx.nas` to use the debugger,
|
|
and the debugger will print this:
|
|
|
|
```javascript
|
|
[debug] nasal debug mode
|
|
input 'h' to get help
|
|
|
|
source code:
|
|
--> import("lib.nas");
|
|
var fib=func(x)
|
|
{
|
|
if(x<2) return x;
|
|
return fib(x-1)+fib(x-2);
|
|
}
|
|
for(var i=0;i<31;i+=1)
|
|
print(fib(i),'\n');
|
|
next bytecode:
|
|
--> 0x00000000: 01 00 00 00 4f intg 0x4f (a.nas:0)
|
|
0x00000001: 0b 00 00 00 05 newf 0x5 (lib.nas:5)
|
|
0x00000002: 02 00 00 00 02 intl 0x2 (lib.nas:5)
|
|
0x00000003: 0d 00 00 00 00 para 0x0 ("filename") (lib.nas:5)
|
|
0x00000004: 32 00 00 00 07 jmp 0x7 (lib.nas:5)
|
|
0x00000005: 40 00 00 00 24 callb 0x24 <__builtin_import@0x419b20> (lib.nas:6)
|
|
0x00000006: 4a 00 00 00 00 ret 0x0 (lib.nas:6)
|
|
0x00000007: 03 00 00 00 00 loadg 0x0 (lib.nas:5)
|
|
vm stack(0x7fffe05e3190<sp+79>, limit 5, total 0)
|
|
>>
|
|
```
|
|
|
|
If want help, input `h` to get help.
|
|
|
|
```bash
|
|
<option>
|
|
h, help | get help
|
|
bt, backtrace | get function call trace
|
|
c, continue | run program until break point or exit
|
|
f, file | see all the compiled files
|
|
g, global | see global values
|
|
l, local | see local values
|
|
u, upval | see upvalue
|
|
r, register | show vm register detail
|
|
a, all | show global,local and upvalue
|
|
n, next | execute next bytecode
|
|
q, exit | exit debugger
|
|
<option> <filename> <line>
|
|
bk, break | set break point
|
|
```
|
|
|
|
When running the debugger, you could see what is on stack.
|
|
This will help you debugging or learning how the vm works:
|
|
|
|
```javascript
|
|
source code:
|
|
import("lib.nas");
|
|
var fib=func(x)
|
|
{
|
|
--> if(x<2) return x;
|
|
return fib(x-1)+fib(x-2);
|
|
}
|
|
for(var i=0;i<31;i+=1)
|
|
print(fib(i),'\n');
|
|
next bytecode:
|
|
0x00000458: 4a 00 00 00 00 ret 0x0 (lib.nas:463)
|
|
0x00000459: 03 00 00 00 4c loadg 0x4c (lib.nas:463)
|
|
0x0000045a: 0b 00 00 04 5e newf 0x45e (a.nas:2)
|
|
0x0000045b: 02 00 00 00 02 intl 0x2 (a.nas:2)
|
|
0x0000045c: 0d 00 00 00 1c para 0x1c ("x") (a.nas:2)
|
|
0x0000045d: 32 00 00 04 6d jmp 0x46d (a.nas:2)
|
|
--> 0x0000045e: 39 00 00 00 01 calll 0x1 (a.nas:4)
|
|
0x0000045f: 2d 00 00 00 02 lessc 0x2 (2) (a.nas:4)
|
|
vm stack(0x7fffe05e3190<sp+79>, limit 5, total 6):
|
|
0x00000054 | pc | 0x476
|
|
0x00000053 | addr | 0x0
|
|
0x00000052 | num | 0
|
|
0x00000051 | nil |
|
|
0x00000050 | nil |
|
|
>>
|
|
```
|