CPM-9G-8B/quick_start_clean/readmes/quick_start.md

662 lines
24 KiB
Markdown
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<style type="text/css">
h1 { counter-reset: h2counter; }
h2 { counter-reset: h3counter; }
h3 { counter-reset: h4counter; }
h4 { counter-reset: h5counter; }
h5 { counter-reset: h6counter; }
h6 { }
h2:before {
counter-increment: h2counter;
content: counter(h2counter) ".\0000a0\0000a0";
}
h3:before {
counter-increment: h3counter;
content: counter(h2counter) "."
counter(h3counter) ".\0000a0\0000a0";
}
h4:before {
counter-increment: h4counter;
content: counter(h2counter) "."
counter(h3counter) "."
counter(h4counter) ".\0000a0\0000a0";
}
h5:before {
counter-increment: h5counter;
content: counter(h2counter) "."
counter(h3counter) "."
counter(h4counter) "."
counter(h5counter) ".\0000a0\0000a0";
}
h6:before {
counter-increment: h6counter;
content: counter(h2counter) "."
counter(h3counter) "."
counter(h4counter) "."
counter(h5counter) "."
counter(h6counter) ".\0000a0\0000a0";
}
</style>
# 九格大模型使用文档
## 目录
<!-- - [仓库目录结构](#仓库目录结构) -->
- [九格大模型使用文档](#九格大模型使用文档)
- [目录](#目录)
- [环境配置](#环境配置)
- [开源模型](#开源模型)
- [数据处理流程](#数据处理流程)
- [单个数据集处理](#单个数据集处理)
- [多个数据集混合](#多个数据集混合)
- [单机训练](#单机训练)
- [多机训练](#多机训练)
- [参数详细介绍](#参数详细介绍)
- [查看训练情况](#查看训练情况)
- [模型微调](#模型微调)
- [模型格式转换](#模型格式转换)
- [模型推理](#模型推理)
- [常见问题](#常见问题)
<!-- ## 仓库目录结构
```
├── apps # 不同项目的训练代码
├── bin # 格式检查等脚本,通常与上线流程配合
├── fm9g # 各项目通用的组件、模块
├── joker.yml
├── Makefile
├── README.md
├── pyproject.toml
├── requirements.txt
├── requirements_project.txt
├── setup.py
``` -->
## 环境配置
### conda 环境安装
```shell
1. 使用python 3.8.10创建conda环境
conda create -n fm-9g python=3.8.10
2. 激活环境
conda activate fm-9g
3. 安装Pytorch
# 需要先查看CUDA版本根据CUDA版本挑选合适的pytorch版本
conda install pytorch==1.13.1 torchvision==0.14.1 torchaudio==0.13.1 pytorch-cuda=11.6 -c pytorch -c nvidia
4.安装OpenDelta
# 也可以在官网上下载好安装包后进行安装
# 官网地址为https://github.com/thunlp/OpenDelta
pip install opendelta
5. 安装BMTrain
pip install bmtrain==1.0.0
6. 安装flash-attn
pip install flash-attn==2.4.2
7. 安装其他依赖包
pip install einops
pip install pytrie
pip install transformers
pip install matplotlib
pip install h5py
pip install sentencepiece
8.安装tensorboard
pip install protobuf==3.20.0 #protobuf版本过高时无法适配tensorboard
pip install tensorboard
pip install tensorboardX
9.安装vllm模型推理
我们提供基于CUDA12.2环境下python3.8、python3.10版本的vllm安装包相关依赖均已封装可直接安装后执行推理
[vllm-0.5.0.dev0+cu122-cp38-cp38-linux_x86_64.whl](https://qy-obs-6d58.obs.cn-north-4.myhuaweicloud.com/vllm-0.5.0.dev0%2Bcu122-cp38-cp38-linux_x86_64.whl)
[vllm-0.5.0.dev0+cu122-cp310-cp310-linux_x86_64.whl](https://qy-obs-6d58.obs.cn-north-4.myhuaweicloud.com/vllm-0.5.0.dev0%2Bcu122-cp310-cp310-linux_x86_64.whl)
针对CUDA版本不高的用户我们提供了兼容低版本CUDA的vllm安装包但经测试最低支持CUDA11.6因此如果您的服务器CUDA版本低于11.6,请先将其升级至该版本以上,以确保兼容性和正常运行:
[vllm-0.5.0.dev0+cu116-cp38-cp38-linux_x86_64.whl](https://qy-obs-6d58.obs.cn-north-4.myhuaweicloud.com/vllm-0.5.0.dev0%2Bcu116-cp38-cp38-linux_x86_64.whl)
同时我们也提供了vllm源码,位于/quick_start_clean/tools/vllm-0.5.0.dev0.tar
```
### docker环境
我们提供了打包好的镜像,[镜像下载](https://qy-obs-6d58.obs.cn-north-4.myhuaweicloud.com/9g.0.0.13.tar)
镜像使用方法:
``` shell
1 启动镜像权限有root权限
systemctl start docker
2 加载镜像
dockr load -i 9g.0.0.13.tar
docker tag 【IMAGE ID】9g:0.0.13
3 启动镜像
docker run -it -d -v [HOST_PATH1]:[DOCKER_PATH1] -v [HOST_PATH2]:[DOCKER_PATH2] --gpus all --shm-size=50g --network host 9g:0.0.13 bash
4 进入镜像:
docker exec -it 【CONTAINER ID】 /bin/bash
5 退出镜像
CTRP + d
```
## 开源模型
1. 8B的百亿SFT模型v2版本是在v1基础上精度和对话能力的优化模型下载链接
[8b_sft_model_v2(.pt格式)](https://qy-obs-6d58.obs.cn-north-4.myhuaweicloud.com/sft_8b_v2.zip), [8b_sft_model_v2(.bin格式)](https://qy-obs-6d58.obs.cn-north-4.myhuaweicloud.com/8b_sft_model.tar)
2. 端侧2B模型下载链接
[2b_sft_model(.pt格式)](https://qy-obs-6d58.obs.cn-north-4.myhuaweicloud.com/sft_2b.tar), [2b_sft_model(.bin格式)](https://qy-obs-6d58.obs.cn-north-4.myhuaweicloud.com/2b_sft_model.tar)
## 数据处理流程
### 单个数据集处理
预训练语料为无监督形式不需要区分问题与答案但需要将数据转为index后进行模型训练。我们拿到的原始数据可能是两种形式
- 文件格式为.txt的原始文本处理流程为数据→jsonl格式的数据→index数据
- 文件格式为.jsonl的文本数据处理流程为j:数据→index数据
1. 参考以下脚本将txt数据处理为jsonl格式
``` python
# convert_txt2jsonl.py
import json
import sys
for line in sys.stdin:
if line.strip() == "":
continue
temp_json = {"input": "", "output": line.strip()}#预训练计算Loss时只计算output部分所以input字段为空
print(json.dumps(temp_json, ensure_ascii=False))
```
脚本使用方法如下其中pretrain.txt是原始txt数据pretrain.jsonl是输出的jsonl格式数据
```shell
cat pretrain.txt | python convert_txt2jsonl.py > pretrain.jsonl
```
输出的jsonl文件中其中每一行有两个字段input字段与output字段。例如
```JSON
{"input":"","output":"中国的首都是北京。"}
```
2. jsonl格式转index。脚本位于./quick_start_clean/convert_json2index.py应用方法如下
```shell
python convert_json2index.py \
--path ../data_process/data \ #存放jsonl文件的目录
--language zh \ #只能选择zh中文或者en英文
--output ../data_process/data_index \ #存放生成的index的目录与原先存放jsonl文件的目录不能相同
--hdfs_name index #index文件的文件名
```
<!-- 脚本运行成功时会有如下显示不需要用hadoop所以不用管hadoop: not found的警告信息
![脚本运行成功后的显示](./055bf7ce-faab-403b-a7ee-896279bee11f.png) -->
转完后在index的目录下会生成四个文件data.jsonl原先的jsonl数据、index、index.h5、meta.json记录数据集信息包含 "language", "nlines", "nbytes", "length_distribute", "avg_token_per_line", "hdfs_path", "data_sample"字段)。
这里有一个meta.json的例子
```JSON
{"language": "en", "nlines": 68912, "nbytes": 41801261, "length_distribute": {"less_4k": 68911, "4k-8k": 1, "8k-16k": 0, "16k-32k": 0, "32k-64k": 0, "64k-128k": 0, "128k-256k": 0, "more_256k": 0}, "avg_token_per_line": 145.23292024611098, "hdfs_path": "/user/tc_agi/llm/index_datasets/index", "data_sample": {"input": "<用户>For a car, what scams can be plotted with 0% f...", "output": "The car deal makes money 3 ways. If you pay in one...", "source": "finance_cpm9g"}}
```
### 多个数据集混合
我们支持多个数据集的混合读入并设置不同数据集的比例。为此需要准备一个数据混合的json文件来指导训练过程中的数据读取策略示例如下
```JSON
[
{
"dataset_name": "humanevallike_clean_dedup",
"task_name": "humanevallike_clean_dedup",
"abs_weight": 0.2,
"path": "/data/0124_hq_data/humanevallike_clean_dedup",
"transforms": "0124_hq_data/general/script_cpmc.py",
"allow_repeat": true,
"nlines": 995339,
"ave_tokens_per_line": 100,
"total_tokens": 0.1
},
{
"dataset_name": "leetcode_pass_code_0125",
"task_name": "leetcode_pass_code_0125",
"abs_weight": 0.006,
"path": "/data/0124_hq_data/leetcode_pass_code_0125",
"transforms": "0124_hq_data/general/script_cpmc.py",
"allow_repeat": true,
"nlines": 10724,
"ave_tokens_per_line": 200,
"total_tokens": 0.002
}
]
```
其中abs_weight需要自行设计path、nlines、ave_tokens_per_line可以参考生成index时的meta.json进行填写allow_repeat为数据集是否需要复制total_tokens为估计的数据集token总数以b十亿为单位例如0.1代表0.1b个tokentransforms为读入训练数据的脚本路径该脚本可以参考以下代码
```python
# script_cpmc.py
import random
def rand(n: int, r: random.Random):
return int(r.random() * n)
def transform(data, num_sample: int, r: random.Random):
if 'input' in data:
_input = data['input']
else:
_input = ""
if 'output' in data:
_output = data['output']
else:
_output = ""
return {"input": _input,
"output": _output,
}
```
## 单机训练
1. 修改/apps/fm9g_2b/train_configs/2.4b.json中的训练参数这一部分的参数设置会覆盖掉shell脚本中的相应部分。
2. 修改FM_9G-master/FM_9G-master/apps/fm9g_2b/pretrain_dragonfly.sh中最后部分的训练参数如下所示
```shell
GPUS_PER_NODE=2 #该节点上需要的GPU数量
NNODES=1 #单机训练无需修改这个参数
RANK=0 #单机训练无需修改这个参数
MASTER_ENDPOINT=g3006 #该节点名称
MASTER_PORT=12345 #该节点端口,注意避免端口冲突
```
3. 激活自己的训练环境:
```shell
conda activate fm-9g
```
4. 指定要用的GPU
```shell
export CUDA_VISIBLE_DEVICES=0,1
```
5. 切换到fm9g_2b目录下运行训练脚本
```shell
cd FM_9G-master/FM_9G-master/apps/fm9g_2b
bash pretrain_dragonfly.sh
```
## 多机训练
需要保证机器之间能够通信且每台机器上的训练环境、代码、数据等一致。以下教程以使用slurm调度的算力平台为例。
常用的slurm命令包括
```
slurm命令 功能
sinfo 查看集群分区状态
squeue 查看作业队列
srun, salloc 交互式运行作业
sbatch 提交作业
scancel 取消作业
scontrol 查看和修改作业参数
sacct 查看已完成作业
```
注意:#slurm的多节点通信与bmtrain的环境变量有冲突且srun不稳定推荐采用slurm提交多个单节点任务用torchrun的方式实现多节点通信。
1. 参考以下代码编写主节点启动脚本run_master.sh
```shell
#!/bin/bash
#SBATCH --partition=long
#SBATCH --nodes=1 #需要的节点数量,即需要几台机器,不建议修改,多机训练时提交多个单节点任务即可
#SBATCH --tasks-per-node=8 #每个节点的进程数和每节点的GPU数量保持一致
#SBATCH --gres=gpu:8 #每个节点上需要几块GPU
#SBATCH --cpus-per-task=8 #每个任务分配的CPU数量建议不要修改该节点的cpu总数为任务数乘以每个任务的cpu数这个示例脚本中的cpu总数为8x8=64
MASTER_ADDR=`hostname`
echo $MASTER_ADDR #可以在slurm-xxx.out中查看申请的主节点名称
while true;do
sleep 5s #
```
2. 启动主节点:
```shell
sbatch --nodelist g3002 run_master.sh
```
3. 登录主节点,激活训练环境:
```shell
ssh g3002 #登录节点
conda activate fm-9g #激活训练环境
export CUDA_VISIBLE_DEVICES=0,1 #指定要用的GPU
```
4. 修改主节点训练脚本:在/apps/fm9g_2b/pretrain_dragonfly.sh的最后修改主节点名称、端口、机器数量、GPU数量并将脚本重命名为pretrain_dragonfly_master.sh方便区分
```shell
GPUS_PER_NODE=2 #本节点上要用的GPU数量
NNODES=2 #机器数量
RANK=0 #0为主节点1/2/3…为从节点
MASTER_ENDPOINT=g3002 #主节点名称
MASTER_PORT=12345 #主节点端口号,注意避免端口冲突
```
5. 提交主节点训练脚本:
```shell
cd FM_9G-master/FM_9G-master/apps/fm9g_2b
bash pretrain_dragonfly_master.sh
```
6. 启动从节点、激活训练环境,指定要用的卡,方法与主节点一样。
7. 修改从节点训练脚本将单机多卡的训练脚本重命名为pretrain_dragonfly_slave.sh在末尾修改主节点名称、端口、机器数量、GPU数量
```shell
GPUS_PER_NODE=2 #本节点上要用的GPU数量
NNODES=2 #机器数量
RANK=0 #0为主节点1/2/3…为从节点
MASTER_ENDPOINT=g3002 #主节点名称
MASTER_PORT=12345 #主节点端口号,注意避免端口冲突
```
8. 提交从节点训练脚本:
```shell
cd FM_9G-master/FM_9G-master/apps/fm9g_2b
bash pretrain_dragonfly_slave.sh
```
9. 如果有三台及以上的机器重复6-8注意修改RANK编号
10. 开始训练后每个iter的loss、lr等信息将在从节点上显示
## 参数详细介绍
``` python
#训练的名称模型和log等信息会存储在该文件夹中
args["model_unique"]="2b_0701"
#若要resume写resume的模型step
args["resume_ckpt"]=""
#config位置在configs/目录中
args["config"]="2.4b"
#无需更改
args["flash"]="cuda"
args["max_length"]="4096"
args["local"]="False"
args["dataloader"]="indexed"
args["save"]="True"
args["tokenizer_path"]="./tokenizer/tokenizer.model" # /user/tc_agi/klara/baichuan2/baichuan2.tokenizer.model
args["load_grad"]="False"
args["grad_ckpt_num"]="160"
args["exp_group"]=""
args["ignore_cuda_oom"]="1"
args["tensorboard_all_tasks"]="0"
args["stop_when_end"]="0"
args["only_run_dataloader"]="0"
args["eps"]="1e-6"
args["inspect_iters"]="100"
args["strict_state_dict"]="1"
args["resume_no_optimze"]="0"
args["tp_size"]="1"
args["async_save"]="False"
#训练batch size
args["batch_size"]="1"
#多久存一次
args["save_iters"]="500"
#总的iteration
args["train_iters"]="10000"
#在dataset_config/目录下,数据集的设置
args["dataset_config"]="fm9g_sft"
#dataloder 的加载线程的设置,如果配置较好,可以适量提高
args["dataloader_num_threads"]=1
args["dataloader_prefetch"]=1
args["dataloader_prefetch_factor"]=1
args["dataloader_num_workers"]=1
args["parallel_load_datastate"]="8"
#学习率
args["lr"]="1e-2"
#warmup的次数
args["warmup_iters"]="20"
#drop的比例
args["drop_iters"]="0.1"
#看是否仅load model
args["only_load_model"]="1"
#学习率下降方法
args["lr_scheduler"]="Cosine"
#可以直接resume训练数据信息
args["load_dataloader_ckpt"]="0"
#drop比例
args["drop_begin"]="-1"
args["drop_rate"]="0.5"
#是use checkpoint建议使用
args["use_checkpoint"]="0"
```
## 查看训练情况
1. 用tensorboard查看各个loss曲线与学习率等变化情况
```shell
tensorboard -logdir /apps/fm9g_2b/data/tensorboard/2b_0701 #存放.events文件的路径
```
2. 出现以下报错信息时说明protobuf版本过高重新装一个低版本的即可
```shell
TypeError: MessageToJson() got an unexpected keyword argument 'including_default_value_fields'
```
## 模型微调
模型微调列举了两种微调方法全参数微调以及LORA微调。
### 全参数微调训练:
全参数微调训练与原始模型训练方法基本一致,需要额外注意以下几点:
1.数据集类型
训练数据集通常包含大量、多样化的数据,覆盖广泛的主题和语言现象,用于学习广泛的知识和技能。通过无监督学习,训练数据集可能不包含显式标签,模型通过预测下一个词或填补缺失词语来学习模式。
微调数据集更专注于特定的领域或任务,通常是有标签的,并且标签与目标任务直接相关。例如,微调分类模型时,数据集中的每条数据都有对应的分类标签;微调翻译模型时,数据集中包含源语言和目标语言的句子对。
需要根据具体微调任务设计与选择合适的微调数据集。
2.预训练模型的引入
修改训练脚本参数文件:/apps/fm9g_2b/pretrain_dragonfly.sh引入args["load"]参数,里面补充基于微调的预训练模型的路径即可:
```python
#基于微调的预训练模型路径
args["load"]="../models/sft_2b/"
```
### LORA微调训练
由于新架构中多数据集验证发现2B模型进行LORA训练效果不及全参数微调因此建议2B模型全参数微调8B模型LORA微调在master分支进行。
## 模型格式转换
模型训练完成后需将pt格式模型文件转换为bin格式模型文件用于模型推理。
我们在本项目中提供了2B模型两种格式相互转换时所用到脚本脚本位于./quick_start_clean/convert_hf_fm9g.py应用方法如下
```shell
python convert_hf_fm9g.py \
--model_path /the_path_to_pt_or_bin/ \ #需要转换模型的路径
--output_path /the_path_to_target_directory/ \ #转换后新格式模型所存放路径
--model_type fm9g \ #2B模型指定fm9g
--task pt2bin #任务类型如果pt模型转换为bin模型指定为pt2bin反之指定为bin2pt
```
8B模型格式转换脚本需要切换至master分支脚本位于本项目master分支下convert.py。
## 模型推理
模型推理列举了两种推理方法离线批量推理和部署OpenAI API服务推理
### 离线批量推理:
离线批量推理可参考以下脚本:
``` python
# offline_inference.py
from vllm import LLM, SamplingParams
# 提示用例
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
# 设置采样参数以控制生成文本,更多参数详细介绍可见/vllm/sampling_params.py
# temperature越大生成结果的随机性越强top_p过滤掉生成词汇表中概率低于给定阈值的词汇控制随机性
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
# 初始化语言模型,需注意加载的是.bin格式模型
llm = LLM(model="../models/9G/", trust_remote_code=True)
# 根据提示生成文本
outputs = llm.generate(prompts, sampling_params)
# 打印输出结果
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
```
在初始化语言模型部分,不同模型有所差异:
端侧2B模型
``` python
# 初始化语言模型与Hugging Face Transformers库兼容支持AWQ、GPTQ和GGUF量化格式转换
llm = LLM(model="../models/2b_sft_model/", tokenizer_mode="auto", trust_remote_code=True)
```
8B百亿SFT模型
``` python
# 初始化语言模型tokenizer_mode需指定为"cpm"不支持AWQ、GPTQ和GGUF量化格式转换
# 需要特别注意的是由于8B模型训练分词方式差异vllm库中代码有新增需要按照“环境配置”安装指定版本vllm
llm = LLM(model="../models/8b_sft_model/", tokenizer_mode="cpm", trust_remote_code=True)
```
如果想使用多轮对话,需要指定对应的聊天模版,修改prompts,每次将上一轮的问题和答案拼接到本轮输入即可:
``` python
prompts = [
"<用户>问题1<AI>答案1<用户>问题2<AI>答案2<用户>问题3<AI>"
]
```
### 部署OpenAI API服务推理
vLLM可以为 LLM 服务进行部署,这里提供了一个示例:
1. 启动服务:
端侧2B模型
```shell
python -m vllm.entrypoints.openai.api_server \
--model ../models/2b_sft_model/ \
--tokenizer-mode auto \
--dtype auto \
--trust-remote-code \
--api-key FM9GAPI
#同样需注意模型加载的是.bin格式
#与离线批量推理类似使用端侧2B模型tokenizer-mode为"auto"
#dtype为模型数据类型设置为"auto"即可
#api-key为可选项可在此处指定你的api密钥
```
8B百亿SFT模型
```shell
python -m vllm.entrypoints.openai.api_server \
--model ../models/8b_sft_model/ \
--tokenizer-mode cpm \
--dtype auto \
--api-key FM9GAPI
#与离线批量推理类似使用8B百亿SFT模型tokenizer-mode为"cpm"
```
执行对应指令后默认在http://localhost:8000地址上启动服务启动成功后终端会出现如下提示
```shell
INFO: Started server process [950965]
INFO: Waiting for application startup.
INFO: Application startup complete.
INFO: Uvicorn running on http://0.0.0.0:8000 (Press CTRL+C to quit)
```
部署阶段部分参数说明:
```shell
1.openai暂不支持配置--repetition_penalty参数。
2.如发生OOM内存溢出问题可修改相关参数在启动服务时一并传入:
--max-model-len默认最大位置嵌入max_position_embedding为32768可以修改为4096。
--gpu-memory-utilization默认该值为0.9因此占用显存比较高2B模型可修改为0.28B模型可修改为0.5。
```
2. 调用推理API
启动服务端成功后重新打开一个终端可参考执行以下python脚本
``` python
# client.py
from openai import OpenAI
# 如果启动服务时指定了api密钥需要修改为对应的密钥否则为"EMPTY"
openai_api_key = "FM9GAPI"
openai_api_base = "http://localhost:8000/v1"
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
#指定模型路径推理prompt以及设置采样参数以控制生成文本
completion_params = {
"model": "../models/9G/",
"prompt": "San Francisco is a",
"temperature": 0.8,
"top_p": 0.95,
"max_tokens": 200
}
completion = client.completions.create(**completion_params)
print("Completion result:", completion)
```
3. 调用多轮对话API
启动服务端成功后重新打开一个终端可参考执行以下python脚本
``` python
# chat_client.py
from openai import OpenAI
client = OpenAI(
base_url="http://localhost:8000/v1",
api_key="FM9GAPI",
)
#每次将上一轮的问题和答案拼接到本轮输入即可
completion = client.chat.completions.create(
model="../models/9G/",
messages=[
{"role": "user", "content": "问题1"},
{"role": "system", "content": "答案1"},
{"role": "user", "content": "问题2"},
{"role": "system", "content": "答案2"},
{"role": "user", "content": "问题3"},
]
)
print(completion.choices[0].message)
```
## 常见问题
1. Conda安装pytorch时卡在solving environment网络问题。
解决方法:
- 采用镜像源;
- 用pip安装。安装时需要注意pytorch版本与cuda版本的对应建议安装1.13.1及以上的版本。
2. 安装flash-attn时报错ModuleNotFoundError: No module named 'packaging'。
解决方法pip install packaging即可。
3. flash attention 安装卡住:
解决方法从官方release下载对应版本(注意cuda、torch版本的对应) https://github.com/Dao-AILab/flash-attention/releases
下载前先检查一下:
```python
import torch
print(torch._C._GLIBCXX_USE_CXX11_ABI)
```
如果打印出来的结果是False则选择文件名中带有abiFALSE的版本否则选带有abiTRUE的版本。随后pip install +.whl文件名 即可。
4. 导入flash-attn时报错undefined symbol: _ZN3c104cuda9SetDeviceEi。
解决方法建议检查flash-attn的版本与cuda、torch的版本是否对应。
5. 安装OpenDelta时报错提示无法安装pandas 2.2.2版本:
```shell
error: Couldn't find a setup script in /tmp/easy_install-bgpiop4j/pandas-2.2.2.tar.gz
```
这是因为pandas 2.2.2需要python3.9及以上的版本。在python3.8的环境下我们只需安装pandas 2.0.3版本即可。
6. 通过setup.py安装OpenDelta时报错
```shell
error: aiohttp 4.0.0a1 is installed but aiohttp!=4.0.0a0,!=4.0.0a1; extra == "http" is required by {'fsspec'}
```
重新安装aiohttp即可建议安装4.0.0以下的版本:
```shell
pip uninstall aiohttp
pip install aiohttp==3.9.5
```