carla/Docs/ref_sensors.md

426 lines
28 KiB
Markdown
Raw Normal View History

2020-02-20 00:31:26 +08:00
<h1>Sensors' documentation</h1>
2017-11-17 00:26:50 +08:00
2020-02-19 00:58:02 +08:00
* [__Collision detector__](#collision-detector)
* [__Depth camera__](#depth-camera)
* [__GNSS sensor__](#gnss-sensor)
* [__IMU sensor__](#imu-sensor)
* [__Lane invasion detector__](#lane-invasion-sensor)
* [__Lidar raycast sensor__](#lidar-sensor)
* [__Obstacle detector__](#obstacle-detector)
* [__Radar sensor__](#radar-sensor)
* [__RGB camera__](#rgb-camera)
* [__Semantic segmentation camera__](#semantic-segmentation-camera)
2017-11-17 00:26:50 +08:00
2020-02-19 00:58:02 +08:00
---------------
##Collision detector
2017-11-17 21:28:23 +08:00
2020-02-19 00:58:02 +08:00
* __Blueprint:__ sensor.other.collision
2020-02-20 00:31:26 +08:00
* __Output:__ [carla.CollisionEvent](python_api.md#carla.CollisionEvent) per collision.
2020-02-19 00:58:02 +08:00
2020-02-20 00:31:26 +08:00
This sensor registers an event each time its parent actor collisions against something in the world. Several collisions may be detected during a single simulation step.
Collision detectors do not have any configurable attribute.
2017-11-17 21:28:23 +08:00
2020-02-19 00:58:02 +08:00
!!! note
This sensor creates "fake" actors when it collides with something that is not an actor, this is so we can retrieve the semantic tags of the object we hit.
2019-03-06 22:22:39 +08:00
2020-02-20 00:31:26 +08:00
<h4>Output attributes: </h4>
2020-02-19 00:58:02 +08:00
2020-02-20 00:31:26 +08:00
| Sensor data attribute | Type | Description |
| ---------------------- | ----------- | ----------- |
| `frame` | int | Frame number when the measurement took place. |
| `timestamp` | double | Simulation time of the measurement in seconds since the beginning of the episode. |
| `transform` | [carla.Transform](python_api.md#carla.Transform) | Location and rotation in world coordinates of the sensor at the time of the measurement. |
| `actor` | [carla.Actor](python_api.md#carla.Actor) | Actor that measured the collision (sensor's parent). |
| `other_actor` | [carla.Actor](python_api.md#carla.Actor) | Actor against whom the parent collided. |
| `normal_impulse` | [carla.Vector3D](python_api.md#carla.Vector3D) | Normal impulse result of the collision. |
2020-02-19 00:58:02 +08:00
---------------
##Depth camera
* __Blueprint:__ sensor.camera.depth
2020-02-20 00:31:26 +08:00
* __Output:__ [carla.Image](python_api.md#carla.Image) per step.
2020-02-19 00:58:02 +08:00
2020-02-20 00:31:26 +08:00
Provides a view over the scene codifying the distance of each pixel to the camera (also known as **depth buffer** or **z-buffer**) to create a depth map of the elements.
2020-02-19 00:58:02 +08:00
[carla.colorConverter](python_api.md#carla.ColorConverter)
2020-02-20 00:31:26 +08:00
The image codifies depth value per pixel using 3 channels of the RGB color space, from less to more significant bytes: R -> G -> B. The actual distance in meters can be
decoded with:
```
normalized = (R + G * 256 + B * 256 * 256) / (256 * 256 * 256 - 1)
in_meters = 1000 * normalized
```
2020-02-19 00:58:02 +08:00
![ImageDepth](img/capture_depth.png)
2020-02-20 00:31:26 +08:00
2020-02-19 00:58:02 +08:00
<h4>Basic camera attributes</h4>
| Blueprint attribute | Type | Default | Description |
| ------------------- | ---- | ------- | ----------- |
2020-02-20 00:31:26 +08:00
| `image_size_x` | int | 800 | Image width in pixels. |
| `image_size_y` | int | 600 | Image height in pixels. |
| `fov` | float | 90.0 | Horizontal field of view in degrees. |
| `sensor_tick` | float | 0.0 | Seconds between sensor captures (ticks). |
2020-02-19 00:58:02 +08:00
<h4>Camera lens distortion attributes</h4>
2020-02-20 00:31:26 +08:00
| Blueprint attribute | Type | Default | Description |
|--------------------------|-------|---------|-------------|
| `lens_circle_falloff` | float | 5.0 | Range: [0.0, 10.0] |
| `lens_circle_multiplier` | float | 0.0 | Range: [0.0, 10.0] |
| `lens_k` | float | -1.0 | Range: [-inf, inf] |
| `lens_kcube` | float | 0.0 | Range: [-inf, inf] |
| `lens_x_size` | float | 0.08 | Range: [0.0, 1.0] |
| `lens_y_size` | float | 0.08 | Range: [0.0, 1.0] |
2020-02-19 00:58:02 +08:00
<h4>Output attributes</h4>
2020-02-20 00:31:26 +08:00
| Sensor data attribute | Type | Description |
| --------------------- | ------------------------------------------------ | ----------- |
| `frame` | int | Frame number when the measurement took place. |
| `timestamp` | double | Simulation time of the measurement in seconds since the beginning of the episode. |
| `transform` | [carla.Transform](python_api.md#carla.Transform) | Location and rotation in world coordinates of the sensor at the time of the measurement. |
| `width` | int | Image width in pixels. |
| `height` | int | Image height in pixels. |
| `fov` | float | Horizontal field of view in degrees. |
| `raw_data` | bytes | Array of BGRA 32-bit pixels. |
2020-02-19 00:58:02 +08:00
---------------
##GNSS sensor
* __Blueprint:__ sensor.other.gnss
2020-02-20 00:31:26 +08:00
* __Output:__ [carla.GNSSMeasurement](python_api.md#carla.GNSSMeasurement) per step.
2020-02-19 00:58:02 +08:00
2020-02-20 00:31:26 +08:00
Reports current [gnss position](https://www.gsa.europa.eu/european-gnss/what-gnss) of its parent object. This is calculated by adding the metric position to an initial geo reference location defined within the OpenDRIVE map definition.
2020-02-19 00:58:02 +08:00
<h4>Output attributes</h4>
2020-02-20 00:31:26 +08:00
| Sensor data attribute | Type | Description |
| ---------------------- | ------------------------------------------------ | ----------- |
| `frame` | int | Frame number when the measurement took place. |
| `timestamp` | double | Simulation time of the measurement in seconds since the beginning of the episode. |
| `transform` | [carla.Transform](python_api.md#carla.Transform) | Location and rotation in world coordinates of the sensor at the time of the measurement. |
| `latitude` | double | Latitude of the actor. |
| `longitude` | double | Longitude of the actor. |
| `altitude` | double | Altitude of the actor. |
2020-02-19 00:58:02 +08:00
---------------
##IMU sensor
* __Blueprint:__ sensor.other.imu
2020-02-20 00:31:26 +08:00
* __Output:__ [carla.IMUMeasurement](python_api.md#carla.IMUMeasurement) per step.
2020-02-19 00:58:02 +08:00
2020-02-20 00:31:26 +08:00
Provides measures that accelerometer, gyroscope and compass would retrieve for the parent object. The data is collected from the object's current state.
2020-02-19 00:58:02 +08:00
<h4>Output attributes</h4>
2020-02-20 00:31:26 +08:00
| Sensor data attribute | Type | Description |
| --------------------- | ------------------------------------------------ | ----------- |
| `frame` | int | Frame number when the measurement took place. |
| `timestamp` | double | Simulation time of the measurement in seconds since the beginning of the episode. |
| `transform` | [carla.Transform](python_api.md#carla.Transform) | Transform in world. |
| `accelerometer` | [carla.Vector3D](python_api.md#carla.Vector3D) | Measures linear acceleration in `m/s^2`. |
| `gyroscope` | [carla.Vector3D](python_api.md#carla.Vector3D) | Measures angular velocity in `rad/sec`. |
| `compass` | float | Orientation in radians. North is `(0.0, -1.0, 0.0)` in UE. |
2020-02-19 00:58:02 +08:00
---------------
##Lane invasion detector
* __Blueprint:__ sensor.other.lane_invasion
2020-02-20 00:31:26 +08:00
* __Output:__ [carla.LaneInvasionEvent](python_api.md#carla.LaneInvasionEvent) per lane marking crossed.
2020-02-19 00:58:02 +08:00
> _This sensor is a work in progress, currently very limited._
2020-02-20 00:31:26 +08:00
Registers an event each time its parent crosses a lane marking.
The sensor uses road data provided by the OpenDRIVE description of the map to determine whether the parent vehicle is invading another lane. Thus, there may be discrepancies between the lanes visible by the cameras and the lanes registered by this sensor, as information does not come directly from the simulation.
2020-02-19 00:58:02 +08:00
This sensor does not have any configurable attribute.
2020-02-20 00:31:26 +08:00
!!! Important
This sensor works fully on the client-side.
2020-02-19 00:58:02 +08:00
2020-02-20 00:31:26 +08:00
<h4>Output attributes</h4>
2020-02-19 00:58:02 +08:00
2020-02-20 00:31:26 +08:00
| Sensor data attribute | Type | Description |
| ----------------------- | ---------------------------------------------------------- | ----------- |
| `frame` | int | Frame number when the measurement took place. |
| `timestamp` | double | Simulation time of the measurement in seconds since the beginning of the episode. |
| `transform` | [carla.Transform](python_api.md#carla.Transform) | Location and rotation in world coordinates of the sensor at the time of the measurement. |
| `actor` | [carla.Actor](python_api.md#carla.Actor) | Vehicle that invaded another lane (parent actor). |
| `crossed_lane_markings` | list([carla.LaneMarking](python_api.md#carla.LaneMarking)) | List of lane markings that have been crossed. |
2020-02-19 00:58:02 +08:00
---------------
##Lidar raycast sensor
* __Blueprint:__ sensor.lidar.ray_cast
2020-02-20 00:31:26 +08:00
* __Output:__ [carla.LidarMeasurement](python_api.md#carla.LidarMeasurement) per step. Each one contains []
2020-02-19 00:58:02 +08:00
2020-02-20 00:31:26 +08:00
This sensor simulates a rotating Lidar implemented using ray-casting.
The points are computed by adding a laser for each channel distributed in the vertical FOV. The rotation is simulated computing the horizontal angle that the Lidar rotated in a frame. The point cloud is calculated by doing a ray-cast for each laser in every frame:
`points_per_second / (FPS * channels)`
2020-02-19 00:58:02 +08:00
2020-02-20 00:31:26 +08:00
A Lidar measurement contains a packet with all the points generated during a `1/FPS` interval. During this interval the physics is not updated so all the points in a measurement reflect the same "static picture" of the scene.
This output also acts as a list of the [`carla.Location`](python_api.md#carla.Location) for every point:
2020-02-19 00:58:02 +08:00
```py
for location in lidar_measurement:
print(location)
```
2020-02-20 00:31:26 +08:00
!!! Tip
Running the simulator at [fixed time-step](configuring_the_simulation.md#fixed-time-step) it is possible to tune the rotation for each measurement. Adjust the
step and the rotation frequency to get, for instance, a 360 view each measurement.
2020-02-19 00:58:02 +08:00
2020-02-20 00:31:26 +08:00
![LidarPointCloud](img/lidar_point_cloud.gif)
2020-02-19 00:58:02 +08:00
2020-02-20 00:31:26 +08:00
<h4>Lidar attributes</h4>
| Blueprint attribute | Type | Default | Description |
| -------------------- | ---- | ------- | ----------- |
| `channels` | int | 32 | Number of lasers. |
| `range` | float | 10.0 | Maximum distance to measure/raycast in meters (centimeters for CARLA 0.9.6 or previous). |
| `points_per_second` | int | 56000 | Points generated by all lasers per second. |
| `rotation_frequency` | float | 10.0 | Lidar rotation frequency. |
| `upper_fov` | float | 10.0 | Angle in degrees of the highest laser. |
| `lower_fov` | float | -30.0 | Angle in degrees of the lowest laser. |
| `sensor_tick` | float | 0.0 | Seconds between sensor captures (ticks). |
<h4>Output attributes</h4>
| Sensor data attribute | Type | Description |
| -------------------------- | ------------------------------------------------ | ----------- |
| `frame` | int | Frame number when the measurement took place. |
| `timestamp` | double | Simulation time of the measurement in seconds since the beginning of the episode. |
| `transform` | [carla.Transform](python_api.md#carla.Transform) | Location and rotation in world coordinates of the sensor at the time of the measurement. |
| `horizontal_angle` | float | Angle (radians) in the XY plane of the lidar this frame. |
| `channels` | int | Number of channels (lasers) of the lidar. |
| `get_point_count(channel)` | int | Number of points per channel captured this frame. |
| `raw_data` | bytes | Array of 32-bits floats (XYZ of each point). |
2020-02-19 00:58:02 +08:00
---------------
##Obstacle detector
* __Blueprint:__ sensor.other.obstacle
2020-02-20 00:31:26 +08:00
* __Output:__ [carla.ObstacleDetectionEvent](python_api.md#carla.ObstacleDetectionEvent) per obstacle detected.
2020-02-19 00:58:02 +08:00
2020-02-20 00:31:26 +08:00
Registers an event every time the parent actor has an obstacle ahead.
2020-02-19 00:58:02 +08:00
2020-02-20 00:31:26 +08:00
!!! Note
This sensor creates "fake" actors when it detects obstacles with something that is not an actor, this is so we can retrieve the semantic tags of the object we hit.
2020-02-19 00:58:02 +08:00
| Blueprint attribute | Type | Default | Description |
| -------------------- | ---- | ------- | ----------- |
2020-02-20 00:31:26 +08:00
| `distance` | float | 5 | Distance to trace. |
| `hit_radius` | float | 0.5 | Radius of the trace. |
| `only_dynamics` | bool | false | If true, the trace will only consider dynamic objects. |
| `debug_linetrace` | bool | false | If true, the trace will be visible. |
| `sensor_tick` | float | 0.0 | Seconds between sensor captures (ticks). |
2020-02-19 00:58:02 +08:00
<h4>Output attributes</h4>
2020-02-20 00:31:26 +08:00
| Sensor data attribute | Type | Description |
| ---------------------- | ------------------------------------------------ | ----------- |
| `frame` | int | Frame number when the measurement took place. |
| `timestamp` | double | Simulation time of the measurement in seconds since the beginning of the episode. |
| `transform` | [carla.Transform](python_api.md#carla.Transform) | Location and rotation in world coordinates of the sensor at the time of the measurement. |
| `actor` | [carla.Actor](python_api.md#carla.Actor) | Actor that detected the obstacle (parent actor). |
| `other_actor` | [carla.Actor](python_api.md#carla.Actor) | Actor detected as an obstacle. |
| `distance` | float | Distance from `actor` to `other_actor`. |
2017-11-17 00:26:50 +08:00
2020-02-19 00:58:02 +08:00
---------------
##Radar sensor
2020-02-19 00:58:02 +08:00
* __Blueprint:__ sensor.other.radar
2020-02-20 00:31:26 +08:00
* __Output:__ [carla.RadarMeasurement](python_api.md#carla.RadarMeasurement) per step.
Creates a 2D point map that models elements in sight and their speed regarding the sensor. This can be used to shape elements and evaluate their movement and direction.
The points measured are contained in [carla.RadarMeasurement](python_api.md#carla.RadarMeasurement) as an array of [carla.RadarDetection](python_api.md#carla.RadarDetection).
| Blueprint attribute | Type | Default | Description |
| --------------------- | ---- | ------- | ----------- |
| `horizontal_fov` | float | | Horizontal field of view in degrees. |
| `points_per_second` | int | | Points generated by all lasers per second. |
| `range` | float | | Maximum distance to measure/raycast in meters. |
| `sensor_tick` | float | | Seconds between sensor captures (ticks). |
| `vertical_fov` | float | | Vertical field of view in degrees. |
<h4>Output attributes</h4>
| Sensor data attribute | Type | Description |
| ---------------------- | ------------------------------------------------ | ----------- |
| | | |
| | | |
2018-02-28 21:34:14 +08:00
2020-02-19 00:58:02 +08:00
---------------
##RGB camera
2018-02-28 21:34:14 +08:00
2020-02-19 00:58:02 +08:00
* __Blueprint:__ sensor.camera.rgb
2020-02-20 00:31:26 +08:00
* __Output:__ [carla.Image](python_api.md#carla.Image) per step.
2020-02-20 00:31:26 +08:00
The "RGB" camera acts as a regular camera capturing images from the scene.
2020-02-19 00:58:02 +08:00
[carla.colorConverter](python_api.md#carla.ColorConverter)
2018-02-28 21:34:14 +08:00
2020-02-20 00:31:26 +08:00
If `enable_postprocess_effects` is enabled, a set of post-process effects is applied to the image for the sake of realism:
* __Vignette:__ darkens the border of the screen.
* __Grain jitter:__ adds some noise to the render.
* __Bloom:__ intense lights burn the area around them.
* __Auto exposure:__ modifies the image gamma to simulate the eye adaptation to darker or brighter areas.
* __Lens flares:__ simulates the reflection of bright objects on the lens.
* __Depth of field:__ blurs objects near or very far away of the camera.
2018-02-28 21:34:14 +08:00
2020-02-20 00:31:26 +08:00
The `sensor_tick` tells how fast we want the sensor to capture the data.
A value of 1.5 means that we want the sensor to capture data each second and a half. By default a value of 0.0 means as fast as possible.
![ImageRGB](img/capture_scenefinal.png)
2017-11-17 00:26:50 +08:00
<h4>Basic camera attributes</h4>
2020-02-20 00:31:26 +08:00
| Blueprint attribute | Type | Default | Description |
|---------------------|-------|---------|-------------|
| `fov` | float | 90.0 | Horizontal field of view in degrees. |
| `fstop` | float | 1.4 | Opening of the camera lens. Aperture is `1 / fstop` with typical lens going down to f / 1.2 (larger opening). Larger numbers will reduce the Depth of Field effect. |
| `image_size_x` | int | 800 | Image width in pixels. |
| `image_size_y` | int | 600 | Image height in pixels. |
| `iso` | float | 1200.0 | The camera sensor sensitivity. |
| `gamma` | float | 2.2 | Target gamma value of the camera. |
| `sensor_tick` | float | 0.0 | Seconds between sensor captures (ticks). |
| `shutter_speed` | float | 60.0 | The camera shutter speed in seconds (1.0 / s). |
<h4>Camera lens distortion attributes</h4>
2020-02-20 00:31:26 +08:00
| Blueprint attribute | Type | Default | Description |
|--------------------------|-------|---------|-------------|
| `lens_circle_falloff` | float | 5.0 | Range: [0.0, 10.0] |
| `lens_circle_multiplier` | float | 0.0 | Range: [0.0, 10.0] |
| `lens_k` | float | -1.0 | Range: [-inf, inf] |
| `lens_kcube` | float | 0.0 | Range: [-inf, inf] |
| `lens_x_size` | float | 0.08 | Range: [0.0, 1.0] |
| `lens_y_size` | float | 0.08 | Range: [0.0, 1.0] |
<h4>Advanced camera attributes</h4>
2020-02-20 00:31:26 +08:00
Since these effects are provided by UE, please make sure to check their documentation:
* [Automatic Exposure][AutomaticExposure.Docs]
* [Cinematic Depth of Field Method][CinematicDOFMethod.Docs]
* [Color Grading and Filmic Tonemapper][ColorGrading.Docs]
[AutomaticExposure.Docs]: https://docs.unrealengine.com/en-US/Engine/Rendering/PostProcessEffects/AutomaticExposure/index.html
[CinematicDOFMethod.Docs]: https://docs.unrealengine.com/en-US/Engine/Rendering/PostProcessEffects/DepthOfField/CinematicDOFMethods/index.html
[ColorGrading.Docs]: https://docs.unrealengine.com/en-US/Engine/Rendering/PostProcessEffects/ColorGrading/index.html
2020-02-20 00:31:26 +08:00
| Blueprint attribute | Type | Default | Description |
|--------------------------------------|------|-------------|-------------|
| `min_fstop` | float | 1.2 | Maximum aperture. |
| `blade_count` | int | 5 | Number of blades that make up the diaphragm mechanism. |
| `exposure_mode` | str | `"manual"` | Can be `"manual"` or `"histogram"`. More in [UE4 docs][AutomaticExposure.gamesetting]. |
| `exposure_compensation` | float | 3.0 | Logarithmic adjustment for the exposure. 0: no adjustment, -1:2x darker, -2:4 darker, 1:2x brighter, 2:4x brighter. |
| `exposure_min_bright` | float | 0.1 | In `exposure_mode: "histogram"`. Minimum brightness for auto exposure. The lowest the eye can adapt within. Must be greater than 0 and less than or equal to `exposure_max_bright`. |
| `exposure_max_bright` | float | 2.0 | In `exposure_mode: "histogram"`. Maximum brightness for auto exposure. The highestthe eye can adapt within. Must be greater than 0 and greater than or equal to `exposure_min_bright`. |
| `exposure_speed_up` | float | 3.0 | In `exposure_mode: "histogram"`. Speed at which the adaptation occurs from dark to bright environment. |
| `exposure_speed_down` | float | 1.0 | In `exposure_mode: "histogram"`. Speed at which the adaptation occurs from bright to dark environment. |
| `calibration_constant` | float | 16.0 | Calibration constant for 18% albedo. |
| `focal_distance` | float | 1000.0 | Distance at which the depth of field effect should be sharp. Measured in cm (UE units). |
| `blur_amount` | float | 1.0 | Strength/intensity of motion blur. |
| `blur_radius` | float | 0.0 | Radius in pixels at 1080p resolution to emulate atmospheric scattering according to distance from camera. |
| `motion_blur_intensity` | float | 0.45 | Strength of motion blur [0,1]. |
| `motion_blur_max_distortion` | float | 0.35 | Max distortion caused by motion blur. Percentage of screen width. |
| `motion_blur_min_object_screen_size` | float | 0.1 | Percentage of screen width objects must have for motion blur, lower value means less draw calls. |
| `slope` | float | 0.88 | Steepness of the S-curve for the tonemapper. Larger values make the slope steeper (darker) [0.0, 1.0]. |
| `toe` | float | 0.55 | Adjusts dark color in the tonemapper [0.0, 1.0] |
| `shoulder` | float | 0.26 | Adjusts bright color in the tonemapper [0.0, 1.0] |
| `black_clip` | float | 0.0 | This should NOT be adjusted. Sets where the crossover happens and black tones start to cut off their value [0.0, 1.0]. |
| `white_clip` | float | 0.04 | Set where the crossover happens and white tones start to cut off their value. Subtle change in most cases [0.0, 1.0]. |
| `temp` | float | 6500.0 | White balance in relation to the temperature of the light in the scene. __White light:__ when this matches light temperature. __Warm light:__ When higher than the light in the scene, it is a yellowish color. __Cool light:__ When lower than the light. Blueish color. |
| `tint` | float | 0.0 | White balance temperature tint. Adjusts cyan and magenta color ranges. This should be used along with the white balance Temp property to get accurate colors. Under some light temperatures, the colors may appear to be more yellow or blue. This can be used to balance the resulting color to look more natural. |
| `chromatic_aberration_intensity` | float | 0.0 | Scaling factor to control color shifting, more noticeable on the screen borders. |
| `chromatic_aberration_offset` | float | 0.0 | Normalized distance to the center of the image where the effect takes place. |
| `enable_postprocess_effects` | bool | True | Post-process effects activation. |
[AutomaticExposure.gamesetting]: https://docs.unrealengine.com/en-US/Engine/Rendering/PostProcessEffects/AutomaticExposure/index.html#gamesetting
<h4>Output attributes</h4>
2020-02-20 00:31:26 +08:00
| Sensor data attribute | Type | Description |
| --------------------- | ------------------------------------------------ | ----------- |
| `frame` | int | Frame number when the measurement took place. |
| `timestamp` | double | Simulation time of the measurement in seconds since the beginning of the episode. |
| `transform` | [carla.Transform](python_api.md#carla.Transform) | Location and rotation in world coordinates of the sensor at the time of the measurement. |
| `width` | int | Image width in pixels. |
| `height` | int | Image height in pixels. |
| `fov` | float | Horizontal field of view in degrees. |
| `raw_data` | bytes | Array of BGRA 32-bit pixels. |
2020-02-19 00:58:02 +08:00
---------------
##Semantic segmentation camera
2018-02-28 21:34:14 +08:00
2020-02-19 00:58:02 +08:00
* __Blueprint:__ sensor.camera.semantic_segmentation
2020-02-20 00:31:26 +08:00
* __Output:__ [carla.Image](python_api.md#carla.Image) per step.
2018-02-28 21:34:14 +08:00
2020-02-20 00:31:26 +08:00
This camera classifies every object in sight by displaying it in a different color according to its class (e.g., pedestrians in a different color than vehicles). This is implemented by tagging every object in the scene before hand (either at begin play or on spawn). The objects are classified by their relative file path in the project. E.g., every mesh stored in the _"Unreal/CarlaUE4/Content/Static/Pedestrians"_ folder is tagged as `Pedestrian`.
2020-02-19 00:58:02 +08:00
[carla.colorConverter](python_api.md#carla.ColorConverter)
2017-11-17 00:26:50 +08:00
2020-02-20 00:31:26 +08:00
The server provides an image with the tag information **encoded in the red channel**: A pixel with a red value of `x` belongs to an object with tag `x`.
The following tags are currently available:
| Value | Tag | Converted color |
| -----:|:------------ | --------------- |
| 0 | Unlabeled | ( 0, 0, 0) |
| 1 | Building | ( 70, 70, 70) |
| 2 | Fence | (190, 153, 153) |
| 3 | Other | (250, 170, 160) |
| 4 | Pedestrian | (220, 20, 60) |
| 5 | Pole | (153, 153, 153) |
| 6 | Road line | (157, 234, 50) |
| 7 | Road | (128, 64, 128) |
| 8 | Sidewalk | (244, 35, 232) |
| 9 | Vegetation | (107, 142, 35) |
| 10 | Car | ( 0, 0, 142) |
| 11 | Wall | (102, 102, 156) |
| 12 | Traffic sign | (220, 220, 0) |
2017-11-17 00:26:50 +08:00
2020-02-20 00:31:26 +08:00
!!! Note
2018-02-02 21:32:04 +08:00
**Adding new tags**:
2020-02-20 00:31:26 +08:00
It requires some C++ coding. Add a new label to the `ECityObjectLabel` enum in "Tagger.h", and its corresponding filepath check inside `GetLabelByFolderName()` function in "Tagger.cpp".
![ImageSemanticSegmentation](img/capture_semseg.png)
<h4>Basic camera attributes</h4>
| Blueprint attribute | Type | Default | Description |
| ------------------- | ---- | ------- | ----------- |
| `fov` | float | 90.0 | Horizontal field of view in degrees. |
| `image_size_x` | int | 800 | Image width in pixels. |
| `image_size_y` | int | 600 | Image height in pixels. |
| `sensor_tick` | float | 0.0 | Seconds between sensor captures (ticks). |
<h4>Camera lens distortion attributes</h4>
| Blueprint attribute | Type | Default | Description |
|------------------------- |------ |---------|-------------|
| `lens_circle_falloff` | float | 5.0 | Range: [0.0, 10.0] |
| `lens_circle_multiplier` | float | 0.0 | Range: [0.0, 10.0] |
| `lens_k` | float | -1.0 | Range: [-inf, inf] |
| `lens_kcube` | float | 0.0 | Range: [-inf, inf] |
| `lens_x_size` | float | 0.08 | Range: [0.0, 1.0] |
| `lens_y_size` | float | 0.08 | Range: [0.0, 1.0] |
<h4>Output attributes</h4>
| Sensor data attribute | Type | Description |
| --------------------- | ------------------------------------------------ | ----------- |
| `fov` | float | Horizontal field of view in degrees. |
| `frame` | int | Frame number when the measurement took place. |
| `height` | int | Image height in pixels. |
| `raw_data` | bytes | Array of BGRA 32-bit pixels. |
| `timestamp` | double | Simulation time of the measurement in seconds since the beginning of the episode. |
| `transform` | [carla.Transform](python_api.md#carla.Transform) | Location and rotation in world coordinates of the sensor at the time of the measurement. |
| `width` | int | Image width in pixels. |