linux_old1/drivers/net/sfc/efx.c

2461 lines
64 KiB
C
Raw Normal View History

/****************************************************************************
* Driver for Solarflare Solarstorm network controllers and boards
* Copyright 2005-2006 Fen Systems Ltd.
* Copyright 2005-2009 Solarflare Communications Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, incorporated herein by reference.
*/
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/notifier.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/in.h>
#include <linux/crc32.h>
#include <linux/ethtool.h>
#include <linux/topology.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/gfp.h>
#include "net_driver.h"
#include "efx.h"
#include "mdio_10g.h"
#include "nic.h"
#include "mcdi.h"
/**************************************************************************
*
* Type name strings
*
**************************************************************************
*/
/* Loopback mode names (see LOOPBACK_MODE()) */
const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
const char *efx_loopback_mode_names[] = {
[LOOPBACK_NONE] = "NONE",
[LOOPBACK_DATA] = "DATAPATH",
[LOOPBACK_GMAC] = "GMAC",
[LOOPBACK_XGMII] = "XGMII",
[LOOPBACK_XGXS] = "XGXS",
[LOOPBACK_XAUI] = "XAUI",
[LOOPBACK_GMII] = "GMII",
[LOOPBACK_SGMII] = "SGMII",
[LOOPBACK_XGBR] = "XGBR",
[LOOPBACK_XFI] = "XFI",
[LOOPBACK_XAUI_FAR] = "XAUI_FAR",
[LOOPBACK_GMII_FAR] = "GMII_FAR",
[LOOPBACK_SGMII_FAR] = "SGMII_FAR",
[LOOPBACK_XFI_FAR] = "XFI_FAR",
[LOOPBACK_GPHY] = "GPHY",
[LOOPBACK_PHYXS] = "PHYXS",
[LOOPBACK_PCS] = "PCS",
[LOOPBACK_PMAPMD] = "PMA/PMD",
[LOOPBACK_XPORT] = "XPORT",
[LOOPBACK_XGMII_WS] = "XGMII_WS",
[LOOPBACK_XAUI_WS] = "XAUI_WS",
[LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR",
[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
[LOOPBACK_GMII_WS] = "GMII_WS",
[LOOPBACK_XFI_WS] = "XFI_WS",
[LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR",
[LOOPBACK_PHYXS_WS] = "PHYXS_WS",
};
/* Interrupt mode names (see INT_MODE())) */
const unsigned int efx_interrupt_mode_max = EFX_INT_MODE_MAX;
const char *efx_interrupt_mode_names[] = {
[EFX_INT_MODE_MSIX] = "MSI-X",
[EFX_INT_MODE_MSI] = "MSI",
[EFX_INT_MODE_LEGACY] = "legacy",
};
const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
const char *efx_reset_type_names[] = {
[RESET_TYPE_INVISIBLE] = "INVISIBLE",
[RESET_TYPE_ALL] = "ALL",
[RESET_TYPE_WORLD] = "WORLD",
[RESET_TYPE_DISABLE] = "DISABLE",
[RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG",
[RESET_TYPE_INT_ERROR] = "INT_ERROR",
[RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY",
[RESET_TYPE_RX_DESC_FETCH] = "RX_DESC_FETCH",
[RESET_TYPE_TX_DESC_FETCH] = "TX_DESC_FETCH",
[RESET_TYPE_TX_SKIP] = "TX_SKIP",
[RESET_TYPE_MC_FAILURE] = "MC_FAILURE",
};
#define EFX_MAX_MTU (9 * 1024)
/* RX slow fill workqueue. If memory allocation fails in the fast path,
* a work item is pushed onto this work queue to retry the allocation later,
* to avoid the NIC being starved of RX buffers. Since this is a per cpu
* workqueue, there is nothing to be gained in making it per NIC
*/
static struct workqueue_struct *refill_workqueue;
/* Reset workqueue. If any NIC has a hardware failure then a reset will be
* queued onto this work queue. This is not a per-nic work queue, because
* efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
*/
static struct workqueue_struct *reset_workqueue;
/**************************************************************************
*
* Configurable values
*
*************************************************************************/
/*
* Use separate channels for TX and RX events
*
* Set this to 1 to use separate channels for TX and RX. It allows us
* to control interrupt affinity separately for TX and RX.
*
* This is only used in MSI-X interrupt mode
*/
static unsigned int separate_tx_channels;
module_param(separate_tx_channels, uint, 0644);
MODULE_PARM_DESC(separate_tx_channels,
"Use separate channels for TX and RX");
/* This is the weight assigned to each of the (per-channel) virtual
* NAPI devices.
*/
static int napi_weight = 64;
/* This is the time (in jiffies) between invocations of the hardware
* monitor, which checks for known hardware bugs and resets the
* hardware and driver as necessary.
*/
unsigned int efx_monitor_interval = 1 * HZ;
/* This controls whether or not the driver will initialise devices
* with invalid MAC addresses stored in the EEPROM or flash. If true,
* such devices will be initialised with a random locally-generated
* MAC address. This allows for loading the sfc_mtd driver to
* reprogram the flash, even if the flash contents (including the MAC
* address) have previously been erased.
*/
static unsigned int allow_bad_hwaddr;
/* Initial interrupt moderation settings. They can be modified after
* module load with ethtool.
*
* The default for RX should strike a balance between increasing the
* round-trip latency and reducing overhead.
*/
static unsigned int rx_irq_mod_usec = 60;
/* Initial interrupt moderation settings. They can be modified after
* module load with ethtool.
*
* This default is chosen to ensure that a 10G link does not go idle
* while a TX queue is stopped after it has become full. A queue is
* restarted when it drops below half full. The time this takes (assuming
* worst case 3 descriptors per packet and 1024 descriptors) is
* 512 / 3 * 1.2 = 205 usec.
*/
static unsigned int tx_irq_mod_usec = 150;
/* This is the first interrupt mode to try out of:
* 0 => MSI-X
* 1 => MSI
* 2 => legacy
*/
static unsigned int interrupt_mode;
/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
* i.e. the number of CPUs among which we may distribute simultaneous
* interrupt handling.
*
* Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
* The default (0) means to assign an interrupt to each package (level II cache)
*/
static unsigned int rss_cpus;
module_param(rss_cpus, uint, 0444);
MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
static int phy_flash_cfg;
module_param(phy_flash_cfg, int, 0644);
MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
static unsigned irq_adapt_low_thresh = 10000;
module_param(irq_adapt_low_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_low_thresh,
"Threshold score for reducing IRQ moderation");
static unsigned irq_adapt_high_thresh = 20000;
module_param(irq_adapt_high_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_high_thresh,
"Threshold score for increasing IRQ moderation");
/**************************************************************************
*
* Utility functions and prototypes
*
*************************************************************************/
static void efx_remove_channel(struct efx_channel *channel);
static void efx_remove_port(struct efx_nic *efx);
static void efx_fini_napi(struct efx_nic *efx);
static void efx_fini_channels(struct efx_nic *efx);
#define EFX_ASSERT_RESET_SERIALISED(efx) \
do { \
if ((efx->state == STATE_RUNNING) || \
(efx->state == STATE_DISABLED)) \
ASSERT_RTNL(); \
} while (0)
/**************************************************************************
*
* Event queue processing
*
*************************************************************************/
/* Process channel's event queue
*
* This function is responsible for processing the event queue of a
* single channel. The caller must guarantee that this function will
* never be concurrently called more than once on the same channel,
* though different channels may be being processed concurrently.
*/
static int efx_process_channel(struct efx_channel *channel, int rx_quota)
{
struct efx_nic *efx = channel->efx;
int rx_packets;
if (unlikely(efx->reset_pending != RESET_TYPE_NONE ||
!channel->enabled))
return 0;
rx_packets = efx_nic_process_eventq(channel, rx_quota);
if (rx_packets == 0)
return 0;
/* Deliver last RX packet. */
if (channel->rx_pkt) {
__efx_rx_packet(channel, channel->rx_pkt,
channel->rx_pkt_csummed);
channel->rx_pkt = NULL;
}
efx_rx_strategy(channel);
efx_fast_push_rx_descriptors(&efx->rx_queue[channel->channel]);
return rx_packets;
}
/* Mark channel as finished processing
*
* Note that since we will not receive further interrupts for this
* channel before we finish processing and call the eventq_read_ack()
* method, there is no need to use the interrupt hold-off timers.
*/
static inline void efx_channel_processed(struct efx_channel *channel)
{
/* The interrupt handler for this channel may set work_pending
* as soon as we acknowledge the events we've seen. Make sure
* it's cleared before then. */
channel->work_pending = false;
smp_wmb();
efx_nic_eventq_read_ack(channel);
}
/* NAPI poll handler
*
* NAPI guarantees serialisation of polls of the same device, which
* provides the guarantee required by efx_process_channel().
*/
static int efx_poll(struct napi_struct *napi, int budget)
{
struct efx_channel *channel =
container_of(napi, struct efx_channel, napi_str);
int rx_packets;
EFX_TRACE(channel->efx, "channel %d NAPI poll executing on CPU %d\n",
channel->channel, raw_smp_processor_id());
rx_packets = efx_process_channel(channel, budget);
if (rx_packets < budget) {
struct efx_nic *efx = channel->efx;
if (channel->used_flags & EFX_USED_BY_RX &&
efx->irq_rx_adaptive &&
unlikely(++channel->irq_count == 1000)) {
if (unlikely(channel->irq_mod_score <
irq_adapt_low_thresh)) {
if (channel->irq_moderation > 1) {
channel->irq_moderation -= 1;
efx->type->push_irq_moderation(channel);
}
} else if (unlikely(channel->irq_mod_score >
irq_adapt_high_thresh)) {
if (channel->irq_moderation <
efx->irq_rx_moderation) {
channel->irq_moderation += 1;
efx->type->push_irq_moderation(channel);
}
}
channel->irq_count = 0;
channel->irq_mod_score = 0;
}
/* There is no race here; although napi_disable() will
* only wait for napi_complete(), this isn't a problem
* since efx_channel_processed() will have no effect if
* interrupts have already been disabled.
*/
napi_complete(napi);
efx_channel_processed(channel);
}
return rx_packets;
}
/* Process the eventq of the specified channel immediately on this CPU
*
* Disable hardware generated interrupts, wait for any existing
* processing to finish, then directly poll (and ack ) the eventq.
* Finally reenable NAPI and interrupts.
*
* Since we are touching interrupts the caller should hold the suspend lock
*/
void efx_process_channel_now(struct efx_channel *channel)
{
struct efx_nic *efx = channel->efx;
BUG_ON(!channel->used_flags);
BUG_ON(!channel->enabled);
/* Disable interrupts and wait for ISRs to complete */
efx_nic_disable_interrupts(efx);
if (efx->legacy_irq)
synchronize_irq(efx->legacy_irq);
if (channel->irq)
synchronize_irq(channel->irq);
/* Wait for any NAPI processing to complete */
napi_disable(&channel->napi_str);
/* Poll the channel */
efx_process_channel(channel, EFX_EVQ_SIZE);
/* Ack the eventq. This may cause an interrupt to be generated
* when they are reenabled */
efx_channel_processed(channel);
napi_enable(&channel->napi_str);
efx_nic_enable_interrupts(efx);
}
/* Create event queue
* Event queue memory allocations are done only once. If the channel
* is reset, the memory buffer will be reused; this guards against
* errors during channel reset and also simplifies interrupt handling.
*/
static int efx_probe_eventq(struct efx_channel *channel)
{
EFX_LOG(channel->efx, "chan %d create event queue\n", channel->channel);
return efx_nic_probe_eventq(channel);
}
/* Prepare channel's event queue */
static void efx_init_eventq(struct efx_channel *channel)
{
EFX_LOG(channel->efx, "chan %d init event queue\n", channel->channel);
channel->eventq_read_ptr = 0;
efx_nic_init_eventq(channel);
}
static void efx_fini_eventq(struct efx_channel *channel)
{
EFX_LOG(channel->efx, "chan %d fini event queue\n", channel->channel);
efx_nic_fini_eventq(channel);
}
static void efx_remove_eventq(struct efx_channel *channel)
{
EFX_LOG(channel->efx, "chan %d remove event queue\n", channel->channel);
efx_nic_remove_eventq(channel);
}
/**************************************************************************
*
* Channel handling
*
*************************************************************************/
static int efx_probe_channel(struct efx_channel *channel)
{
struct efx_tx_queue *tx_queue;
struct efx_rx_queue *rx_queue;
int rc;
EFX_LOG(channel->efx, "creating channel %d\n", channel->channel);
rc = efx_probe_eventq(channel);
if (rc)
goto fail1;
efx_for_each_channel_tx_queue(tx_queue, channel) {
rc = efx_probe_tx_queue(tx_queue);
if (rc)
goto fail2;
}
efx_for_each_channel_rx_queue(rx_queue, channel) {
rc = efx_probe_rx_queue(rx_queue);
if (rc)
goto fail3;
}
channel->n_rx_frm_trunc = 0;
return 0;
fail3:
efx_for_each_channel_rx_queue(rx_queue, channel)
efx_remove_rx_queue(rx_queue);
fail2:
efx_for_each_channel_tx_queue(tx_queue, channel)
efx_remove_tx_queue(tx_queue);
fail1:
return rc;
}
static void efx_set_channel_names(struct efx_nic *efx)
{
struct efx_channel *channel;
const char *type = "";
int number;
efx_for_each_channel(channel, efx) {
number = channel->channel;
if (efx->n_channels > efx->n_rx_queues) {
if (channel->channel < efx->n_rx_queues) {
type = "-rx";
} else {
type = "-tx";
number -= efx->n_rx_queues;
}
}
snprintf(channel->name, sizeof(channel->name),
"%s%s-%d", efx->name, type, number);
}
}
/* Channels are shutdown and reinitialised whilst the NIC is running
* to propagate configuration changes (mtu, checksum offload), or
* to clear hardware error conditions
*/
static void efx_init_channels(struct efx_nic *efx)
{
struct efx_tx_queue *tx_queue;
struct efx_rx_queue *rx_queue;
struct efx_channel *channel;
/* Calculate the rx buffer allocation parameters required to
* support the current MTU, including padding for header
* alignment and overruns.
*/
efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
efx->type->rx_buffer_padding);
efx->rx_buffer_order = get_order(efx->rx_buffer_len);
/* Initialise the channels */
efx_for_each_channel(channel, efx) {
EFX_LOG(channel->efx, "init chan %d\n", channel->channel);
efx_init_eventq(channel);
efx_for_each_channel_tx_queue(tx_queue, channel)
efx_init_tx_queue(tx_queue);
/* The rx buffer allocation strategy is MTU dependent */
efx_rx_strategy(channel);
efx_for_each_channel_rx_queue(rx_queue, channel)
efx_init_rx_queue(rx_queue);
WARN_ON(channel->rx_pkt != NULL);
efx_rx_strategy(channel);
}
}
/* This enables event queue processing and packet transmission.
*
* Note that this function is not allowed to fail, since that would
* introduce too much complexity into the suspend/resume path.
*/
static void efx_start_channel(struct efx_channel *channel)
{
struct efx_rx_queue *rx_queue;
EFX_LOG(channel->efx, "starting chan %d\n", channel->channel);
/* The interrupt handler for this channel may set work_pending
* as soon as we enable it. Make sure it's cleared before
* then. Similarly, make sure it sees the enabled flag set. */
channel->work_pending = false;
channel->enabled = true;
smp_wmb();
napi_enable(&channel->napi_str);
/* Load up RX descriptors */
efx_for_each_channel_rx_queue(rx_queue, channel)
efx_fast_push_rx_descriptors(rx_queue);
}
/* This disables event queue processing and packet transmission.
* This function does not guarantee that all queue processing
* (e.g. RX refill) is complete.
*/
static void efx_stop_channel(struct efx_channel *channel)
{
struct efx_rx_queue *rx_queue;
if (!channel->enabled)
return;
EFX_LOG(channel->efx, "stop chan %d\n", channel->channel);
channel->enabled = false;
napi_disable(&channel->napi_str);
/* Ensure that any worker threads have exited or will be no-ops */
efx_for_each_channel_rx_queue(rx_queue, channel) {
spin_lock_bh(&rx_queue->add_lock);
spin_unlock_bh(&rx_queue->add_lock);
}
}
static void efx_fini_channels(struct efx_nic *efx)
{
struct efx_channel *channel;
struct efx_tx_queue *tx_queue;
struct efx_rx_queue *rx_queue;
int rc;
EFX_ASSERT_RESET_SERIALISED(efx);
BUG_ON(efx->port_enabled);
rc = efx_nic_flush_queues(efx);
if (rc)
EFX_ERR(efx, "failed to flush queues\n");
else
EFX_LOG(efx, "successfully flushed all queues\n");
efx_for_each_channel(channel, efx) {
EFX_LOG(channel->efx, "shut down chan %d\n", channel->channel);
efx_for_each_channel_rx_queue(rx_queue, channel)
efx_fini_rx_queue(rx_queue);
efx_for_each_channel_tx_queue(tx_queue, channel)
efx_fini_tx_queue(tx_queue);
efx_fini_eventq(channel);
}
}
static void efx_remove_channel(struct efx_channel *channel)
{
struct efx_tx_queue *tx_queue;
struct efx_rx_queue *rx_queue;
EFX_LOG(channel->efx, "destroy chan %d\n", channel->channel);
efx_for_each_channel_rx_queue(rx_queue, channel)
efx_remove_rx_queue(rx_queue);
efx_for_each_channel_tx_queue(tx_queue, channel)
efx_remove_tx_queue(tx_queue);
efx_remove_eventq(channel);
channel->used_flags = 0;
}
void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue, int delay)
{
queue_delayed_work(refill_workqueue, &rx_queue->work, delay);
}
/**************************************************************************
*
* Port handling
*
**************************************************************************/
/* This ensures that the kernel is kept informed (via
* netif_carrier_on/off) of the link status, and also maintains the
* link status's stop on the port's TX queue.
*/
void efx_link_status_changed(struct efx_nic *efx)
{
struct efx_link_state *link_state = &efx->link_state;
/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
* that no events are triggered between unregister_netdev() and the
* driver unloading. A more general condition is that NETDEV_CHANGE
* can only be generated between NETDEV_UP and NETDEV_DOWN */
if (!netif_running(efx->net_dev))
return;
if (efx->port_inhibited) {
netif_carrier_off(efx->net_dev);
return;
}
if (link_state->up != netif_carrier_ok(efx->net_dev)) {
efx->n_link_state_changes++;
if (link_state->up)
netif_carrier_on(efx->net_dev);
else
netif_carrier_off(efx->net_dev);
}
/* Status message for kernel log */
if (link_state->up) {
EFX_INFO(efx, "link up at %uMbps %s-duplex (MTU %d)%s\n",
link_state->speed, link_state->fd ? "full" : "half",
efx->net_dev->mtu,
(efx->promiscuous ? " [PROMISC]" : ""));
} else {
EFX_INFO(efx, "link down\n");
}
}
void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
{
efx->link_advertising = advertising;
if (advertising) {
if (advertising & ADVERTISED_Pause)
efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
else
efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
if (advertising & ADVERTISED_Asym_Pause)
efx->wanted_fc ^= EFX_FC_TX;
}
}
void efx_link_set_wanted_fc(struct efx_nic *efx, enum efx_fc_type wanted_fc)
{
efx->wanted_fc = wanted_fc;
if (efx->link_advertising) {
if (wanted_fc & EFX_FC_RX)
efx->link_advertising |= (ADVERTISED_Pause |
ADVERTISED_Asym_Pause);
else
efx->link_advertising &= ~(ADVERTISED_Pause |
ADVERTISED_Asym_Pause);
if (wanted_fc & EFX_FC_TX)
efx->link_advertising ^= ADVERTISED_Asym_Pause;
}
}
static void efx_fini_port(struct efx_nic *efx);
/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
* the MAC appropriately. All other PHY configuration changes are pushed
* through phy_op->set_settings(), and pushed asynchronously to the MAC
* through efx_monitor().
*
* Callers must hold the mac_lock
*/
int __efx_reconfigure_port(struct efx_nic *efx)
{
enum efx_phy_mode phy_mode;
int rc;
WARN_ON(!mutex_is_locked(&efx->mac_lock));
/* Serialise the promiscuous flag with efx_set_multicast_list. */
if (efx_dev_registered(efx)) {
netif_addr_lock_bh(efx->net_dev);
netif_addr_unlock_bh(efx->net_dev);
}
/* Disable PHY transmit in mac level loopbacks */
phy_mode = efx->phy_mode;
if (LOOPBACK_INTERNAL(efx))
efx->phy_mode |= PHY_MODE_TX_DISABLED;
else
efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
rc = efx->type->reconfigure_port(efx);
if (rc)
efx->phy_mode = phy_mode;
return rc;
}
/* Reinitialise the MAC to pick up new PHY settings, even if the port is
* disabled. */
int efx_reconfigure_port(struct efx_nic *efx)
{
int rc;
EFX_ASSERT_RESET_SERIALISED(efx);
mutex_lock(&efx->mac_lock);
rc = __efx_reconfigure_port(efx);
mutex_unlock(&efx->mac_lock);
return rc;
}
/* Asynchronous work item for changing MAC promiscuity and multicast
* hash. Avoid a drain/rx_ingress enable by reconfiguring the current
* MAC directly. */
static void efx_mac_work(struct work_struct *data)
{
struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
mutex_lock(&efx->mac_lock);
if (efx->port_enabled) {
efx->type->push_multicast_hash(efx);
efx->mac_op->reconfigure(efx);
}
mutex_unlock(&efx->mac_lock);
}
static int efx_probe_port(struct efx_nic *efx)
{
int rc;
EFX_LOG(efx, "create port\n");
if (phy_flash_cfg)
efx->phy_mode = PHY_MODE_SPECIAL;
/* Connect up MAC/PHY operations table */
rc = efx->type->probe_port(efx);
if (rc)
goto err;
/* Sanity check MAC address */
if (is_valid_ether_addr(efx->mac_address)) {
memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN);
} else {
EFX_ERR(efx, "invalid MAC address %pM\n",
efx->mac_address);
if (!allow_bad_hwaddr) {
rc = -EINVAL;
goto err;
}
random_ether_addr(efx->net_dev->dev_addr);
EFX_INFO(efx, "using locally-generated MAC %pM\n",
efx->net_dev->dev_addr);
}
return 0;
err:
efx_remove_port(efx);
return rc;
}
static int efx_init_port(struct efx_nic *efx)
{
int rc;
EFX_LOG(efx, "init port\n");
mutex_lock(&efx->mac_lock);
rc = efx->phy_op->init(efx);
if (rc)
goto fail1;
efx->port_initialized = true;
/* Reconfigure the MAC before creating dma queues (required for
* Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
efx->mac_op->reconfigure(efx);
/* Ensure the PHY advertises the correct flow control settings */
rc = efx->phy_op->reconfigure(efx);
if (rc)
goto fail2;
mutex_unlock(&efx->mac_lock);
return 0;
fail2:
efx->phy_op->fini(efx);
fail1:
mutex_unlock(&efx->mac_lock);
return rc;
}
static void efx_start_port(struct efx_nic *efx)
{
EFX_LOG(efx, "start port\n");
BUG_ON(efx->port_enabled);
mutex_lock(&efx->mac_lock);
efx->port_enabled = true;
/* efx_mac_work() might have been scheduled after efx_stop_port(),
* and then cancelled by efx_flush_all() */
efx->type->push_multicast_hash(efx);
efx->mac_op->reconfigure(efx);
mutex_unlock(&efx->mac_lock);
}
/* Prevent efx_mac_work() and efx_monitor() from working */
static void efx_stop_port(struct efx_nic *efx)
{
EFX_LOG(efx, "stop port\n");
mutex_lock(&efx->mac_lock);
efx->port_enabled = false;
mutex_unlock(&efx->mac_lock);
/* Serialise against efx_set_multicast_list() */
if (efx_dev_registered(efx)) {
netif_addr_lock_bh(efx->net_dev);
netif_addr_unlock_bh(efx->net_dev);
}
}
static void efx_fini_port(struct efx_nic *efx)
{
EFX_LOG(efx, "shut down port\n");
if (!efx->port_initialized)
return;
efx->phy_op->fini(efx);
efx->port_initialized = false;
efx->link_state.up = false;
efx_link_status_changed(efx);
}
static void efx_remove_port(struct efx_nic *efx)
{
EFX_LOG(efx, "destroying port\n");
efx->type->remove_port(efx);
}
/**************************************************************************
*
* NIC handling
*
**************************************************************************/
/* This configures the PCI device to enable I/O and DMA. */
static int efx_init_io(struct efx_nic *efx)
{
struct pci_dev *pci_dev = efx->pci_dev;
dma_addr_t dma_mask = efx->type->max_dma_mask;
int rc;
EFX_LOG(efx, "initialising I/O\n");
rc = pci_enable_device(pci_dev);
if (rc) {
EFX_ERR(efx, "failed to enable PCI device\n");
goto fail1;
}
pci_set_master(pci_dev);
/* Set the PCI DMA mask. Try all possibilities from our
* genuine mask down to 32 bits, because some architectures
* (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
* masks event though they reject 46 bit masks.
*/
while (dma_mask > 0x7fffffffUL) {
if (pci_dma_supported(pci_dev, dma_mask) &&
((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
break;
dma_mask >>= 1;
}
if (rc) {
EFX_ERR(efx, "could not find a suitable DMA mask\n");
goto fail2;
}
EFX_LOG(efx, "using DMA mask %llx\n", (unsigned long long) dma_mask);
rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
if (rc) {
/* pci_set_consistent_dma_mask() is not *allowed* to
* fail with a mask that pci_set_dma_mask() accepted,
* but just in case...
*/
EFX_ERR(efx, "failed to set consistent DMA mask\n");
goto fail2;
}
efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
if (rc) {
EFX_ERR(efx, "request for memory BAR failed\n");
rc = -EIO;
goto fail3;
}
efx->membase = ioremap_nocache(efx->membase_phys,
efx->type->mem_map_size);
if (!efx->membase) {
EFX_ERR(efx, "could not map memory BAR at %llx+%x\n",
(unsigned long long)efx->membase_phys,
efx->type->mem_map_size);
rc = -ENOMEM;
goto fail4;
}
EFX_LOG(efx, "memory BAR at %llx+%x (virtual %p)\n",
(unsigned long long)efx->membase_phys,
efx->type->mem_map_size, efx->membase);
return 0;
fail4:
pci_release_region(efx->pci_dev, EFX_MEM_BAR);
fail3:
efx->membase_phys = 0;
fail2:
pci_disable_device(efx->pci_dev);
fail1:
return rc;
}
static void efx_fini_io(struct efx_nic *efx)
{
EFX_LOG(efx, "shutting down I/O\n");
if (efx->membase) {
iounmap(efx->membase);
efx->membase = NULL;
}
if (efx->membase_phys) {
pci_release_region(efx->pci_dev, EFX_MEM_BAR);
efx->membase_phys = 0;
}
pci_disable_device(efx->pci_dev);
}
/* Get number of RX queues wanted. Return number of online CPU
* packages in the expectation that an IRQ balancer will spread
* interrupts across them. */
static int efx_wanted_rx_queues(void)
{
cpumask_var_t core_mask;
int count;
int cpu;
if (unlikely(!zalloc_cpumask_var(&core_mask, GFP_KERNEL))) {
printk(KERN_WARNING
"sfc: RSS disabled due to allocation failure\n");
return 1;
}
count = 0;
for_each_online_cpu(cpu) {
if (!cpumask_test_cpu(cpu, core_mask)) {
++count;
cpumask_or(core_mask, core_mask,
topology_core_cpumask(cpu));
}
}
free_cpumask_var(core_mask);
return count;
}
/* Probe the number and type of interrupts we are able to obtain, and
* the resulting numbers of channels and RX queues.
*/
static void efx_probe_interrupts(struct efx_nic *efx)
{
int max_channels =
min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
int rc, i;
if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
struct msix_entry xentries[EFX_MAX_CHANNELS];
int wanted_ints;
int rx_queues;
/* We want one RX queue and interrupt per CPU package
* (or as specified by the rss_cpus module parameter).
* We will need one channel per interrupt.
*/
rx_queues = rss_cpus ? rss_cpus : efx_wanted_rx_queues();
wanted_ints = rx_queues + (separate_tx_channels ? 1 : 0);
wanted_ints = min(wanted_ints, max_channels);
for (i = 0; i < wanted_ints; i++)
xentries[i].entry = i;
rc = pci_enable_msix(efx->pci_dev, xentries, wanted_ints);
if (rc > 0) {
EFX_ERR(efx, "WARNING: Insufficient MSI-X vectors"
" available (%d < %d).\n", rc, wanted_ints);
EFX_ERR(efx, "WARNING: Performance may be reduced.\n");
EFX_BUG_ON_PARANOID(rc >= wanted_ints);
wanted_ints = rc;
rc = pci_enable_msix(efx->pci_dev, xentries,
wanted_ints);
}
if (rc == 0) {
efx->n_rx_queues = min(rx_queues, wanted_ints);
efx->n_channels = wanted_ints;
for (i = 0; i < wanted_ints; i++)
efx->channel[i].irq = xentries[i].vector;
} else {
/* Fall back to single channel MSI */
efx->interrupt_mode = EFX_INT_MODE_MSI;
EFX_ERR(efx, "could not enable MSI-X\n");
}
}
/* Try single interrupt MSI */
if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
efx->n_rx_queues = 1;
efx->n_channels = 1;
rc = pci_enable_msi(efx->pci_dev);
if (rc == 0) {
efx->channel[0].irq = efx->pci_dev->irq;
} else {
EFX_ERR(efx, "could not enable MSI\n");
efx->interrupt_mode = EFX_INT_MODE_LEGACY;
}
}
/* Assume legacy interrupts */
if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
efx->n_rx_queues = 1;
efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
efx->legacy_irq = efx->pci_dev->irq;
}
}
static void efx_remove_interrupts(struct efx_nic *efx)
{
struct efx_channel *channel;
/* Remove MSI/MSI-X interrupts */
efx_for_each_channel(channel, efx)
channel->irq = 0;
pci_disable_msi(efx->pci_dev);
pci_disable_msix(efx->pci_dev);
/* Remove legacy interrupt */
efx->legacy_irq = 0;
}
static void efx_set_channels(struct efx_nic *efx)
{
struct efx_tx_queue *tx_queue;
struct efx_rx_queue *rx_queue;
efx_for_each_tx_queue(tx_queue, efx) {
if (separate_tx_channels)
tx_queue->channel = &efx->channel[efx->n_channels-1];
else
tx_queue->channel = &efx->channel[0];
tx_queue->channel->used_flags |= EFX_USED_BY_TX;
}
efx_for_each_rx_queue(rx_queue, efx) {
rx_queue->channel = &efx->channel[rx_queue->queue];
rx_queue->channel->used_flags |= EFX_USED_BY_RX;
}
}
static int efx_probe_nic(struct efx_nic *efx)
{
int rc;
EFX_LOG(efx, "creating NIC\n");
/* Carry out hardware-type specific initialisation */
rc = efx->type->probe(efx);
if (rc)
return rc;
/* Determine the number of channels and RX queues by trying to hook
* in MSI-X interrupts. */
efx_probe_interrupts(efx);
efx_set_channels(efx);
/* Initialise the interrupt moderation settings */
efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true);
return 0;
}
static void efx_remove_nic(struct efx_nic *efx)
{
EFX_LOG(efx, "destroying NIC\n");
efx_remove_interrupts(efx);
efx->type->remove(efx);
}
/**************************************************************************
*
* NIC startup/shutdown
*
*************************************************************************/
static int efx_probe_all(struct efx_nic *efx)
{
struct efx_channel *channel;
int rc;
/* Create NIC */
rc = efx_probe_nic(efx);
if (rc) {
EFX_ERR(efx, "failed to create NIC\n");
goto fail1;
}
/* Create port */
rc = efx_probe_port(efx);
if (rc) {
EFX_ERR(efx, "failed to create port\n");
goto fail2;
}
/* Create channels */
efx_for_each_channel(channel, efx) {
rc = efx_probe_channel(channel);
if (rc) {
EFX_ERR(efx, "failed to create channel %d\n",
channel->channel);
goto fail3;
}
}
efx_set_channel_names(efx);
return 0;
fail3:
efx_for_each_channel(channel, efx)
efx_remove_channel(channel);
efx_remove_port(efx);
fail2:
efx_remove_nic(efx);
fail1:
return rc;
}
/* Called after previous invocation(s) of efx_stop_all, restarts the
* port, kernel transmit queue, NAPI processing and hardware interrupts,
* and ensures that the port is scheduled to be reconfigured.
* This function is safe to call multiple times when the NIC is in any
* state. */
static void efx_start_all(struct efx_nic *efx)
{
struct efx_channel *channel;
EFX_ASSERT_RESET_SERIALISED(efx);
/* Check that it is appropriate to restart the interface. All
* of these flags are safe to read under just the rtnl lock */
if (efx->port_enabled)
return;
if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
return;
if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
return;
/* Mark the port as enabled so port reconfigurations can start, then
* restart the transmit interface early so the watchdog timer stops */
efx_start_port(efx);
if (efx_dev_registered(efx))
efx_wake_queue(efx);
efx_for_each_channel(channel, efx)
efx_start_channel(channel);
efx_nic_enable_interrupts(efx);
/* Switch to event based MCDI completions after enabling interrupts.
* If a reset has been scheduled, then we need to stay in polled mode.
* Rather than serialising efx_mcdi_mode_event() [which sleeps] and
* reset_pending [modified from an atomic context], we instead guarantee
* that efx_mcdi_mode_poll() isn't reverted erroneously */
efx_mcdi_mode_event(efx);
if (efx->reset_pending != RESET_TYPE_NONE)
efx_mcdi_mode_poll(efx);
/* Start the hardware monitor if there is one. Otherwise (we're link
* event driven), we have to poll the PHY because after an event queue
* flush, we could have a missed a link state change */
if (efx->type->monitor != NULL) {
queue_delayed_work(efx->workqueue, &efx->monitor_work,
efx_monitor_interval);
} else {
mutex_lock(&efx->mac_lock);
if (efx->phy_op->poll(efx))
efx_link_status_changed(efx);
mutex_unlock(&efx->mac_lock);
}
efx->type->start_stats(efx);
}
/* Flush all delayed work. Should only be called when no more delayed work
* will be scheduled. This doesn't flush pending online resets (efx_reset),
* since we're holding the rtnl_lock at this point. */
static void efx_flush_all(struct efx_nic *efx)
{
struct efx_rx_queue *rx_queue;
/* Make sure the hardware monitor is stopped */
cancel_delayed_work_sync(&efx->monitor_work);
/* Ensure that all RX slow refills are complete. */
efx_for_each_rx_queue(rx_queue, efx)
cancel_delayed_work_sync(&rx_queue->work);
/* Stop scheduled port reconfigurations */
cancel_work_sync(&efx->mac_work);
}
/* Quiesce hardware and software without bringing the link down.
* Safe to call multiple times, when the nic and interface is in any
* state. The caller is guaranteed to subsequently be in a position
* to modify any hardware and software state they see fit without
* taking locks. */
static void efx_stop_all(struct efx_nic *efx)
{
struct efx_channel *channel;
EFX_ASSERT_RESET_SERIALISED(efx);
/* port_enabled can be read safely under the rtnl lock */
if (!efx->port_enabled)
return;
efx->type->stop_stats(efx);
/* Switch to MCDI polling on Siena before disabling interrupts */
efx_mcdi_mode_poll(efx);
/* Disable interrupts and wait for ISR to complete */
efx_nic_disable_interrupts(efx);
if (efx->legacy_irq)
synchronize_irq(efx->legacy_irq);
efx_for_each_channel(channel, efx) {
if (channel->irq)
synchronize_irq(channel->irq);
}
/* Stop all NAPI processing and synchronous rx refills */
efx_for_each_channel(channel, efx)
efx_stop_channel(channel);
/* Stop all asynchronous port reconfigurations. Since all
* event processing has already been stopped, there is no
* window to loose phy events */
efx_stop_port(efx);
/* Flush efx_mac_work(), refill_workqueue, monitor_work */
efx_flush_all(efx);
/* Stop the kernel transmit interface late, so the watchdog
* timer isn't ticking over the flush */
if (efx_dev_registered(efx)) {
efx_stop_queue(efx);
netif_tx_lock_bh(efx->net_dev);
netif_tx_unlock_bh(efx->net_dev);
}
}
static void efx_remove_all(struct efx_nic *efx)
{
struct efx_channel *channel;
efx_for_each_channel(channel, efx)
efx_remove_channel(channel);
efx_remove_port(efx);
efx_remove_nic(efx);
}
/**************************************************************************
*
* Interrupt moderation
*
**************************************************************************/
static unsigned irq_mod_ticks(int usecs, int resolution)
{
if (usecs <= 0)
return 0; /* cannot receive interrupts ahead of time :-) */
if (usecs < resolution)
return 1; /* never round down to 0 */
return usecs / resolution;
}
/* Set interrupt moderation parameters */
void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs,
bool rx_adaptive)
{
struct efx_tx_queue *tx_queue;
struct efx_rx_queue *rx_queue;
unsigned tx_ticks = irq_mod_ticks(tx_usecs, EFX_IRQ_MOD_RESOLUTION);
unsigned rx_ticks = irq_mod_ticks(rx_usecs, EFX_IRQ_MOD_RESOLUTION);
EFX_ASSERT_RESET_SERIALISED(efx);
efx_for_each_tx_queue(tx_queue, efx)
tx_queue->channel->irq_moderation = tx_ticks;
efx->irq_rx_adaptive = rx_adaptive;
efx->irq_rx_moderation = rx_ticks;
efx_for_each_rx_queue(rx_queue, efx)
rx_queue->channel->irq_moderation = rx_ticks;
}
/**************************************************************************
*
* Hardware monitor
*
**************************************************************************/
/* Run periodically off the general workqueue. Serialised against
* efx_reconfigure_port via the mac_lock */
static void efx_monitor(struct work_struct *data)
{
struct efx_nic *efx = container_of(data, struct efx_nic,
monitor_work.work);
EFX_TRACE(efx, "hardware monitor executing on CPU %d\n",
raw_smp_processor_id());
BUG_ON(efx->type->monitor == NULL);
/* If the mac_lock is already held then it is likely a port
* reconfiguration is already in place, which will likely do
* most of the work of check_hw() anyway. */
if (!mutex_trylock(&efx->mac_lock))
goto out_requeue;
if (!efx->port_enabled)
goto out_unlock;
efx->type->monitor(efx);
out_unlock:
mutex_unlock(&efx->mac_lock);
out_requeue:
queue_delayed_work(efx->workqueue, &efx->monitor_work,
efx_monitor_interval);
}
/**************************************************************************
*
* ioctls
*
*************************************************************************/
/* Net device ioctl
* Context: process, rtnl_lock() held.
*/
static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
{
struct efx_nic *efx = netdev_priv(net_dev);
struct mii_ioctl_data *data = if_mii(ifr);
EFX_ASSERT_RESET_SERIALISED(efx);
/* Convert phy_id from older PRTAD/DEVAD format */
if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
(data->phy_id & 0xfc00) == 0x0400)
data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
return mdio_mii_ioctl(&efx->mdio, data, cmd);
}
/**************************************************************************
*
* NAPI interface
*
**************************************************************************/
static int efx_init_napi(struct efx_nic *efx)
{
struct efx_channel *channel;
efx_for_each_channel(channel, efx) {
channel->napi_dev = efx->net_dev;
netif_napi_add(channel->napi_dev, &channel->napi_str,
efx_poll, napi_weight);
}
return 0;
}
static void efx_fini_napi(struct efx_nic *efx)
{
struct efx_channel *channel;
efx_for_each_channel(channel, efx) {
if (channel->napi_dev)
netif_napi_del(&channel->napi_str);
channel->napi_dev = NULL;
}
}
/**************************************************************************
*
* Kernel netpoll interface
*
*************************************************************************/
#ifdef CONFIG_NET_POLL_CONTROLLER
/* Although in the common case interrupts will be disabled, this is not
* guaranteed. However, all our work happens inside the NAPI callback,
* so no locking is required.
*/
static void efx_netpoll(struct net_device *net_dev)
{
struct efx_nic *efx = netdev_priv(net_dev);
struct efx_channel *channel;
efx_for_each_channel(channel, efx)
efx_schedule_channel(channel);
}
#endif
/**************************************************************************
*
* Kernel net device interface
*
*************************************************************************/
/* Context: process, rtnl_lock() held. */
static int efx_net_open(struct net_device *net_dev)
{
struct efx_nic *efx = netdev_priv(net_dev);
EFX_ASSERT_RESET_SERIALISED(efx);
EFX_LOG(efx, "opening device %s on CPU %d\n", net_dev->name,
raw_smp_processor_id());
if (efx->state == STATE_DISABLED)
return -EIO;
if (efx->phy_mode & PHY_MODE_SPECIAL)
return -EBUSY;
if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
return -EIO;
/* Notify the kernel of the link state polled during driver load,
* before the monitor starts running */
efx_link_status_changed(efx);
efx_start_all(efx);
return 0;
}
/* Context: process, rtnl_lock() held.
* Note that the kernel will ignore our return code; this method
* should really be a void.
*/
static int efx_net_stop(struct net_device *net_dev)
{
struct efx_nic *efx = netdev_priv(net_dev);
EFX_LOG(efx, "closing %s on CPU %d\n", net_dev->name,
raw_smp_processor_id());
if (efx->state != STATE_DISABLED) {
/* Stop the device and flush all the channels */
efx_stop_all(efx);
efx_fini_channels(efx);
efx_init_channels(efx);
}
return 0;
}
/* Context: process, dev_base_lock or RTNL held, non-blocking. */
static struct net_device_stats *efx_net_stats(struct net_device *net_dev)
{
struct efx_nic *efx = netdev_priv(net_dev);
struct efx_mac_stats *mac_stats = &efx->mac_stats;
struct net_device_stats *stats = &net_dev->stats;
spin_lock_bh(&efx->stats_lock);
efx->type->update_stats(efx);
spin_unlock_bh(&efx->stats_lock);
stats->rx_packets = mac_stats->rx_packets;
stats->tx_packets = mac_stats->tx_packets;
stats->rx_bytes = mac_stats->rx_bytes;
stats->tx_bytes = mac_stats->tx_bytes;
stats->multicast = mac_stats->rx_multicast;
stats->collisions = mac_stats->tx_collision;
stats->rx_length_errors = (mac_stats->rx_gtjumbo +
mac_stats->rx_length_error);
stats->rx_over_errors = efx->n_rx_nodesc_drop_cnt;
stats->rx_crc_errors = mac_stats->rx_bad;
stats->rx_frame_errors = mac_stats->rx_align_error;
stats->rx_fifo_errors = mac_stats->rx_overflow;
stats->rx_missed_errors = mac_stats->rx_missed;
stats->tx_window_errors = mac_stats->tx_late_collision;
stats->rx_errors = (stats->rx_length_errors +
stats->rx_over_errors +
stats->rx_crc_errors +
stats->rx_frame_errors +
stats->rx_fifo_errors +
stats->rx_missed_errors +
mac_stats->rx_symbol_error);
stats->tx_errors = (stats->tx_window_errors +
mac_stats->tx_bad);
return stats;
}
/* Context: netif_tx_lock held, BHs disabled. */
static void efx_watchdog(struct net_device *net_dev)
{
struct efx_nic *efx = netdev_priv(net_dev);
EFX_ERR(efx, "TX stuck with stop_count=%d port_enabled=%d:"
" resetting channels\n",
atomic_read(&efx->netif_stop_count), efx->port_enabled);
efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
}
/* Context: process, rtnl_lock() held. */
static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
{
struct efx_nic *efx = netdev_priv(net_dev);
int rc = 0;
EFX_ASSERT_RESET_SERIALISED(efx);
if (new_mtu > EFX_MAX_MTU)
return -EINVAL;
efx_stop_all(efx);
EFX_LOG(efx, "changing MTU to %d\n", new_mtu);
efx_fini_channels(efx);
mutex_lock(&efx->mac_lock);
/* Reconfigure the MAC before enabling the dma queues so that
* the RX buffers don't overflow */
net_dev->mtu = new_mtu;
efx->mac_op->reconfigure(efx);
mutex_unlock(&efx->mac_lock);
efx_init_channels(efx);
efx_start_all(efx);
return rc;
}
static int efx_set_mac_address(struct net_device *net_dev, void *data)
{
struct efx_nic *efx = netdev_priv(net_dev);
struct sockaddr *addr = data;
char *new_addr = addr->sa_data;
EFX_ASSERT_RESET_SERIALISED(efx);
if (!is_valid_ether_addr(new_addr)) {
EFX_ERR(efx, "invalid ethernet MAC address requested: %pM\n",
new_addr);
return -EINVAL;
}
memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
/* Reconfigure the MAC */
mutex_lock(&efx->mac_lock);
efx->mac_op->reconfigure(efx);
mutex_unlock(&efx->mac_lock);
return 0;
}
/* Context: netif_addr_lock held, BHs disabled. */
static void efx_set_multicast_list(struct net_device *net_dev)
{
struct efx_nic *efx = netdev_priv(net_dev);
struct dev_mc_list *mc_list;
union efx_multicast_hash *mc_hash = &efx->multicast_hash;
u32 crc;
int bit;
efx->promiscuous = !!(net_dev->flags & IFF_PROMISC);
/* Build multicast hash table */
if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
memset(mc_hash, 0xff, sizeof(*mc_hash));
} else {
memset(mc_hash, 0x00, sizeof(*mc_hash));
netdev_for_each_mc_addr(mc_list, net_dev) {
crc = ether_crc_le(ETH_ALEN, mc_list->dmi_addr);
bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
set_bit_le(bit, mc_hash->byte);
}
/* Broadcast packets go through the multicast hash filter.
* ether_crc_le() of the broadcast address is 0xbe2612ff
* so we always add bit 0xff to the mask.
*/
set_bit_le(0xff, mc_hash->byte);
}
if (efx->port_enabled)
queue_work(efx->workqueue, &efx->mac_work);
/* Otherwise efx_start_port() will do this */
}
static const struct net_device_ops efx_netdev_ops = {
.ndo_open = efx_net_open,
.ndo_stop = efx_net_stop,
.ndo_get_stats = efx_net_stats,
.ndo_tx_timeout = efx_watchdog,
.ndo_start_xmit = efx_hard_start_xmit,
.ndo_validate_addr = eth_validate_addr,
.ndo_do_ioctl = efx_ioctl,
.ndo_change_mtu = efx_change_mtu,
.ndo_set_mac_address = efx_set_mac_address,
.ndo_set_multicast_list = efx_set_multicast_list,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = efx_netpoll,
#endif
};
static void efx_update_name(struct efx_nic *efx)
{
strcpy(efx->name, efx->net_dev->name);
efx_mtd_rename(efx);
efx_set_channel_names(efx);
}
static int efx_netdev_event(struct notifier_block *this,
unsigned long event, void *ptr)
{
struct net_device *net_dev = ptr;
if (net_dev->netdev_ops == &efx_netdev_ops &&
event == NETDEV_CHANGENAME)
efx_update_name(netdev_priv(net_dev));
return NOTIFY_DONE;
}
static struct notifier_block efx_netdev_notifier = {
.notifier_call = efx_netdev_event,
};
static ssize_t
show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
{
struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
return sprintf(buf, "%d\n", efx->phy_type);
}
static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);
static int efx_register_netdev(struct efx_nic *efx)
{
struct net_device *net_dev = efx->net_dev;
int rc;
net_dev->watchdog_timeo = 5 * HZ;
net_dev->irq = efx->pci_dev->irq;
net_dev->netdev_ops = &efx_netdev_ops;
SET_NETDEV_DEV(net_dev, &efx->pci_dev->dev);
SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
/* Clear MAC statistics */
efx->mac_op->update_stats(efx);
memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
rtnl_lock();
rc = dev_alloc_name(net_dev, net_dev->name);
if (rc < 0)
goto fail_locked;
efx_update_name(efx);
rc = register_netdevice(net_dev);
if (rc)
goto fail_locked;
/* Always start with carrier off; PHY events will detect the link */
netif_carrier_off(efx->net_dev);
rtnl_unlock();
rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
if (rc) {
EFX_ERR(efx, "failed to init net dev attributes\n");
goto fail_registered;
}
return 0;
fail_locked:
rtnl_unlock();
EFX_ERR(efx, "could not register net dev\n");
return rc;
fail_registered:
unregister_netdev(net_dev);
return rc;
}
static void efx_unregister_netdev(struct efx_nic *efx)
{
struct efx_tx_queue *tx_queue;
if (!efx->net_dev)
return;
BUG_ON(netdev_priv(efx->net_dev) != efx);
/* Free up any skbs still remaining. This has to happen before
* we try to unregister the netdev as running their destructors
* may be needed to get the device ref. count to 0. */
efx_for_each_tx_queue(tx_queue, efx)
efx_release_tx_buffers(tx_queue);
if (efx_dev_registered(efx)) {
strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
unregister_netdev(efx->net_dev);
}
}
/**************************************************************************
*
* Device reset and suspend
*
**************************************************************************/
/* Tears down the entire software state and most of the hardware state
* before reset. */
void efx_reset_down(struct efx_nic *efx, enum reset_type method)
{
EFX_ASSERT_RESET_SERIALISED(efx);
efx_stop_all(efx);
mutex_lock(&efx->mac_lock);
mutex_lock(&efx->spi_lock);
efx_fini_channels(efx);
if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
efx->phy_op->fini(efx);
efx->type->fini(efx);
}
/* This function will always ensure that the locks acquired in
* efx_reset_down() are released. A failure return code indicates
* that we were unable to reinitialise the hardware, and the
* driver should be disabled. If ok is false, then the rx and tx
* engines are not restarted, pending a RESET_DISABLE. */
int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
{
int rc;
EFX_ASSERT_RESET_SERIALISED(efx);
rc = efx->type->init(efx);
if (rc) {
EFX_ERR(efx, "failed to initialise NIC\n");
goto fail;
}
if (!ok)
goto fail;
if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
rc = efx->phy_op->init(efx);
if (rc)
goto fail;
if (efx->phy_op->reconfigure(efx))
EFX_ERR(efx, "could not restore PHY settings\n");
}
efx->mac_op->reconfigure(efx);
efx_init_channels(efx);
mutex_unlock(&efx->spi_lock);
mutex_unlock(&efx->mac_lock);
efx_start_all(efx);
return 0;
fail:
efx->port_initialized = false;
mutex_unlock(&efx->spi_lock);
mutex_unlock(&efx->mac_lock);
return rc;
}
/* Reset the NIC using the specified method. Note that the reset may
* fail, in which case the card will be left in an unusable state.
*
* Caller must hold the rtnl_lock.
*/
int efx_reset(struct efx_nic *efx, enum reset_type method)
{
int rc, rc2;
bool disabled;
EFX_INFO(efx, "resetting (%s)\n", RESET_TYPE(method));
efx_reset_down(efx, method);
rc = efx->type->reset(efx, method);
if (rc) {
EFX_ERR(efx, "failed to reset hardware\n");
goto out;
}
/* Allow resets to be rescheduled. */
efx->reset_pending = RESET_TYPE_NONE;
/* Reinitialise bus-mastering, which may have been turned off before
* the reset was scheduled. This is still appropriate, even in the
* RESET_TYPE_DISABLE since this driver generally assumes the hardware
* can respond to requests. */
pci_set_master(efx->pci_dev);
out:
/* Leave device stopped if necessary */
disabled = rc || method == RESET_TYPE_DISABLE;
rc2 = efx_reset_up(efx, method, !disabled);
if (rc2) {
disabled = true;
if (!rc)
rc = rc2;
}
if (disabled) {
EFX_ERR(efx, "has been disabled\n");
efx->state = STATE_DISABLED;
} else {
EFX_LOG(efx, "reset complete\n");
}
return rc;
}
/* The worker thread exists so that code that cannot sleep can
* schedule a reset for later.
*/
static void efx_reset_work(struct work_struct *data)
{
struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
/* If we're not RUNNING then don't reset. Leave the reset_pending
* flag set so that efx_pci_probe_main will be retried */
if (efx->state != STATE_RUNNING) {
EFX_INFO(efx, "scheduled reset quenched. NIC not RUNNING\n");
return;
}
rtnl_lock();
if (efx_reset(efx, efx->reset_pending))
dev_close(efx->net_dev);
rtnl_unlock();
}
void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
{
enum reset_type method;
if (efx->reset_pending != RESET_TYPE_NONE) {
EFX_INFO(efx, "quenching already scheduled reset\n");
return;
}
switch (type) {
case RESET_TYPE_INVISIBLE:
case RESET_TYPE_ALL:
case RESET_TYPE_WORLD:
case RESET_TYPE_DISABLE:
method = type;
break;
case RESET_TYPE_RX_RECOVERY:
case RESET_TYPE_RX_DESC_FETCH:
case RESET_TYPE_TX_DESC_FETCH:
case RESET_TYPE_TX_SKIP:
method = RESET_TYPE_INVISIBLE;
break;
case RESET_TYPE_MC_FAILURE:
default:
method = RESET_TYPE_ALL;
break;
}
if (method != type)
EFX_LOG(efx, "scheduling %s reset for %s\n",
RESET_TYPE(method), RESET_TYPE(type));
else
EFX_LOG(efx, "scheduling %s reset\n", RESET_TYPE(method));
efx->reset_pending = method;
/* efx_process_channel() will no longer read events once a
* reset is scheduled. So switch back to poll'd MCDI completions. */
efx_mcdi_mode_poll(efx);
queue_work(reset_workqueue, &efx->reset_work);
}
/**************************************************************************
*
* List of NICs we support
*
**************************************************************************/
/* PCI device ID table */
static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
{PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
.driver_data = (unsigned long) &falcon_a1_nic_type},
{PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
.driver_data = (unsigned long) &falcon_b0_nic_type},
{PCI_DEVICE(EFX_VENDID_SFC, BETHPAGE_A_P_DEVID),
.driver_data = (unsigned long) &siena_a0_nic_type},
{PCI_DEVICE(EFX_VENDID_SFC, SIENA_A_P_DEVID),
.driver_data = (unsigned long) &siena_a0_nic_type},
{0} /* end of list */
};
/**************************************************************************
*
* Dummy PHY/MAC operations
*
* Can be used for some unimplemented operations
* Needed so all function pointers are valid and do not have to be tested
* before use
*
**************************************************************************/
int efx_port_dummy_op_int(struct efx_nic *efx)
{
return 0;
}
void efx_port_dummy_op_void(struct efx_nic *efx) {}
void efx_port_dummy_op_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
{
}
bool efx_port_dummy_op_poll(struct efx_nic *efx)
{
return false;
}
static struct efx_phy_operations efx_dummy_phy_operations = {
.init = efx_port_dummy_op_int,
.reconfigure = efx_port_dummy_op_int,
.poll = efx_port_dummy_op_poll,
.fini = efx_port_dummy_op_void,
};
/**************************************************************************
*
* Data housekeeping
*
**************************************************************************/
/* This zeroes out and then fills in the invariants in a struct
* efx_nic (including all sub-structures).
*/
static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
struct pci_dev *pci_dev, struct net_device *net_dev)
{
struct efx_channel *channel;
struct efx_tx_queue *tx_queue;
struct efx_rx_queue *rx_queue;
int i;
/* Initialise common structures */
memset(efx, 0, sizeof(*efx));
spin_lock_init(&efx->biu_lock);
mutex_init(&efx->mdio_lock);
mutex_init(&efx->spi_lock);
#ifdef CONFIG_SFC_MTD
INIT_LIST_HEAD(&efx->mtd_list);
#endif
INIT_WORK(&efx->reset_work, efx_reset_work);
INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
efx->pci_dev = pci_dev;
efx->state = STATE_INIT;
efx->reset_pending = RESET_TYPE_NONE;
strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
efx->net_dev = net_dev;
efx->rx_checksum_enabled = true;
spin_lock_init(&efx->netif_stop_lock);
spin_lock_init(&efx->stats_lock);
mutex_init(&efx->mac_lock);
efx->mac_op = type->default_mac_ops;
efx->phy_op = &efx_dummy_phy_operations;
efx->mdio.dev = net_dev;
INIT_WORK(&efx->mac_work, efx_mac_work);
atomic_set(&efx->netif_stop_count, 1);
for (i = 0; i < EFX_MAX_CHANNELS; i++) {
channel = &efx->channel[i];
channel->efx = efx;
channel->channel = i;
channel->work_pending = false;
}
for (i = 0; i < EFX_TX_QUEUE_COUNT; i++) {
tx_queue = &efx->tx_queue[i];
tx_queue->efx = efx;
tx_queue->queue = i;
tx_queue->buffer = NULL;
tx_queue->channel = &efx->channel[0]; /* for safety */
tx_queue->tso_headers_free = NULL;
}
for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
rx_queue = &efx->rx_queue[i];
rx_queue->efx = efx;
rx_queue->queue = i;
rx_queue->channel = &efx->channel[0]; /* for safety */
rx_queue->buffer = NULL;
spin_lock_init(&rx_queue->add_lock);
INIT_DELAYED_WORK(&rx_queue->work, efx_rx_work);
}
efx->type = type;
/* As close as we can get to guaranteeing that we don't overflow */
BUILD_BUG_ON(EFX_EVQ_SIZE < EFX_TXQ_SIZE + EFX_RXQ_SIZE);
EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
/* Higher numbered interrupt modes are less capable! */
efx->interrupt_mode = max(efx->type->max_interrupt_mode,
interrupt_mode);
/* Would be good to use the net_dev name, but we're too early */
snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
pci_name(pci_dev));
efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
if (!efx->workqueue)
return -ENOMEM;
return 0;
}
static void efx_fini_struct(struct efx_nic *efx)
{
if (efx->workqueue) {
destroy_workqueue(efx->workqueue);
efx->workqueue = NULL;
}
}
/**************************************************************************
*
* PCI interface
*
**************************************************************************/
/* Main body of final NIC shutdown code
* This is called only at module unload (or hotplug removal).
*/
static void efx_pci_remove_main(struct efx_nic *efx)
{
efx_nic_fini_interrupt(efx);
efx_fini_channels(efx);
efx_fini_port(efx);
efx->type->fini(efx);
efx_fini_napi(efx);
efx_remove_all(efx);
}
/* Final NIC shutdown
* This is called only at module unload (or hotplug removal).
*/
static void efx_pci_remove(struct pci_dev *pci_dev)
{
struct efx_nic *efx;
efx = pci_get_drvdata(pci_dev);
if (!efx)
return;
/* Mark the NIC as fini, then stop the interface */
rtnl_lock();
efx->state = STATE_FINI;
dev_close(efx->net_dev);
/* Allow any queued efx_resets() to complete */
rtnl_unlock();
efx_unregister_netdev(efx);
efx_mtd_remove(efx);
/* Wait for any scheduled resets to complete. No more will be
* scheduled from this point because efx_stop_all() has been
* called, we are no longer registered with driverlink, and
* the net_device's have been removed. */
cancel_work_sync(&efx->reset_work);
efx_pci_remove_main(efx);
efx_fini_io(efx);
EFX_LOG(efx, "shutdown successful\n");
pci_set_drvdata(pci_dev, NULL);
efx_fini_struct(efx);
free_netdev(efx->net_dev);
};
/* Main body of NIC initialisation
* This is called at module load (or hotplug insertion, theoretically).
*/
static int efx_pci_probe_main(struct efx_nic *efx)
{
int rc;
/* Do start-of-day initialisation */
rc = efx_probe_all(efx);
if (rc)
goto fail1;
rc = efx_init_napi(efx);
if (rc)
goto fail2;
rc = efx->type->init(efx);
if (rc) {
EFX_ERR(efx, "failed to initialise NIC\n");
goto fail3;
}
rc = efx_init_port(efx);
if (rc) {
EFX_ERR(efx, "failed to initialise port\n");
goto fail4;
}
efx_init_channels(efx);
rc = efx_nic_init_interrupt(efx);
if (rc)
goto fail5;
return 0;
fail5:
efx_fini_channels(efx);
efx_fini_port(efx);
fail4:
efx->type->fini(efx);
fail3:
efx_fini_napi(efx);
fail2:
efx_remove_all(efx);
fail1:
return rc;
}
/* NIC initialisation
*
* This is called at module load (or hotplug insertion,
* theoretically). It sets up PCI mappings, tests and resets the NIC,
* sets up and registers the network devices with the kernel and hooks
* the interrupt service routine. It does not prepare the device for
* transmission; this is left to the first time one of the network
* interfaces is brought up (i.e. efx_net_open).
*/
static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
const struct pci_device_id *entry)
{
struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
struct net_device *net_dev;
struct efx_nic *efx;
int i, rc;
/* Allocate and initialise a struct net_device and struct efx_nic */
net_dev = alloc_etherdev(sizeof(*efx));
if (!net_dev)
return -ENOMEM;
net_dev->features |= (type->offload_features | NETIF_F_SG |
NETIF_F_HIGHDMA | NETIF_F_TSO |
NETIF_F_GRO);
if (type->offload_features & NETIF_F_V6_CSUM)
net_dev->features |= NETIF_F_TSO6;
/* Mask for features that also apply to VLAN devices */
net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
NETIF_F_HIGHDMA | NETIF_F_TSO);
efx = netdev_priv(net_dev);
pci_set_drvdata(pci_dev, efx);
rc = efx_init_struct(efx, type, pci_dev, net_dev);
if (rc)
goto fail1;
EFX_INFO(efx, "Solarflare Communications NIC detected\n");
/* Set up basic I/O (BAR mappings etc) */
rc = efx_init_io(efx);
if (rc)
goto fail2;
/* No serialisation is required with the reset path because
* we're in STATE_INIT. */
for (i = 0; i < 5; i++) {
rc = efx_pci_probe_main(efx);
/* Serialise against efx_reset(). No more resets will be
* scheduled since efx_stop_all() has been called, and we
* have not and never have been registered with either
* the rtnetlink or driverlink layers. */
cancel_work_sync(&efx->reset_work);
if (rc == 0) {
if (efx->reset_pending != RESET_TYPE_NONE) {
/* If there was a scheduled reset during
* probe, the NIC is probably hosed anyway */
efx_pci_remove_main(efx);
rc = -EIO;
} else {
break;
}
}
/* Retry if a recoverably reset event has been scheduled */
if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
(efx->reset_pending != RESET_TYPE_ALL))
goto fail3;
efx->reset_pending = RESET_TYPE_NONE;
}
if (rc) {
EFX_ERR(efx, "Could not reset NIC\n");
goto fail4;
}
/* Switch to the running state before we expose the device to the OS,
* so that dev_open()|efx_start_all() will actually start the device */
efx->state = STATE_RUNNING;
rc = efx_register_netdev(efx);
if (rc)
goto fail5;
EFX_LOG(efx, "initialisation successful\n");
rtnl_lock();
efx_mtd_probe(efx); /* allowed to fail */
rtnl_unlock();
return 0;
fail5:
efx_pci_remove_main(efx);
fail4:
fail3:
efx_fini_io(efx);
fail2:
efx_fini_struct(efx);
fail1:
WARN_ON(rc > 0);
EFX_LOG(efx, "initialisation failed. rc=%d\n", rc);
free_netdev(net_dev);
return rc;
}
static int efx_pm_freeze(struct device *dev)
{
struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
efx->state = STATE_FINI;
netif_device_detach(efx->net_dev);
efx_stop_all(efx);
efx_fini_channels(efx);
return 0;
}
static int efx_pm_thaw(struct device *dev)
{
struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
efx->state = STATE_INIT;
efx_init_channels(efx);
mutex_lock(&efx->mac_lock);
efx->phy_op->reconfigure(efx);
mutex_unlock(&efx->mac_lock);
efx_start_all(efx);
netif_device_attach(efx->net_dev);
efx->state = STATE_RUNNING;
efx->type->resume_wol(efx);
return 0;
}
static int efx_pm_poweroff(struct device *dev)
{
struct pci_dev *pci_dev = to_pci_dev(dev);
struct efx_nic *efx = pci_get_drvdata(pci_dev);
efx->type->fini(efx);
efx->reset_pending = RESET_TYPE_NONE;
pci_save_state(pci_dev);
return pci_set_power_state(pci_dev, PCI_D3hot);
}
/* Used for both resume and restore */
static int efx_pm_resume(struct device *dev)
{
struct pci_dev *pci_dev = to_pci_dev(dev);
struct efx_nic *efx = pci_get_drvdata(pci_dev);
int rc;
rc = pci_set_power_state(pci_dev, PCI_D0);
if (rc)
return rc;
pci_restore_state(pci_dev);
rc = pci_enable_device(pci_dev);
if (rc)
return rc;
pci_set_master(efx->pci_dev);
rc = efx->type->reset(efx, RESET_TYPE_ALL);
if (rc)
return rc;
rc = efx->type->init(efx);
if (rc)
return rc;
efx_pm_thaw(dev);
return 0;
}
static int efx_pm_suspend(struct device *dev)
{
int rc;
efx_pm_freeze(dev);
rc = efx_pm_poweroff(dev);
if (rc)
efx_pm_resume(dev);
return rc;
}
static struct dev_pm_ops efx_pm_ops = {
.suspend = efx_pm_suspend,
.resume = efx_pm_resume,
.freeze = efx_pm_freeze,
.thaw = efx_pm_thaw,
.poweroff = efx_pm_poweroff,
.restore = efx_pm_resume,
};
static struct pci_driver efx_pci_driver = {
.name = EFX_DRIVER_NAME,
.id_table = efx_pci_table,
.probe = efx_pci_probe,
.remove = efx_pci_remove,
.driver.pm = &efx_pm_ops,
};
/**************************************************************************
*
* Kernel module interface
*
*************************************************************************/
module_param(interrupt_mode, uint, 0444);
MODULE_PARM_DESC(interrupt_mode,
"Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
static int __init efx_init_module(void)
{
int rc;
printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
rc = register_netdevice_notifier(&efx_netdev_notifier);
if (rc)
goto err_notifier;
refill_workqueue = create_workqueue("sfc_refill");
if (!refill_workqueue) {
rc = -ENOMEM;
goto err_refill;
}
reset_workqueue = create_singlethread_workqueue("sfc_reset");
if (!reset_workqueue) {
rc = -ENOMEM;
goto err_reset;
}
rc = pci_register_driver(&efx_pci_driver);
if (rc < 0)
goto err_pci;
return 0;
err_pci:
destroy_workqueue(reset_workqueue);
err_reset:
destroy_workqueue(refill_workqueue);
err_refill:
unregister_netdevice_notifier(&efx_netdev_notifier);
err_notifier:
return rc;
}
static void __exit efx_exit_module(void)
{
printk(KERN_INFO "Solarflare NET driver unloading\n");
pci_unregister_driver(&efx_pci_driver);
destroy_workqueue(reset_workqueue);
destroy_workqueue(refill_workqueue);
unregister_netdevice_notifier(&efx_netdev_notifier);
}
module_init(efx_init_module);
module_exit(efx_exit_module);
MODULE_AUTHOR("Solarflare Communications and "
"Michael Brown <mbrown@fensystems.co.uk>");
MODULE_DESCRIPTION("Solarflare Communications network driver");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, efx_pci_table);