There are multiple architectures that support CONFIG_DEBUG_RODATA and
CONFIG_SET_MODULE_RONX. These options also now have the ability to be
turned off at runtime. Move these to an architecture independent
location and make these options def_bool y for almost all of those
arches.
Signed-off-by: Laura Abbott <labbott@redhat.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Add missing code for userspace executable address randomization, e.g.
applications compiled with the gcc -pie option.
Signed-off-by: Helge Deller <deller@gmx.de>
Drop the open-coded sched_clock() function and replace it by the provided
GENERIC_SCHED_CLOCK implementation. We have seen quite some hung tasks in the
past, which seem to be fixed by this patch.
Signed-off-by: Helge Deller <deller@gmx.de>
Cc: <stable@vger.kernel.org> # v4.7+
Signed-off-by: Helge Deller <deller@gmx.de>
Merge updates from Andrew Morton:
- fsnotify updates
- ocfs2 updates
- all of MM
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (127 commits)
console: don't prefer first registered if DT specifies stdout-path
cred: simpler, 1D supplementary groups
CREDITS: update Pavel's information, add GPG key, remove snail mail address
mailmap: add Johan Hovold
.gitattributes: set git diff driver for C source code files
uprobes: remove function declarations from arch/{mips,s390}
spelling.txt: "modeled" is spelt correctly
nmi_backtrace: generate one-line reports for idle cpus
arch/tile: adopt the new nmi_backtrace framework
nmi_backtrace: do a local dump_stack() instead of a self-NMI
nmi_backtrace: add more trigger_*_cpu_backtrace() methods
min/max: remove sparse warnings when they're nested
Documentation/filesystems/proc.txt: add more description for maps/smaps
mm, proc: fix region lost in /proc/self/smaps
proc: fix timerslack_ns CAP_SYS_NICE check when adjusting self
proc: add LSM hook checks to /proc/<tid>/timerslack_ns
proc: relax /proc/<tid>/timerslack_ns capability requirements
meminfo: break apart a very long seq_printf with #ifdefs
seq/proc: modify seq_put_decimal_[u]ll to take a const char *, not char
proc: faster /proc/*/status
...
This came to light when implementing native 64-bit atomics for ARCv2.
The atomic64 self-test code uses CONFIG_ARCH_HAS_ATOMIC64_DEC_IF_POSITIVE
to check whether atomic64_dec_if_positive() is available. It seems it
was needed when not every arch defined it. However as of current code
the Kconfig option seems needless
- for CONFIG_GENERIC_ATOMIC64 it is auto-enabled in lib/Kconfig and a
generic definition of API is present lib/atomic64.c
- arches with native 64-bit atomics select it in arch/*/Kconfig and
define the API in their headers
So I see no point in keeping the Kconfig option
Compile tested for:
- blackfin (CONFIG_GENERIC_ATOMIC64)
- x86 (!CONFIG_GENERIC_ATOMIC64)
- ia64
Link: http://lkml.kernel.org/r/1473703083-8625-3-git-send-email-vgupta@synopsys.com
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Helge Deller <deller@gmx.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Zhaoxiu Zeng <zhaoxiu.zeng@gmail.com>
Cc: Linus Walleij <linus.walleij@linaro.org>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Ming Lin <ming.l@ssi.samsung.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Memblock is the standard kernel boot-time memory tracker/allocator. Use it
instead of the bootmem allocator. This allows using kmemleak, CMA and
other features.
Signed-off-by: Helge Deller <deller@gmx.de>
PARISC was the only architecture which selected the BROKEN_RODATA config
option. Drop it and remove the special handling from init.h as well.
Signed-off-by: Helge Deller <deller@gmx.de>
There are three usercopy warnings which are currently being silenced for
gcc 4.6 and newer:
1) "copy_from_user() buffer size is too small" compile warning/error
This is a static warning which happens when object size and copy size
are both const, and copy size > object size. I didn't see any false
positives for this one. So the function warning attribute seems to
be working fine here.
Note this scenario is always a bug and so I think it should be
changed to *always* be an error, regardless of
CONFIG_DEBUG_STRICT_USER_COPY_CHECKS.
2) "copy_from_user() buffer size is not provably correct" compile warning
This is another static warning which happens when I enable
__compiletime_object_size() for new compilers (and
CONFIG_DEBUG_STRICT_USER_COPY_CHECKS). It happens when object size
is const, but copy size is *not*. In this case there's no way to
compare the two at build time, so it gives the warning. (Note the
warning is a byproduct of the fact that gcc has no way of knowing
whether the overflow function will be called, so the call isn't dead
code and the warning attribute is activated.)
So this warning seems to only indicate "this is an unusual pattern,
maybe you should check it out" rather than "this is a bug".
I get 102(!) of these warnings with allyesconfig and the
__compiletime_object_size() gcc check removed. I don't know if there
are any real bugs hiding in there, but from looking at a small
sample, I didn't see any. According to Kees, it does sometimes find
real bugs. But the false positive rate seems high.
3) "Buffer overflow detected" runtime warning
This is a runtime warning where object size is const, and copy size >
object size.
All three warnings (both static and runtime) were completely disabled
for gcc 4.6 with the following commit:
2fb0815c9e ("gcc4: disable __compiletime_object_size for GCC 4.6+")
That commit mistakenly assumed that the false positives were caused by a
gcc bug in __compiletime_object_size(). But in fact,
__compiletime_object_size() seems to be working fine. The false
positives were instead triggered by #2 above. (Though I don't have an
explanation for why the warnings supposedly only started showing up in
gcc 4.6.)
So remove warning #2 to get rid of all the false positives, and re-enable
warnings #1 and #3 by reverting the above commit.
Furthermore, since #1 is a real bug which is detected at compile time,
upgrade it to always be an error.
Having done all that, CONFIG_DEBUG_STRICT_USER_COPY_CHECKS is no longer
needed.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Byungchul Park <byungchul.park@lge.com>
Cc: Nilay Vaish <nilayvaish@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
PA-RISC is interesting; integer multiplies are implemented in the
FPU, so are painful in the kernel. But it tries to be friendly to
shift-and-add sequences for constant multiplies.
__hash_32 is implemented using the same shift-and-add sequence as
Microblaze, just scheduled for the PA7100. (It's 2-way superscalar
but in-order, like the Pentium.)
hash_64 was tricky, but a suggestion from Jason Thong allowed a
good solution by breaking up the multiplier. After a lot of manual
optimization, I found a 19-instruction sequence for the multiply that
can be executed in 10 cycles using only 4 temporaries.
(The PA8xxx can issue 4 instructions per cycle, but 2 must be ALU ops
and 2 must be loads/stores. And the final add can't be paired.)
An alternative considered, but ultimately not used, was Thomas Wang's
64-to-32-bit integer hash. At 12 instructions, it's smaller, but they're
all sequentially dependent, so it has longer latency.
https://web.archive.org/web/2011/http://www.concentric.net/~Ttwang/tech/inthash.htmhttp://burtleburtle.net/bob/hash/integer.html
Signed-off-by: George Spelvin <linux@sciencehorizons.net>
Cc: Helge Deller <deller@gmx.de>
Cc: linux-parisc@vger.kernel.org
Signed-off-by: Helge Deller <deller@gmx.de>
Add a native implementation for the sched_clock() function which utilizes the
processor-internal cycle counter (Control Register 16) as high-resolution time
source.
With this patch we now get much more fine-grained resolutions in various
in-kernel time measurements (e.g. when viewing the function tracing logs), and
probably a more accurate scheduling on SMP systems.
There are a few specific implementation details in this patch:
1. On a 32bit kernel we emulate the higher 32bits of the required 64-bit
resolution of sched_clock() by increasing a per-cpu counter at every
wrap-around of the 32bit cycle counter.
2. In a SMP system, the cycle counters of the various CPUs are not syncronized
(similiar to the TSC in a x86_64 system). To cope with this we define
HAVE_UNSTABLE_SCHED_CLOCK and let the upper layers do the adjustment work.
3. Since we need HAVE_UNSTABLE_SCHED_CLOCK, we need to provide a cmpxchg64()
function even on a 32-bit kernel.
4. A 64-bit SMP kernel which is started on a UP system will mark the
sched_clock() implementation as "stable", which means that we don't expect any
jumps in the returned counter. This is true because we then run only on one
CPU.
Signed-off-by: Helge Deller <deller@gmx.de>
By adding TRACEHOOK support we now get a clean user interface to access
registers via PTRACE_GETREGS, PTRACE_SETREGS, PTRACE_GETFPREGS and
PTRACE_SETFPREGS.
The user-visible regset struct user_regs_struct and user_fp_struct are
modelled similiar to x86 and can be accessed via PTRACE_GETREGSET.
Signed-off-by: Helge Deller <deller@gmx.de>
This patch adds support for the TIF_SYSCALL_TRACEPOINT on the parisc
architecture. Basically, it calls the appropriate tracepoints on syscall
entry and exit.
Signed-off-by: Helge Deller <deller@gmx.de>
The binary GCD algorithm is based on the following facts:
1. If a and b are all evens, then gcd(a,b) = 2 * gcd(a/2, b/2)
2. If a is even and b is odd, then gcd(a,b) = gcd(a/2, b)
3. If a and b are all odds, then gcd(a,b) = gcd((a-b)/2, b) = gcd((a+b)/2, b)
Even on x86 machines with reasonable division hardware, the binary
algorithm runs about 25% faster (80% the execution time) than the
division-based Euclidian algorithm.
On platforms like Alpha and ARMv6 where division is a function call to
emulation code, it's even more significant.
There are two variants of the code here, depending on whether a fast
__ffs (find least significant set bit) instruction is available. This
allows the unpredictable branches in the bit-at-a-time shifting loop to
be eliminated.
If fast __ffs is not available, the "even/odd" GCD variant is used.
I use the following code to benchmark:
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <time.h>
#include <unistd.h>
#define swap(a, b) \
do { \
a ^= b; \
b ^= a; \
a ^= b; \
} while (0)
unsigned long gcd0(unsigned long a, unsigned long b)
{
unsigned long r;
if (a < b) {
swap(a, b);
}
if (b == 0)
return a;
while ((r = a % b) != 0) {
a = b;
b = r;
}
return b;
}
unsigned long gcd1(unsigned long a, unsigned long b)
{
unsigned long r = a | b;
if (!a || !b)
return r;
b >>= __builtin_ctzl(b);
for (;;) {
a >>= __builtin_ctzl(a);
if (a == b)
return a << __builtin_ctzl(r);
if (a < b)
swap(a, b);
a -= b;
}
}
unsigned long gcd2(unsigned long a, unsigned long b)
{
unsigned long r = a | b;
if (!a || !b)
return r;
r &= -r;
while (!(b & r))
b >>= 1;
for (;;) {
while (!(a & r))
a >>= 1;
if (a == b)
return a;
if (a < b)
swap(a, b);
a -= b;
a >>= 1;
if (a & r)
a += b;
a >>= 1;
}
}
unsigned long gcd3(unsigned long a, unsigned long b)
{
unsigned long r = a | b;
if (!a || !b)
return r;
b >>= __builtin_ctzl(b);
if (b == 1)
return r & -r;
for (;;) {
a >>= __builtin_ctzl(a);
if (a == 1)
return r & -r;
if (a == b)
return a << __builtin_ctzl(r);
if (a < b)
swap(a, b);
a -= b;
}
}
unsigned long gcd4(unsigned long a, unsigned long b)
{
unsigned long r = a | b;
if (!a || !b)
return r;
r &= -r;
while (!(b & r))
b >>= 1;
if (b == r)
return r;
for (;;) {
while (!(a & r))
a >>= 1;
if (a == r)
return r;
if (a == b)
return a;
if (a < b)
swap(a, b);
a -= b;
a >>= 1;
if (a & r)
a += b;
a >>= 1;
}
}
static unsigned long (*gcd_func[])(unsigned long a, unsigned long b) = {
gcd0, gcd1, gcd2, gcd3, gcd4,
};
#define TEST_ENTRIES (sizeof(gcd_func) / sizeof(gcd_func[0]))
#if defined(__x86_64__)
#define rdtscll(val) do { \
unsigned long __a,__d; \
__asm__ __volatile__("rdtsc" : "=a" (__a), "=d" (__d)); \
(val) = ((unsigned long long)__a) | (((unsigned long long)__d)<<32); \
} while(0)
static unsigned long long benchmark_gcd_func(unsigned long (*gcd)(unsigned long, unsigned long),
unsigned long a, unsigned long b, unsigned long *res)
{
unsigned long long start, end;
unsigned long long ret;
unsigned long gcd_res;
rdtscll(start);
gcd_res = gcd(a, b);
rdtscll(end);
if (end >= start)
ret = end - start;
else
ret = ~0ULL - start + 1 + end;
*res = gcd_res;
return ret;
}
#else
static inline struct timespec read_time(void)
{
struct timespec time;
clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &time);
return time;
}
static inline unsigned long long diff_time(struct timespec start, struct timespec end)
{
struct timespec temp;
if ((end.tv_nsec - start.tv_nsec) < 0) {
temp.tv_sec = end.tv_sec - start.tv_sec - 1;
temp.tv_nsec = 1000000000ULL + end.tv_nsec - start.tv_nsec;
} else {
temp.tv_sec = end.tv_sec - start.tv_sec;
temp.tv_nsec = end.tv_nsec - start.tv_nsec;
}
return temp.tv_sec * 1000000000ULL + temp.tv_nsec;
}
static unsigned long long benchmark_gcd_func(unsigned long (*gcd)(unsigned long, unsigned long),
unsigned long a, unsigned long b, unsigned long *res)
{
struct timespec start, end;
unsigned long gcd_res;
start = read_time();
gcd_res = gcd(a, b);
end = read_time();
*res = gcd_res;
return diff_time(start, end);
}
#endif
static inline unsigned long get_rand()
{
if (sizeof(long) == 8)
return (unsigned long)rand() << 32 | rand();
else
return rand();
}
int main(int argc, char **argv)
{
unsigned int seed = time(0);
int loops = 100;
int repeats = 1000;
unsigned long (*res)[TEST_ENTRIES];
unsigned long long elapsed[TEST_ENTRIES];
int i, j, k;
for (;;) {
int opt = getopt(argc, argv, "n:r:s:");
/* End condition always first */
if (opt == -1)
break;
switch (opt) {
case 'n':
loops = atoi(optarg);
break;
case 'r':
repeats = atoi(optarg);
break;
case 's':
seed = strtoul(optarg, NULL, 10);
break;
default:
/* You won't actually get here. */
break;
}
}
res = malloc(sizeof(unsigned long) * TEST_ENTRIES * loops);
memset(elapsed, 0, sizeof(elapsed));
srand(seed);
for (j = 0; j < loops; j++) {
unsigned long a = get_rand();
/* Do we have args? */
unsigned long b = argc > optind ? strtoul(argv[optind], NULL, 10) : get_rand();
unsigned long long min_elapsed[TEST_ENTRIES];
for (k = 0; k < repeats; k++) {
for (i = 0; i < TEST_ENTRIES; i++) {
unsigned long long tmp = benchmark_gcd_func(gcd_func[i], a, b, &res[j][i]);
if (k == 0 || min_elapsed[i] > tmp)
min_elapsed[i] = tmp;
}
}
for (i = 0; i < TEST_ENTRIES; i++)
elapsed[i] += min_elapsed[i];
}
for (i = 0; i < TEST_ENTRIES; i++)
printf("gcd%d: elapsed %llu\n", i, elapsed[i]);
k = 0;
srand(seed);
for (j = 0; j < loops; j++) {
unsigned long a = get_rand();
unsigned long b = argc > optind ? strtoul(argv[optind], NULL, 10) : get_rand();
for (i = 1; i < TEST_ENTRIES; i++) {
if (res[j][i] != res[j][0])
break;
}
if (i < TEST_ENTRIES) {
if (k == 0) {
k = 1;
fprintf(stderr, "Error:\n");
}
fprintf(stderr, "gcd(%lu, %lu): ", a, b);
for (i = 0; i < TEST_ENTRIES; i++)
fprintf(stderr, "%ld%s", res[j][i], i < TEST_ENTRIES - 1 ? ", " : "\n");
}
}
if (k == 0)
fprintf(stderr, "PASS\n");
free(res);
return 0;
}
Compiled with "-O2", on "VirtualBox 4.4.0-22-generic #38-Ubuntu x86_64" got:
zhaoxiuzeng@zhaoxiuzeng-VirtualBox:~/develop$ ./gcd -r 500000 -n 10
gcd0: elapsed 10174
gcd1: elapsed 2120
gcd2: elapsed 2902
gcd3: elapsed 2039
gcd4: elapsed 2812
PASS
zhaoxiuzeng@zhaoxiuzeng-VirtualBox:~/develop$ ./gcd -r 500000 -n 10
gcd0: elapsed 9309
gcd1: elapsed 2280
gcd2: elapsed 2822
gcd3: elapsed 2217
gcd4: elapsed 2710
PASS
zhaoxiuzeng@zhaoxiuzeng-VirtualBox:~/develop$ ./gcd -r 500000 -n 10
gcd0: elapsed 9589
gcd1: elapsed 2098
gcd2: elapsed 2815
gcd3: elapsed 2030
gcd4: elapsed 2718
PASS
zhaoxiuzeng@zhaoxiuzeng-VirtualBox:~/develop$ ./gcd -r 500000 -n 10
gcd0: elapsed 9914
gcd1: elapsed 2309
gcd2: elapsed 2779
gcd3: elapsed 2228
gcd4: elapsed 2709
PASS
[akpm@linux-foundation.org: avoid #defining a CONFIG_ variable]
Signed-off-by: Zhaoxiu Zeng <zhaoxiu.zeng@gmail.com>
Signed-off-by: George Spelvin <linux@horizon.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull parisc ftrace fixes from Helge Deller:
"This is (most likely) the last pull request for v4.6 for the parisc
architecture.
It fixes the FTRACE feature for parisc, which is horribly broken since
quite some time and doesn't even compile. This patch just fixes the
bare minimum (it actually removes more lines than it adds), so that
the function tracer works again on 32- and 64bit kernels.
I've queued up additional patches on top of this patch which e.g. add
the syscall tracer, but those have to wait for the merge window for
v4.7."
* 'parisc-4.6-4' of git://git.kernel.org/pub/scm/linux/kernel/git/deller/parisc-linux:
parisc: Fix ftrace function tracer
Fix the FTRACE function tracer for 32- and 64-bit kernel.
The former code was horribly broken.
Reimplement most coding in assembly and utilize optimizations, e.g. put
mcount() and ftrace_stub() into one L1 cacheline.
Signed-off-by: Helge Deller <deller@gmx.de>
Pull parisc fixes from Helge Deller:
"Fix seccomp filter support and SIGSYS signals on compat kernel.
Both patches are tagged for v4.5 stable kernel"
* 'parisc-4.6-2' of git://git.kernel.org/pub/scm/linux/kernel/git/deller/parisc-linux:
parisc: Fix and enable seccomp filter support
parisc: Fix SIGSYS signals in compat case
The seccomp filter support requires careful handling of task registers. This
includes reloading of the return value (%r28) and proper syscall exit if
secure_computing() returned -1.
Additionally we need to sign-extend the syscall number from signed 32bit to
signed 64bit in do_syscall_trace_enter() since the ptrace interface only allows
storing 32bit values in compat mode.
Signed-off-by: Helge Deller <deller@gmx.de>
Cc: stable@vger.kernel.org # v4.5
Switch to the generic extable search and sort routines which were introduced
with commit a272858 from Ard Biesheuvel. This saves quite some memory in the
vmlinux binary with the 64bit kernel.
Signed-off-by: Helge Deller <deller@gmx.de>
Move the generic implementation to <linux/dma-mapping.h> now that all
architectures support it and remove the HAVE_DMA_ATTR Kconfig symbol now
that everyone supports them.
[valentinrothberg@gmail.com: remove leftovers in Kconfig]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Aurelien Jacquiot <a-jacquiot@ti.com>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Haavard Skinnemoen <hskinnemoen@gmail.com>
Cc: Hans-Christian Egtvedt <egtvedt@samfundet.no>
Cc: Helge Deller <deller@gmx.de>
Cc: James Hogan <james.hogan@imgtec.com>
Cc: Jesper Nilsson <jesper.nilsson@axis.com>
Cc: Koichi Yasutake <yasutake.koichi@jp.panasonic.com>
Cc: Ley Foon Tan <lftan@altera.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Mikael Starvik <starvik@axis.com>
Cc: Steven Miao <realmz6@gmail.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Sebastian Ott <sebott@linux.vnet.ibm.com>
Signed-off-by: Valentin Rothberg <valentinrothberg@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As illustrated by commit a3afe70b83 ("[S390] latencytop s390
support."), HAVE_LATENCYTOP_SUPPORT is defined by an architecture to
advertise an implementation of save_stack_trace_tsk.
However, as of 9212ddb5ea ("stacktrace: provide save_stack_trace_tsk()
weak alias") a dummy implementation is provided if STACKTRACE=y. Given
that LATENCYTOP already depends on STACKTRACE_SUPPORT and selects
STACKTRACE, we can remove HAVE_LATENCYTOP_SUPPORT altogether.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: James Hogan <james.hogan@imgtec.com>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Helge Deller <deller@gmx.de>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
Cc: Ingo Molnar <mingo@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch adds huge page support to allow userspace to allocate huge
pages and to use hugetlbfs filesystem on 32- and 64-bit Linux kernels.
A later patch will add kernel support to map kernel text and data on
huge pages.
The only requirement is, that the kernel needs to be compiled for a
PA8X00 CPU (PA2.0 architecture). Older PA1.X CPUs do not support
variable page sizes. 64bit Kernels are compiled for PA2.0 by default.
Technically on parisc multiple physical huge pages may be needed to
emulate standard 2MB huge pages.
Signed-off-by: Helge Deller <deller@gmx.de>
We would want to use number of page table level to define mm_struct.
Let's expose it as CONFIG_PGTABLE_LEVELS.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Helge Deller <deller@gmx.de>
Tested-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch series drops the support for 32bit HP-UX binaries.
The HP-UX compat layer has always been incomplete and it's unlikely that
someone will ever implement it.
Furthermore those two commits which enhance the compatibility of Linux on parisc
to other architectures:
f5a408d: parisc: Make EWOULDBLOCK be equal to EAGAIN on parisc
1f25df2: parisc: Reduce SIGRTMIN from 37 to 32 to behave like other Linux architectures
basically make it impossible to implement the HP-UX support correctly.
Signed-off-by: Helge Deller <deller@gmx.de>
Nothing sets function_trace_stop to disable function tracing anymore.
Remove the check for it in the arch code.
Link: http://lkml.kernel.org/r/53B08317.7010501@gmx.de
Cc: Kyle McMartin <kyle@mcmartin.ca>
Acked-by: Helge Deller <deller@gmx.de>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Pull parisc fixes from Helge Deller:
"There are two patches in here:
The first patch greatly improves latency and corrects the memory
ordering in our light-weight atomic locking syscall.
The second patch ratelimits printing of userspace segfaults in the
same way as it's done on other platforms. This fixes a possible DOS
on parisc since it prevents the syslog to grow too fast. For example,
when the debian acl2 package was built on our debian buildd servers,
this package produced lots of gigabytes in syslog in very short time
and thus filled our harddisks, which then turned the server nearly
completely unaccessible and unresponsive"
* 'parisc-3.15-4' of git://git.kernel.org/pub/scm/linux/kernel/git/deller/parisc-linux:
parisc: Improve LWS-CAS performance
parisc: ratelimit userspace segfault printing
Ratelimit printing of userspace segfaults and make it runtime
configurable via the /proc/sys/debug/exception-trace variable. This
should resolve syslog from growing way too fast and thus prevents
possible system service attacks.
Signed-off-by: Helge Deller <deller@gmx.de>
Cc: stable@vger.kernel.org # 3.13+
Pull audit updates from Eric Paris.
* git://git.infradead.org/users/eparis/audit: (28 commits)
AUDIT: make audit_is_compat depend on CONFIG_AUDIT_COMPAT_GENERIC
audit: renumber AUDIT_FEATURE_CHANGE into the 1300 range
audit: do not cast audit_rule_data pointers pointlesly
AUDIT: Allow login in non-init namespaces
audit: define audit_is_compat in kernel internal header
kernel: Use RCU_INIT_POINTER(x, NULL) in audit.c
sched: declare pid_alive as inline
audit: use uapi/linux/audit.h for AUDIT_ARCH declarations
syscall_get_arch: remove useless function arguments
audit: remove stray newline from audit_log_execve_info() audit_panic() call
audit: remove stray newlines from audit_log_lost messages
audit: include subject in login records
audit: remove superfluous new- prefix in AUDIT_LOGIN messages
audit: allow user processes to log from another PID namespace
audit: anchor all pid references in the initial pid namespace
audit: convert PPIDs to the inital PID namespace.
pid: get pid_t ppid of task in init_pid_ns
audit: rename the misleading audit_get_context() to audit_take_context()
audit: Add generic compat syscall support
audit: Add CONFIG_HAVE_ARCH_AUDITSYSCALL
...
Currently AUDITSYSCALL has a long list of architecture depencency:
depends on AUDIT && (X86 || PARISC || PPC || S390 || IA64 || UML ||
SPARC64 || SUPERH || (ARM && AEABI && !OABI_COMPAT) || ALPHA)
The purpose of this patch is to replace it with HAVE_ARCH_AUDITSYSCALL
for simplicity.
Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Acked-by: Will Deacon <will.deacon@arm.com> (arm)
Acked-by: Richard Guy Briggs <rgb@redhat.com> (audit)
Acked-by: Matt Turner <mattst88@gmail.com> (alpha)
Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc)
Signed-off-by: Eric Paris <eparis@redhat.com>
Remove an outdated reference to "most personal computers" having only one
CPU, and change the use of "singleprocessor" and "single processor" in
CONFIG_SMP's documentation to "uniprocessor" across all arches where that
documentation is present.
Signed-off-by: Robert Graffham <psquid@psquid.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We've switched over every architecture that supports SMP to it, so
remove the new useless config variable.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Cc: Jan Kara <jack@suse.cz>
Cc: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After the last architecture switched to generic hard irqs the config
options HAVE_GENERIC_HARDIRQS & GENERIC_HARDIRQS and the related code
for !CONFIG_GENERIC_HARDIRQS can be removed.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Merge Kconfig menu diet patches from Dave Hansen:
"I think the "Kernel Hacking" menu has gotten a bit out of hand. It is
over 120 lines long on my system with everything enabled and options
are scattered around it haphazardly.
http://sr71.net/~dave/linux/kconfig-horror.png
Let's try to introduce some sanity. This set takes that 120 lines
down to 55 and makes it vastly easier to find some things. It's a
start.
This set stands on its own, but there is plenty of room for follow-up
patches. The arch-specific debug options still end up getting stuck
in the top-level "kernel hacking" menu. OPTIMIZE_INLINING, for
instance, could obviously go in to the "compiler options" menu, but
the fact that it is defined in arch/ in a separate Kconfig file keeps
it on its own for the moment.
The Signed-off-by's in here look funky. I changed employers while
working on this set, so I have signoffs from both email addresses"
* emailed patches from Dave Hansen <dave@sr71.net>:
hang and lockup detection menu
kconfig: consolidate printk options
group locking debugging options
consolidate compilation option configs
consolidate runtime testing configs
order memory debugging Kconfig options
consolidate per-arch stack overflow debugging options
Original posting:
http://lkml.kernel.org/r/20121214184202.F54094D9@kernel.stglabs.ibm.com
Several architectures have similar stack debugging config options.
They all pretty much do the same thing, some with slightly
differing help text.
This patch changes the architectures to instead enable a Kconfig
boolean, and then use that boolean in the generic Kconfig.debug
to present the actual menu option. This removes a bunch of
duplication and adds consistency across arches.
Signed-off-by: Dave Hansen <dave@linux.vnet.ibm.com>
Reviewed-by: H. Peter Anvin <hpa@zytor.com>
Reviewed-by: James Hogan <james.hogan@imgtec.com>
Acked-by: Chris Metcalf <cmetcalf@tilera.com> [for tile]
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Ever since commit 45f035ab9b ("CONFIG_HOTPLUG should be always on"),
it has been basically impossible to build a kernel with CONFIG_HOTPLUG
turned off. Remove all the remaining references to it.
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Doug Thompson <dougthompson@xmission.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Acked-by: Mauro Carvalho Chehab <mchehab@redhat.com>
Acked-by: Hans Verkuil <hans.verkuil@cisco.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This patch fixes few build issues which were introduced with the last
irq stack patch, e.g. the combination of stack overflow check and irq
stack.
Furthermore we now do proper locking and change the irq bh handler
to use the irq stack as well.
In /proc/interrupts one now can monitor how huge the irq stack has grown
and how often it was preferred over the kernel stack.
IRQ stacks are now enabled by default just to make sure that we not
overflow the kernel stack by accident.
Signed-off-by: Helge Deller <deller@gmx.de>
Default kernel stack size on parisc is 16k. During tests we found that the
kernel stack can easily grow beyond 13k, which leaves 3k left for irq
processing.
This patch adds the possibility to activate an additional stack of 16k per CPU
which is being used during irq processing. This implementation does not yet
uses this irq stack for the irq bh handler.
The assembler code for call_on_stack was heavily cleaned up by John
David Anglin.
CC: John David Anglin <dave.anglin@bell.net>
Signed-off-by: Helge Deller <deller@gmx.de>
The help text for this config is duplicated across the x86, parisc, and
s390 Kconfig.debug files. Arnd Bergman noted that the help text was
slightly misleading and should be fixed to state that enabling this
option isn't a problem when using pre 4.4 gcc.
To simplify the rewording, consolidate the text into lib/Kconfig.debug
and modify it there to be more explicit about when you should say N to
this config.
Also, make the text a bit more generic by stating that this option
enables compile time checks so we can cover architectures which emit
warnings vs. ones which emit errors. The details of how an
architecture decided to implement the checks isn't as important as the
concept of compile time checking of copy_from_user() calls.
While we're doing this, remove all the copy_from_user_overflow() code
that's duplicated many times and place it into lib/ so that any
architecture supporting this option can get the function for free.
Signed-off-by: Stephen Boyd <sboyd@codeaurora.org>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Ingo Molnar <mingo@kernel.org>
Acked-by: H. Peter Anvin <hpa@zytor.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Acked-by: Helge Deller <deller@gmx.de>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In commit 887cbce0ad ("arch Kconfig: centralise ARCH_NO_VIRT_TO_BUS")
I introduced the config sybmol HAVE_VIRT_TO_BUS and selected that where
needed. I am not sure what I was thinking. Instead, just directly
select VIRT_TO_BUS where it is needed.
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull second round of PARISC updates from Helge Deller:
"The most important fix in this branch is the switch of io_setup,
io_getevents and io_submit syscalls to use the available compat
syscalls when running 32bit userspace on 64bit kernel. Other than
that it's mostly removal of compile warnings."
* 'fixes-for-3.9-latest' of git://git.kernel.org/pub/scm/linux/kernel/git/deller/parisc-linux:
parisc: fix redefinition of SET_PERSONALITY
parisc: do not install modules when installing kernel
parisc: fix compile warnings triggered by atomic_sub(sizeof(),v)
parisc: check return value of down_interruptible() in hp_sdc_rtc.c
parisc: avoid unitialized variable warning in pa_memcpy()
parisc: remove unused variable 'compat_val'
parisc: switch to compat_functions of io_setup, io_getevents and io_submit
parisc: select ARCH_WANT_FRAME_POINTERS