Commit Graph

1372 Commits

Author SHA1 Message Date
Michal Hocko 15c30bc090 mm, memory_hotplug: make has_unmovable_pages more robust
Oscar has reported:
: Due to an unfortunate setting with movablecore, memblocks containing bootmem
: memory (pages marked by get_page_bootmem()) ended up marked in zone_movable.
: So while trying to remove that memory, the system failed in do_migrate_range
: and __offline_pages never returned.
:
: This can be reproduced by running
: qemu-system-x86_64 -m 6G,slots=8,maxmem=8G -numa node,mem=4096M -numa node,mem=2048M
: and movablecore=4G kernel command line
:
: linux kernel: BIOS-provided physical RAM map:
: linux kernel: BIOS-e820: [mem 0x0000000000000000-0x000000000009fbff] usable
: linux kernel: BIOS-e820: [mem 0x000000000009fc00-0x000000000009ffff] reserved
: linux kernel: BIOS-e820: [mem 0x00000000000f0000-0x00000000000fffff] reserved
: linux kernel: BIOS-e820: [mem 0x0000000000100000-0x00000000bffdffff] usable
: linux kernel: BIOS-e820: [mem 0x00000000bffe0000-0x00000000bfffffff] reserved
: linux kernel: BIOS-e820: [mem 0x00000000feffc000-0x00000000feffffff] reserved
: linux kernel: BIOS-e820: [mem 0x00000000fffc0000-0x00000000ffffffff] reserved
: linux kernel: BIOS-e820: [mem 0x0000000100000000-0x00000001bfffffff] usable
: linux kernel: NX (Execute Disable) protection: active
: linux kernel: SMBIOS 2.8 present.
: linux kernel: DMI: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.0.0-prebuilt.qemu-project.org
: linux kernel: Hypervisor detected: KVM
: linux kernel: e820: update [mem 0x00000000-0x00000fff] usable ==> reserved
: linux kernel: e820: remove [mem 0x000a0000-0x000fffff] usable
: linux kernel: last_pfn = 0x1c0000 max_arch_pfn = 0x400000000
:
: linux kernel: SRAT: PXM 0 -> APIC 0x00 -> Node 0
: linux kernel: SRAT: PXM 1 -> APIC 0x01 -> Node 1
: linux kernel: ACPI: SRAT: Node 0 PXM 0 [mem 0x00000000-0x0009ffff]
: linux kernel: ACPI: SRAT: Node 0 PXM 0 [mem 0x00100000-0xbfffffff]
: linux kernel: ACPI: SRAT: Node 0 PXM 0 [mem 0x100000000-0x13fffffff]
: linux kernel: ACPI: SRAT: Node 1 PXM 1 [mem 0x140000000-0x1bfffffff]
: linux kernel: ACPI: SRAT: Node 0 PXM 0 [mem 0x1c0000000-0x43fffffff] hotplug
: linux kernel: NUMA: Node 0 [mem 0x00000000-0x0009ffff] + [mem 0x00100000-0xbfffffff] -> [mem 0x0
: linux kernel: NUMA: Node 0 [mem 0x00000000-0xbfffffff] + [mem 0x100000000-0x13fffffff] -> [mem 0
: linux kernel: NODE_DATA(0) allocated [mem 0x13ffd6000-0x13fffffff]
: linux kernel: NODE_DATA(1) allocated [mem 0x1bffd3000-0x1bfffcfff]
:
: zoneinfo shows that the zone movable is placed into both numa nodes:
: Node 0, zone  Movable
:   pages free     160140
:         min      1823
:         low      2278
:         high     2733
:         spanned  262144
:         present  262144
:         managed  245670
: Node 1, zone  Movable
:   pages free     448427
:         min      3827
:         low      4783
:         high     5739
:         spanned  524288
:         present  524288
:         managed  515766

Note how only Node 0 has a hutplugable memory region which would rule it
out from the early memblock allocations (most likely memmap).  Node1
will surely contain memmaps on the same node and those would prevent
offlining to succeed.  So this is arguably a configuration issue.
Although one could argue that we should be more clever and rule early
allocations from the zone movable.  This would be correct but probably
not worth the effort considering what a hack movablecore is.

Anyway, We could do better for those cases though.  We rely on
start_isolate_page_range resp.  has_unmovable_pages to do their job.
The first one isolates the whole range to be offlined so that we do not
allocate from it anymore and the later makes sure we are not stumbling
over non-migrateable pages.

has_unmovable_pages is overly optimistic, however.  It doesn't check all
the pages if we are withing zone_movable because we rely that those
pages will be always migrateable.  As it turns out we are still not
perfect there.  While bootmem pages in zonemovable sound like a clear
bug which should be fixed let's remove the optimization for now and warn
if we encounter unmovable pages in zone_movable in the meantime.  That
should help for now at least.

Btw.  this wasn't a real problem until commit 72b39cfc4d ("mm,
memory_hotplug: do not fail offlining too early") because we used to
have a small number of retries and then failed.  This turned out to be
too fragile though.

Link: http://lkml.kernel.org/r/20180523125555.30039-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Oscar Salvador <osalvador@techadventures.net>
Tested-by: Oscar Salvador <osalvador@techadventures.net>
Reviewed-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-05-25 18:12:11 -07:00
Joonsoo Kim d883c6cf3b Revert "mm/cma: manage the memory of the CMA area by using the ZONE_MOVABLE"
This reverts the following commits that change CMA design in MM.

 3d2054ad8c ("ARM: CMA: avoid double mapping to the CMA area if CONFIG_HIGHMEM=y")

 1d47a3ec09 ("mm/cma: remove ALLOC_CMA")

 bad8c6c0b1 ("mm/cma: manage the memory of the CMA area by using the ZONE_MOVABLE")

Ville reported a following error on i386.

  Inode-cache hash table entries: 65536 (order: 6, 262144 bytes)
  microcode: microcode updated early to revision 0x4, date = 2013-06-28
  Initializing CPU#0
  Initializing HighMem for node 0 (000377fe:00118000)
  Initializing Movable for node 0 (00000001:00118000)
  BUG: Bad page state in process swapper  pfn:377fe
  page:f53effc0 count:0 mapcount:-127 mapping:00000000 index:0x0
  flags: 0x80000000()
  raw: 80000000 00000000 00000000 ffffff80 00000000 00000100 00000200 00000001
  page dumped because: nonzero mapcount
  Modules linked in:
  CPU: 0 PID: 0 Comm: swapper Not tainted 4.17.0-rc5-elk+ #145
  Hardware name: Dell Inc. Latitude E5410/03VXMC, BIOS A15 07/11/2013
  Call Trace:
   dump_stack+0x60/0x96
   bad_page+0x9a/0x100
   free_pages_check_bad+0x3f/0x60
   free_pcppages_bulk+0x29d/0x5b0
   free_unref_page_commit+0x84/0xb0
   free_unref_page+0x3e/0x70
   __free_pages+0x1d/0x20
   free_highmem_page+0x19/0x40
   add_highpages_with_active_regions+0xab/0xeb
   set_highmem_pages_init+0x66/0x73
   mem_init+0x1b/0x1d7
   start_kernel+0x17a/0x363
   i386_start_kernel+0x95/0x99
   startup_32_smp+0x164/0x168

The reason for this error is that the span of MOVABLE_ZONE is extended
to whole node span for future CMA initialization, and, normal memory is
wrongly freed here.  I submitted the fix and it seems to work, but,
another problem happened.

It's so late time to fix the later problem so I decide to reverting the
series.

Reported-by: Ville Syrjälä <ville.syrjala@linux.intel.com>
Acked-by: Laura Abbott <labbott@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-05-24 10:07:50 -07:00
Pavel Tatashin 6f84f8d158 xen, mm: allow deferred page initialization for xen pv domains
Juergen Gross noticed that commit f7f99100d8 ("mm: stop zeroing memory
during allocation in vmemmap") broke XEN PV domains when deferred struct
page initialization is enabled.

This is because the xen's PagePinned() flag is getting erased from
struct pages when they are initialized later in boot.

Juergen fixed this problem by disabling deferred pages on xen pv
domains.  It is desirable, however, to have this feature available as it
reduces boot time.  This fix re-enables the feature for pv-dmains, and
fixes the problem the following way:

The fix is to delay setting PagePinned flag until struct pages for all
allocated memory are initialized, i.e.  until after free_all_bootmem().

A new x86_init.hyper op init_after_bootmem() is called to let xen know
that boot allocator is done, and hence struct pages for all the
allocated memory are now initialized.  If deferred page initialization
is enabled, the rest of struct pages are going to be initialized later
in boot once page_alloc_init_late() is called.

xen_after_bootmem() walks page table's pages and marks them pinned.

Link: http://lkml.kernel.org/r/20180226160112.24724-2-pasha.tatashin@oracle.com
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Juergen Gross <jgross@suse.com>
Tested-by: Juergen Gross <jgross@suse.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Pavel Tatashin <pasha.tatashin@oracle.com>
Cc: Alok Kataria <akataria@vmware.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Mathias Krause <minipli@googlemail.com>
Cc: Jinbum Park <jinb.park7@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Jia Zhang <zhang.jia@linux.alibaba.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11 10:28:38 -07:00
Joonsoo Kim 1d47a3ec09 mm/cma: remove ALLOC_CMA
Now, all reserved pages for CMA region are belong to the ZONE_MOVABLE
and it only serves for a request with GFP_HIGHMEM && GFP_MOVABLE.

Therefore, we don't need to maintain ALLOC_CMA at all.

Link: http://lkml.kernel.org/r/1512114786-5085-3-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Tested-by: Tony Lindgren <tony@atomide.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Laura Abbott <lauraa@codeaurora.org>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11 10:28:32 -07:00
Joonsoo Kim bad8c6c0b1 mm/cma: manage the memory of the CMA area by using the ZONE_MOVABLE
Patch series "mm/cma: manage the memory of the CMA area by using the
ZONE_MOVABLE", v2.

0. History

This patchset is the follow-up of the discussion about the "Introduce
ZONE_CMA (v7)" [1].  Please reference it if more information is needed.

1. What does this patch do?

This patch changes the management way for the memory of the CMA area in
the MM subsystem.  Currently the memory of the CMA area is managed by
the zone where their pfn is belong to.  However, this approach has some
problems since MM subsystem doesn't have enough logic to handle the
situation that different characteristic memories are in a single zone.
To solve this issue, this patch try to manage all the memory of the CMA
area by using the MOVABLE zone.  In MM subsystem's point of view,
characteristic of the memory on the MOVABLE zone and the memory of the
CMA area are the same.  So, managing the memory of the CMA area by using
the MOVABLE zone will not have any problem.

2. Motivation

There are some problems with current approach.  See following.  Although
these problem would not be inherent and it could be fixed without this
conception change, it requires many hooks addition in various code path
and it would be intrusive to core MM and would be really error-prone.
Therefore, I try to solve them with this new approach.  Anyway,
following is the problems of the current implementation.

o CMA memory utilization

First, following is the freepage calculation logic in MM.

 - For movable allocation: freepage = total freepage
 - For unmovable allocation: freepage = total freepage - CMA freepage

Freepages on the CMA area is used after the normal freepages in the zone
where the memory of the CMA area is belong to are exhausted.  At that
moment that the number of the normal freepages is zero, so

 - For movable allocation: freepage = total freepage = CMA freepage
 - For unmovable allocation: freepage = 0

If unmovable allocation comes at this moment, allocation request would
fail to pass the watermark check and reclaim is started.  After reclaim,
there would exist the normal freepages so freepages on the CMA areas
would not be used.

FYI, there is another attempt [2] trying to solve this problem in lkml.
And, as far as I know, Qualcomm also has out-of-tree solution for this
problem.

Useless reclaim:

There is no logic to distinguish CMA pages in the reclaim path.  Hence,
CMA page is reclaimed even if the system just needs the page that can be
usable for the kernel allocation.

Atomic allocation failure:

This is also related to the fallback allocation policy for the memory of
the CMA area.  Consider the situation that the number of the normal
freepages is *zero* since the bunch of the movable allocation requests
come.  Kswapd would not be woken up due to following freepage
calculation logic.

- For movable allocation: freepage = total freepage = CMA freepage

If atomic unmovable allocation request comes at this moment, it would
fails due to following logic.

- For unmovable allocation: freepage = total freepage - CMA freepage = 0

It was reported by Aneesh [3].

Useless compaction:

Usual high-order allocation request is unmovable allocation request and
it cannot be served from the memory of the CMA area.  In compaction,
migration scanner try to migrate the page in the CMA area and make
high-order page there.  As mentioned above, it cannot be usable for the
unmovable allocation request so it's just waste.

3. Current approach and new approach

Current approach is that the memory of the CMA area is managed by the
zone where their pfn is belong to.  However, these memory should be
distinguishable since they have a strong limitation.  So, they are
marked as MIGRATE_CMA in pageblock flag and handled specially.  However,
as mentioned in section 2, the MM subsystem doesn't have enough logic to
deal with this special pageblock so many problems raised.

New approach is that the memory of the CMA area is managed by the
MOVABLE zone.  MM already have enough logic to deal with special zone
like as HIGHMEM and MOVABLE zone.  So, managing the memory of the CMA
area by the MOVABLE zone just naturally work well because constraints
for the memory of the CMA area that the memory should always be
migratable is the same with the constraint for the MOVABLE zone.

There is one side-effect for the usability of the memory of the CMA
area.  The use of MOVABLE zone is only allowed for a request with
GFP_HIGHMEM && GFP_MOVABLE so now the memory of the CMA area is also
only allowed for this gfp flag.  Before this patchset, a request with
GFP_MOVABLE can use them.  IMO, It would not be a big issue since most
of GFP_MOVABLE request also has GFP_HIGHMEM flag.  For example, file
cache page and anonymous page.  However, file cache page for blockdev
file is an exception.  Request for it has no GFP_HIGHMEM flag.  There is
pros and cons on this exception.  In my experience, blockdev file cache
pages are one of the top reason that causes cma_alloc() to fail
temporarily.  So, we can get more guarantee of cma_alloc() success by
discarding this case.

Note that there is no change in admin POV since this patchset is just
for internal implementation change in MM subsystem.  Just one minor
difference for admin is that the memory stat for CMA area will be
printed in the MOVABLE zone.  That's all.

4. Result

Following is the experimental result related to utilization problem.

8 CPUs, 1024 MB, VIRTUAL MACHINE
make -j16

<Before>
  CMA area:               0 MB            512 MB
  Elapsed-time:           92.4		186.5
  pswpin:                 82		18647
  pswpout:                160		69839

<After>
  CMA        :            0 MB            512 MB
  Elapsed-time:           93.1		93.4
  pswpin:                 84		46
  pswpout:                183		92

akpm: "kernel test robot" reported a 26% improvement in
vm-scalability.throughput:
http://lkml.kernel.org/r/20180330012721.GA3845@yexl-desktop

[1]: lkml.kernel.org/r/1491880640-9944-1-git-send-email-iamjoonsoo.kim@lge.com
[2]: https://lkml.org/lkml/2014/10/15/623
[3]: http://www.spinics.net/lists/linux-mm/msg100562.html

Link: http://lkml.kernel.org/r/1512114786-5085-2-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Tested-by: Tony Lindgren <tony@atomide.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Laura Abbott <lauraa@codeaurora.org>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11 10:28:32 -07:00
Joonsoo Kim d3cda2337b mm/page_alloc: don't reserve ZONE_HIGHMEM for ZONE_MOVABLE request
Freepage on ZONE_HIGHMEM doesn't work for kernel memory so it's not that
important to reserve.  When ZONE_MOVABLE is used, this problem would
theorectically cause to decrease usable memory for GFP_HIGHUSER_MOVABLE
allocation request which is mainly used for page cache and anon page
allocation.  So, fix it by setting 0 to
sysctl_lowmem_reserve_ratio[ZONE_HIGHMEM].

And, defining sysctl_lowmem_reserve_ratio array by MAX_NR_ZONES - 1 size
makes code complex.  For example, if there is highmem system, following
reserve ratio is activated for *NORMAL ZONE* which would be easyily
misleading people.

 #ifdef CONFIG_HIGHMEM
 32
 #endif

This patch also fixes this situation by defining
sysctl_lowmem_reserve_ratio array by MAX_NR_ZONES and place "#ifdef" to
right place.

Link: http://lkml.kernel.org/r/1504672525-17915-1-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Tony Lindgren <tony@atomide.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Laura Abbott <lauraa@codeaurora.org>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Will Deacon <will.deacon@arm.com>
Cc: <linux-api@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11 10:28:32 -07:00
Roman Gushchin 034ebf65c3 mm: treat indirectly reclaimable memory as available in MemAvailable
Adjust /proc/meminfo MemAvailable calculation by adding the amount of
indirectly reclaimable memory (rounded to the PAGE_SIZE).

Link: http://lkml.kernel.org/r/20180305133743.12746-4-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11 10:28:29 -07:00
Mike Kravetz 2c7452a075 mm/page_isolation.c: make start_isolate_page_range() fail if already isolated
start_isolate_page_range() is used to set the migrate type of a set of
pageblocks to MIGRATE_ISOLATE while attempting to start a migration
operation.  It assumes that only one thread is calling it for the
specified range.  This routine is used by CMA, memory hotplug and
gigantic huge pages.  Each of these users synchronize access to the
range within their subsystem.  However, two subsystems (CMA and gigantic
huge pages for example) could attempt operations on the same range.  If
this happens, one thread may 'undo' the work another thread is doing.
This can result in pageblocks being incorrectly left marked as
MIGRATE_ISOLATE and therefore not available for page allocation.

What is ideally needed is a way to synchronize access to a set of
pageblocks that are undergoing isolation and migration.  The only thing
we know about these pageblocks is that they are all in the same zone.  A
per-node mutex is too coarse as we want to allow multiple operations on
different ranges within the same zone concurrently.  Instead, we will
use the migration type of the pageblocks themselves as a form of
synchronization.

start_isolate_page_range sets the migration type on a set of page-
blocks going in order from the one associated with the smallest pfn to
the largest pfn.  The zone lock is acquired to check and set the
migration type.  When going through the list of pageblocks check if
MIGRATE_ISOLATE is already set.  If so, this indicates another thread is
working on this pageblock.  We know exactly which pageblocks we set, so
clean up by undo those and return -EBUSY.

This allows start_isolate_page_range to serve as a synchronization
mechanism and will allow for more general use of callers making use of
these interfaces.  Update comments in alloc_contig_range to reflect this
new functionality.

Each CPU holds the associated zone lock to modify or examine the
migration type of a pageblock.  And, it will only examine/update a
single pageblock per lock acquire/release cycle.

Link: http://lkml.kernel.org/r/20180309224731.16978-1-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-05 21:36:27 -07:00
David Rientjes 5ecd9d403a mm, page_alloc: wakeup kcompactd even if kswapd cannot free more memory
Kswapd will not wakeup if per-zone watermarks are not failing or if too
many previous attempts at background reclaim have failed.

This can be true if there is a lot of free memory available.  For high-
order allocations, kswapd is responsible for waking up kcompactd for
background compaction.  If the zone is not below its watermarks or
reclaim has recently failed (lots of free memory, nothing left to
reclaim), kcompactd does not get woken up.

When __GFP_DIRECT_RECLAIM is not allowed, allow kcompactd to still be
woken up even if kswapd will not reclaim.  This allows high-order
allocations, such as thp, to still trigger background compaction even
when the zone has an abundance of free memory.

Link: http://lkml.kernel.org/r/alpine.DEB.2.20.1803111659420.209721@chino.kir.corp.google.com
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-05 21:36:27 -07:00
Aaron Lu 97334162e4 mm/free_pcppages_bulk: prefetch buddy while not holding lock
When a page is freed back to the global pool, its buddy will be checked
to see if it's possible to do a merge.  This requires accessing buddy's
page structure and that access could take a long time if it's cache
cold.

This patch adds a prefetch to the to-be-freed page's buddy outside of
zone->lock in hope of accessing buddy's page structure later under
zone->lock will be faster.  Since we *always* do buddy merging and check
an order-0 page's buddy to try to merge it when it goes into the main
allocator, the cacheline will always come in, i.e.  the prefetched data
will never be unused.

Normally, the number of prefetch will be pcp->batch(default=31 and has
an upper limit of (PAGE_SHIFT * 8)=96 on x86_64) but in the case of
pcp's pages get all drained, it will be pcp->count which has an upper
limit of pcp->high.  pcp->high, although has a default value of 186
(pcp->batch=31 * 6), can be changed by user through
/proc/sys/vm/percpu_pagelist_fraction and there is no software upper
limit so could be large, like several thousand.  For this reason, only
the first pcp->batch number of page's buddy structure is prefetched to
avoid excessive prefetching.

In the meantime, there are two concerns:

 1. the prefetch could potentially evict existing cachelines, especially
    for L1D cache since it is not huge

 2. there is some additional instruction overhead, namely calculating
    buddy pfn twice

For 1, it's hard to say, this microbenchmark though shows good result
but the actual benefit of this patch will be workload/CPU dependant;

For 2, since the calculation is a XOR on two local variables, it's
expected in many cases that cycles spent will be offset by reduced
memory latency later.  This is especially true for NUMA machines where
multiple CPUs are contending on zone->lock and the most time consuming
part under zone->lock is the wait of 'struct page' cacheline of the
to-be-freed pages and their buddies.

Test with will-it-scale/page_fault1 full load:

  kernel      Broadwell(2S)  Skylake(2S)   Broadwell(4S)  Skylake(4S)
  v4.16-rc2+  9034215        7971818       13667135       15677465
  patch2/3    9536374 +5.6%  8314710 +4.3% 14070408 +3.0% 16675866 +6.4%
  this patch 10180856 +6.8%  8506369 +2.3% 14756865 +4.9% 17325324 +3.9%

Note: this patch's performance improvement percent is against patch2/3.

(Changelog stolen from Dave Hansen and Mel Gorman's comments at
http://lkml.kernel.org/r/148a42d8-8306-2f2f-7f7c-86bc118f8ccd@intel.com)

[aaron.lu@intel.com: use helper function, avoid disordering pages]
  Link: http://lkml.kernel.org/r/20180301062845.26038-4-aaron.lu@intel.com
  Link: http://lkml.kernel.org/r/20180320113146.GB24737@intel.com
[aaron.lu@intel.com: v4]
  Link: http://lkml.kernel.org/r/20180301062845.26038-4-aaron.lu@intel.com
  Link: http://lkml.kernel.org/r/20180309082431.GB30868@intel.com
Link: http://lkml.kernel.org/r/20180301062845.26038-4-aaron.lu@intel.com
Signed-off-by: Aaron Lu <aaron.lu@intel.com>
Suggested-by: Ying Huang <ying.huang@intel.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Kemi Wang <kemi.wang@intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-05 21:36:26 -07:00
Aaron Lu 0a5f4e5b45 mm/free_pcppages_bulk: do not hold lock when picking pages to free
When freeing a batch of pages from Per-CPU-Pages(PCP) back to buddy, the
zone->lock is held and then pages are chosen from PCP's migratetype
list.  While there is actually no need to do this 'choose part' under
lock since it's PCP pages, the only CPU that can touch them is us and
irq is also disabled.

Moving this part outside could reduce lock held time and improve
performance.  Test with will-it-scale/page_fault1 full load:

  kernel      Broadwell(2S)  Skylake(2S)   Broadwell(4S)  Skylake(4S)
  v4.16-rc2+  9034215        7971818       13667135       15677465
  this patch  9536374 +5.6%  8314710 +4.3% 14070408 +3.0% 16675866 +6.4%

What the test does is: starts $nr_cpu processes and each will repeatedly
do the following for 5 minutes:

 - mmap 128M anonymouse space

 - write access to that space

 - munmap.

The score is the aggregated iteration.

https://github.com/antonblanchard/will-it-scale/blob/master/tests/page_fault1.c

Link: http://lkml.kernel.org/r/20180301062845.26038-3-aaron.lu@intel.com
Signed-off-by: Aaron Lu <aaron.lu@intel.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Kemi Wang <kemi.wang@intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-05 21:36:26 -07:00
Aaron Lu 77ba9062e4 mm/free_pcppages_bulk: update pcp->count inside
Matthew Wilcox found that all callers of free_pcppages_bulk() currently
update pcp->count immediately after so it's natural to do it inside
free_pcppages_bulk().

No functionality or performance change is expected from this patch.

Link: http://lkml.kernel.org/r/20180301062845.26038-2-aaron.lu@intel.com
Signed-off-by: Aaron Lu <aaron.lu@intel.com>
Suggested-by: Matthew Wilcox <willy@infradead.org>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Kemi Wang <kemi.wang@intel.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-05 21:36:26 -07:00
David Rientjes 7f16f91fdf mm, page_alloc: move mirrored_kernelcore to __meminitdata
mirrored_kernelcore can be in __meminitdata, so move it there.

At the same time, fixup section specifiers to be after the name of the
variable per checkpatch.

Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1802121623280.179479@chino.kir.corp.google.com
Signed-off-by: David Rientjes <rientjes@google.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-05 21:36:25 -07:00
David Rientjes a5c6d65093 mm, page_alloc: extend kernelcore and movablecore for percent
Both kernelcore= and movablecore= can be used to define the amount of
ZONE_NORMAL and ZONE_MOVABLE on a system, respectively.  This requires
the system memory capacity to be known when specifying the command line,
however.

This introduces the ability to define both kernelcore= and movablecore=
as a percentage of total system memory.  This is convenient for systems
software that wants to define the amount of ZONE_MOVABLE, for example,
as a proportion of a system's memory rather than a hardcoded byte value.

To define the percentage, the final character of the parameter should be
a '%'.

mhocko: "why is anyone using these options nowadays?"

rientjes:
:
: Fragmentation of non-__GFP_MOVABLE pages due to low on memory
: situations can pollute most pageblocks on the system, as much as 1GB of
: slab being fragmented over 128GB of memory, for example.  When the
: amount of kernel memory is well bounded for certain systems, it is
: better to aggressively reclaim from existing MIGRATE_UNMOVABLE
: pageblocks rather than eagerly fallback to others.
:
: We have additional patches that help with this fragmentation if you're
: interested, specifically kcompactd compaction of MIGRATE_UNMOVABLE
: pageblocks triggered by fallback of non-__GFP_MOVABLE allocations and
: draining of pcp lists back to the zone free area to prevent stranding.

[rientjes@google.com: updates]
  Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1802131700160.71590@chino.kir.corp.google.com
Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1802121622470.179479@chino.kir.corp.google.com
Signed-off-by: David Rientjes <rientjes@google.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-05 21:36:25 -07:00
Pavel Tatashin d0dc12e86b mm/memory_hotplug: optimize memory hotplug
During memory hotplugging we traverse struct pages three times:

1. memset(0) in sparse_add_one_section()
2. loop in __add_section() to set do: set_page_node(page, nid); and
   SetPageReserved(page);
3. loop in memmap_init_zone() to call __init_single_pfn()

This patch removes the first two loops, and leaves only loop 3.  All
struct pages are initialized in one place, the same as it is done during
boot.

The benefits:

 - We improve memory hotplug performance because we are not evicting the
   cache several times and also reduce loop branching overhead.

 - Remove condition from hotpath in __init_single_pfn(), that was added
   in order to fix the problem that was reported by Bharata in the above
   email thread, thus also improve performance during normal boot.

 - Make memory hotplug more similar to the boot memory initialization
   path because we zero and initialize struct pages only in one
   function.

 - Simplifies memory hotplug struct page initialization code, and thus
   enables future improvements, such as multi-threading the
   initialization of struct pages in order to improve hotplug
   performance even further on larger machines.

[pasha.tatashin@oracle.com: v5]
  Link: http://lkml.kernel.org/r/20180228030308.1116-7-pasha.tatashin@oracle.com
Link: http://lkml.kernel.org/r/20180215165920.8570-7-pasha.tatashin@oracle.com
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Bharata B Rao <bharata@linux.vnet.ibm.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Steven Sistare <steven.sistare@oracle.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-05 21:36:25 -07:00
Pavel Tatashin c9e97a1997 mm: initialize pages on demand during boot
Deferred page initialization allows the boot cpu to initialize a small
subset of the system's pages early in boot, with other cpus doing the
rest later on.

It is, however, problematic to know how many pages the kernel needs
during boot.  Different modules and kernel parameters may change the
requirement, so the boot cpu either initializes too many pages or runs
out of memory.

To fix that, initialize early pages on demand.  This ensures the kernel
does the minimum amount of work to initialize pages during boot and
leaves the rest to be divided in the multithreaded initialization path
(deferred_init_memmap).

The on-demand code is permanently disabled using static branching once
deferred pages are initialized.  After the static branch is changed to
false, the overhead is up-to two branch-always instructions if the zone
watermark check fails or if rmqueue fails.

Sergey Senozhatsky noticed that while deferred pages currently make
sense only on NUMA machines (we start one thread per latency node),
CONFIG_NUMA is not a requirement for CONFIG_DEFERRED_STRUCT_PAGE_INIT,
so that is also must be addressed in the patch.

[akpm@linux-foundation.org: fix typo in comment, make deferred_pages static]
[pasha.tatashin@oracle.com: fix min() type mismatch warning]
  Link: http://lkml.kernel.org/r/20180212164543.26592-1-pasha.tatashin@oracle.com
[pasha.tatashin@oracle.com: use zone_to_nid() in deferred_grow_zone()]
  Link: http://lkml.kernel.org/r/20180214163343.21234-2-pasha.tatashin@oracle.com
[pasha.tatashin@oracle.com: might_sleep warning]
  Link: http://lkml.kernel.org/r/20180306192022.28289-1-pasha.tatashin@oracle.com
[akpm@linux-foundation.org: s/spin_lock/spin_lock_irq/ in page_alloc_init_late()]
[pasha.tatashin@oracle.com: v5]
  Link: http://lkml.kernel.org/r/20180309220807.24961-3-pasha.tatashin@oracle.com
[akpm@linux-foundation.org: tweak comments]
[pasha.tatashin@oracle.com: v6]
  Link: http://lkml.kernel.org/r/20180313182355.17669-3-pasha.tatashin@oracle.com
[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/20180209192216.20509-2-pasha.tatashin@oracle.com
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Reviewed-by: Steven Sistare <steven.sistare@oracle.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Masayoshi Mizuma <m.mizuma@jp.fujitsu.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: AKASHI Takahiro <takahiro.akashi@linaro.org>
Cc: Gioh Kim <gi-oh.kim@profitbricks.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Yaowei Bai <baiyaowei@cmss.chinamobile.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Miles Chen <miles.chen@mediatek.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-05 21:36:25 -07:00
Pavel Tatashin 3a2d7fa8a3 mm: disable interrupts while initializing deferred pages
Vlastimil Babka reported about a window issue during which when deferred
pages are initialized, and the current version of on-demand
initialization is finished, allocations may fail.  While this is highly
unlikely scenario, since this kind of allocation request must be large,
and must come from interrupt handler, we still want to cover it.

We solve this by initializing deferred pages with interrupts disabled,
and holding node_size_lock spin lock while pages in the node are being
initialized.  The on-demand deferred page initialization that comes
later will use the same lock, and thus synchronize with
deferred_init_memmap().

It is unlikely for threads that initialize deferred pages to be
interrupted.  They run soon after smp_init(), but before modules are
initialized, and long before user space programs.  This is why there is
no adverse effect of having these threads running with interrupts
disabled.

[pasha.tatashin@oracle.com: v6]
  Link: http://lkml.kernel.org/r/20180313182355.17669-2-pasha.tatashin@oracle.com
Link: http://lkml.kernel.org/r/20180309220807.24961-2-pasha.tatashin@oracle.com
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Steven Sistare <steven.sistare@oracle.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Masayoshi Mizuma <m.mizuma@jp.fujitsu.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: AKASHI Takahiro <takahiro.akashi@linaro.org>
Cc: Gioh Kim <gi-oh.kim@profitbricks.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Yaowei Bai <baiyaowei@cmss.chinamobile.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Miles Chen <miles.chen@mediatek.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-05 21:36:24 -07:00
Anshuman Khandual 310253514b mm/migrate: rename migration reason MR_CMA to MR_CONTIG_RANGE
alloc_contig_range() initiates compaction and eventual migration for the
purpose of either CMA or HugeTLB allocations.  At present, the reason
code remains the same MR_CMA for either of these cases.  Let's make it
MR_CONTIG_RANGE which will appropriately reflect the reason code in both
these cases.

Link: http://lkml.kernel.org/r/20180202091518.18798-1-khandual@linux.vnet.ibm.com
Signed-off-by: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-05 21:36:24 -07:00
Linus Torvalds f5a8eb632b arch: remove obsolete architecture ports
This removes the entire architecture code for blackfin, cris, frv, m32r,
 metag, mn10300, score, and tile, including the associated device drivers.
 
 I have been working with the (former) maintainers for each one to ensure
 that my interpretation was right and the code is definitely unused in
 mainline kernels. Many had fond memories of working on the respective
 ports to start with and getting them included in upstream, but also saw
 no point in keeping the port alive without any users.
 
 In the end, it seems that while the eight architectures are extremely
 different, they all suffered the same fate: There was one company
 in charge of an SoC line, a CPU microarchitecture and a software
 ecosystem, which was more costly than licensing newer off-the-shelf
 CPU cores from a third party (typically ARM, MIPS, or RISC-V). It seems
 that all the SoC product lines are still around, but have not used the
 custom CPU architectures for several years at this point. In contrast,
 CPU instruction sets that remain popular and have actively maintained
 kernel ports tend to all be used across multiple licensees.
 
 The removal came out of a discussion that is now documented at
 https://lwn.net/Articles/748074/. Unlike the original plans, I'm not
 marking any ports as deprecated but remove them all at once after I made
 sure that they are all unused. Some architectures (notably tile, mn10300,
 and blackfin) are still being shipped in products with old kernels,
 but those products will never be updated to newer kernel releases.
 
 After this series, we still have a few architectures without mainline
 gcc support:
 
 - unicore32 and hexagon both have very outdated gcc releases, but the
   maintainers promised to work on providing something newer. At least
   in case of hexagon, this will only be llvm, not gcc.
 
 - openrisc, risc-v and nds32 are still in the process of finishing their
   support or getting it added to mainline gcc in the first place.
   They all have patched gcc-7.3 ports that work to some degree, but
   complete upstream support won't happen before gcc-8.1. Csky posted
   their first kernel patch set last week, their situation will be similar.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQIcBAABAgAGBQJawdL2AAoJEGCrR//JCVInuH0P/RJAZh1nTD+TR34ZhJq2TBoo
 PgygwDU7Z2+tQVU+EZ453Gywz9/NMRFk1RWAZqrLix4ZtyIMvC6A1qfT2yH1Y7Fb
 Qh6tccQeLe4ezq5u4S/46R/fQXu3Txr92yVwzJJUuPyU0arF9rv5MmI8e6p7L1en
 yb74kSEaCe+/eMlsEj1Cc1dgthDNXGKIURHkRsILoweysCpesjiTg4qDcL+yTibV
 FP2wjVbniKESMKS6qL71tiT5sexvLsLwMNcGiHPj94qCIQuI7DLhLdBVsL5Su6gI
 sbtgv0dsq4auRYAbQdMaH1hFvu6WptsuttIbOMnz2Yegi2z28H8uVXkbk2WVLbqG
 ZESUwutGh8MzOL2RJ4jyyQq5sfo++CRGlfKjr6ImZRv03dv0pe/W85062cK5cKNs
 cgDDJjGRorOXW7dyU6jG2gRqODOQBObIv3w5efdq5OgzOWlbI4EC+Y5u1Z0JF/76
 pSwtGXA6YhwC+9LLAlnVTHG+yOwuLmAICgoKcTbzTVDKA2YQZG/cYuQfI5S1wD8e
 X6urPx3Md2GCwLXQ9mzKBzKZUpu/Tuhx0NvwF4qVxy6x1PELjn68zuP7abDHr46r
 57/09ooVN+iXXnEGMtQVS/OPvYHSa2NgTSZz6Y86lCRbZmUOOlK31RDNlMvYNA+s
 3iIVHovno/JuJnTOE8LY
 =fQ8z
 -----END PGP SIGNATURE-----

Merge tag 'arch-removal' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic

Pul removal of obsolete architecture ports from Arnd Bergmann:
 "This removes the entire architecture code for blackfin, cris, frv,
  m32r, metag, mn10300, score, and tile, including the associated device
  drivers.

  I have been working with the (former) maintainers for each one to
  ensure that my interpretation was right and the code is definitely
  unused in mainline kernels. Many had fond memories of working on the
  respective ports to start with and getting them included in upstream,
  but also saw no point in keeping the port alive without any users.

  In the end, it seems that while the eight architectures are extremely
  different, they all suffered the same fate: There was one company in
  charge of an SoC line, a CPU microarchitecture and a software
  ecosystem, which was more costly than licensing newer off-the-shelf
  CPU cores from a third party (typically ARM, MIPS, or RISC-V). It
  seems that all the SoC product lines are still around, but have not
  used the custom CPU architectures for several years at this point. In
  contrast, CPU instruction sets that remain popular and have actively
  maintained kernel ports tend to all be used across multiple licensees.

  [ See the new nds32 port merged in the previous commit for the next
    generation of "one company in charge of an SoC line, a CPU
    microarchitecture and a software ecosystem"   - Linus ]

  The removal came out of a discussion that is now documented at
  https://lwn.net/Articles/748074/. Unlike the original plans, I'm not
  marking any ports as deprecated but remove them all at once after I
  made sure that they are all unused. Some architectures (notably tile,
  mn10300, and blackfin) are still being shipped in products with old
  kernels, but those products will never be updated to newer kernel
  releases.

  After this series, we still have a few architectures without mainline
  gcc support:

   - unicore32 and hexagon both have very outdated gcc releases, but the
     maintainers promised to work on providing something newer. At least
     in case of hexagon, this will only be llvm, not gcc.

   - openrisc, risc-v and nds32 are still in the process of finishing
     their support or getting it added to mainline gcc in the first
     place. They all have patched gcc-7.3 ports that work to some
     degree, but complete upstream support won't happen before gcc-8.1.
     Csky posted their first kernel patch set last week, their situation
     will be similar

  [ Palmer Dabbelt points out that RISC-V support is in mainline gcc
    since gcc-7, although gcc-7.3.0 is the recommended minimum  - Linus ]"

This really says it all:

 2498 files changed, 95 insertions(+), 467668 deletions(-)

* tag 'arch-removal' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic: (74 commits)
  MAINTAINERS: UNICORE32: Change email account
  staging: iio: remove iio-trig-bfin-timer driver
  tty: hvc: remove tile driver
  tty: remove bfin_jtag_comm and hvc_bfin_jtag drivers
  serial: remove tile uart driver
  serial: remove m32r_sio driver
  serial: remove blackfin drivers
  serial: remove cris/etrax uart drivers
  usb: Remove Blackfin references in USB support
  usb: isp1362: remove blackfin arch glue
  usb: musb: remove blackfin port
  usb: host: remove tilegx platform glue
  pwm: remove pwm-bfin driver
  i2c: remove bfin-twi driver
  spi: remove blackfin related host drivers
  watchdog: remove bfin_wdt driver
  can: remove bfin_can driver
  mmc: remove bfin_sdh driver
  input: misc: remove blackfin rotary driver
  input: keyboard: remove bf54x driver
  ...
2018-04-02 20:20:12 -07:00
Daniel Vacek f59f1caf72 Revert "mm: page_alloc: skip over regions of invalid pfns where possible"
This reverts commit b92df1de5d ("mm: page_alloc: skip over regions of
invalid pfns where possible").  The commit is meant to be a boot init
speed up skipping the loop in memmap_init_zone() for invalid pfns.

But given some specific memory mapping on x86_64 (or more generally
theoretically anywhere but on arm with CONFIG_HAVE_ARCH_PFN_VALID) the
implementation also skips valid pfns which is plain wrong and causes
'kernel BUG at mm/page_alloc.c:1389!'

  crash> log | grep -e BUG -e RIP -e Call.Trace -e move_freepages_block -e rmqueue -e freelist -A1
  kernel BUG at mm/page_alloc.c:1389!
  invalid opcode: 0000 [#1] SMP
  --
  RIP: 0010: move_freepages+0x15e/0x160
  --
  Call Trace:
    move_freepages_block+0x73/0x80
    __rmqueue+0x263/0x460
    get_page_from_freelist+0x7e1/0x9e0
    __alloc_pages_nodemask+0x176/0x420
  --

  crash> page_init_bug -v | grep RAM
  <struct resource 0xffff88067fffd2f8>          1000 -        9bfff       System RAM (620.00 KiB)
  <struct resource 0xffff88067fffd3a0>        100000 -     430bffff       System RAM (  1.05 GiB = 1071.75 MiB = 1097472.00 KiB)
  <struct resource 0xffff88067fffd410>      4b0c8000 -     4bf9cfff       System RAM ( 14.83 MiB = 15188.00 KiB)
  <struct resource 0xffff88067fffd480>      4bfac000 -     646b1fff       System RAM (391.02 MiB = 400408.00 KiB)
  <struct resource 0xffff88067fffd560>      7b788000 -     7b7fffff       System RAM (480.00 KiB)
  <struct resource 0xffff88067fffd640>     100000000 -    67fffffff       System RAM ( 22.00 GiB)

  crash> page_init_bug | head -6
  <struct resource 0xffff88067fffd560>      7b788000 -     7b7fffff       System RAM (480.00 KiB)
  <struct page 0xffffea0001ede200>   1fffff00000000  0 <struct pglist_data 0xffff88047ffd9000> 1 <struct zone 0xffff88047ffd9800> DMA32          4096    1048575
  <struct page 0xffffea0001ede200>       505736 505344 <struct page 0xffffea0001ed8000> 505855 <struct page 0xffffea0001edffc0>
  <struct page 0xffffea0001ed8000>                0  0 <struct pglist_data 0xffff88047ffd9000> 0 <struct zone 0xffff88047ffd9000> DMA               1       4095
  <struct page 0xffffea0001edffc0>   1fffff00000400  0 <struct pglist_data 0xffff88047ffd9000> 1 <struct zone 0xffff88047ffd9800> DMA32          4096    1048575
  BUG, zones differ!

  crash> kmem -p 77fff000 78000000 7b5ff000 7b600000 7b787000 7b788000
        PAGE        PHYSICAL      MAPPING       INDEX CNT FLAGS
  ffffea0001e00000  78000000                0        0  0 0
  ffffea0001ed7fc0  7b5ff000                0        0  0 0
  ffffea0001ed8000  7b600000                0        0  0 0       <<<<
  ffffea0001ede1c0  7b787000                0        0  0 0
  ffffea0001ede200  7b788000                0        0  1 1fffff00000000

Link: http://lkml.kernel.org/r/20180316143855.29838-1-neelx@redhat.com
Fixes: b92df1de5d ("mm: page_alloc: skip over regions of invalid pfns where possible")
Signed-off-by: Daniel Vacek <neelx@redhat.com>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Pavel Tatashin <pasha.tatashin@oracle.com>
Cc: Paul Burton <paul.burton@imgtec.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-03-22 17:07:01 -07:00
Tetsuo Handa 2e517d6816 lockdep: fix fs_reclaim warning
Dave Jones reported fs_reclaim lockdep warnings.

  ============================================
  WARNING: possible recursive locking detected
  4.15.0-rc9-backup-debug+ #1 Not tainted
  --------------------------------------------
  sshd/24800 is trying to acquire lock:
   (fs_reclaim){+.+.}, at: [<0000000084f438c2>] fs_reclaim_acquire.part.102+0x5/0x30

  but task is already holding lock:
   (fs_reclaim){+.+.}, at: [<0000000084f438c2>] fs_reclaim_acquire.part.102+0x5/0x30

  other info that might help us debug this:
   Possible unsafe locking scenario:

         CPU0
         ----
    lock(fs_reclaim);
    lock(fs_reclaim);

   *** DEADLOCK ***

   May be due to missing lock nesting notation

  2 locks held by sshd/24800:
   #0:  (sk_lock-AF_INET6){+.+.}, at: [<000000001a069652>] tcp_sendmsg+0x19/0x40
   #1:  (fs_reclaim){+.+.}, at: [<0000000084f438c2>] fs_reclaim_acquire.part.102+0x5/0x30

  stack backtrace:
  CPU: 3 PID: 24800 Comm: sshd Not tainted 4.15.0-rc9-backup-debug+ #1
  Call Trace:
   dump_stack+0xbc/0x13f
   __lock_acquire+0xa09/0x2040
   lock_acquire+0x12e/0x350
   fs_reclaim_acquire.part.102+0x29/0x30
   kmem_cache_alloc+0x3d/0x2c0
   alloc_extent_state+0xa7/0x410
   __clear_extent_bit+0x3ea/0x570
   try_release_extent_mapping+0x21a/0x260
   __btrfs_releasepage+0xb0/0x1c0
   btrfs_releasepage+0x161/0x170
   try_to_release_page+0x162/0x1c0
   shrink_page_list+0x1d5a/0x2fb0
   shrink_inactive_list+0x451/0x940
   shrink_node_memcg.constprop.88+0x4c9/0x5e0
   shrink_node+0x12d/0x260
   try_to_free_pages+0x418/0xaf0
   __alloc_pages_slowpath+0x976/0x1790
   __alloc_pages_nodemask+0x52c/0x5c0
   new_slab+0x374/0x3f0
   ___slab_alloc.constprop.81+0x47e/0x5a0
   __slab_alloc.constprop.80+0x32/0x60
   __kmalloc_track_caller+0x267/0x310
   __kmalloc_reserve.isra.40+0x29/0x80
   __alloc_skb+0xee/0x390
   sk_stream_alloc_skb+0xb8/0x340
   tcp_sendmsg_locked+0x8e6/0x1d30
   tcp_sendmsg+0x27/0x40
   inet_sendmsg+0xd0/0x310
   sock_write_iter+0x17a/0x240
   __vfs_write+0x2ab/0x380
   vfs_write+0xfb/0x260
   SyS_write+0xb6/0x140
   do_syscall_64+0x1e5/0xc05
   entry_SYSCALL64_slow_path+0x25/0x25

This warning is caused by commit d92a8cfcb3 ("locking/lockdep:
Rework FS_RECLAIM annotation") which replaced the use of
lockdep_{set,clear}_current_reclaim_state() in __perform_reclaim()
and lockdep_trace_alloc() in slab_pre_alloc_hook() with
fs_reclaim_acquire()/ fs_reclaim_release().

Since __kmalloc_reserve() from __alloc_skb() adds __GFP_NOMEMALLOC |
__GFP_NOWARN to gfp_mask, and all reclaim path simply propagates
__GFP_NOMEMALLOC, fs_reclaim_acquire() in slab_pre_alloc_hook() is
trying to grab the 'fake' lock again when __perform_reclaim() already
grabbed the 'fake' lock.

The

  /* this guy won't enter reclaim */
  if ((current->flags & PF_MEMALLOC) && !(gfp_mask & __GFP_NOMEMALLOC))
          return false;

test which causes slab_pre_alloc_hook() to try to grab the 'fake' lock
was added by commit cf40bd16fd ("lockdep: annotate reclaim context
(__GFP_NOFS)").  But that test is outdated because PF_MEMALLOC thread
won't enter reclaim regardless of __GFP_NOMEMALLOC after commit
341ce06f69 ("page allocator: calculate the alloc_flags for allocation
only once") added the PF_MEMALLOC safeguard (

  /* Avoid recursion of direct reclaim */
  if (p->flags & PF_MEMALLOC)
          goto nopage;

in __alloc_pages_slowpath()).

Thus, let's fix outdated test by removing __GFP_NOMEMALLOC test and
allow __need_fs_reclaim() to return false.

Link: http://lkml.kernel.org/r/201802280650.FJC73911.FOSOMLJVFFQtHO@I-love.SAKURA.ne.jp
Fixes: d92a8cfcb3 ("locking/lockdep: Rework FS_RECLAIM annotation")
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Reported-by: Dave Jones <davej@codemonkey.org.uk>
Tested-by: Dave Jones <davej@codemonkey.org.uk>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Nick Piggin <npiggin@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Nikolay Borisov <nborisov@suse.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: <stable@vger.kernel.org>	[4.14+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-03-22 17:07:01 -07:00
Arnd Bergmann 79375ea3ec mm: remove obsolete alloc_remap()
Tile was the only remaining architecture to implement alloc_remap(),
and since that is being removed, there is no point in keeping this
function.

Removing all callers simplifies the mem_map handling.

Reviewed-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2018-03-16 10:56:13 +01:00
Ard Biesheuvel 3e04040df6 Revert "mm/page_alloc: fix memmap_init_zone pageblock alignment"
This reverts commit 864b75f9d6.

Commit 864b75f9d6 ("mm/page_alloc: fix memmap_init_zone pageblock
alignment") modified the logic in memmap_init_zone() to initialize
struct pages associated with invalid PFNs, to appease a VM_BUG_ON()
in move_freepages(), which is redundant by its own admission, and
dereferences struct page fields to obtain the zone without checking
whether the struct pages in question are valid to begin with.

Commit 864b75f9d6 only makes it worse, since the rounding it does
may cause pfn assume the same value it had in a prior iteration of
the loop, resulting in an infinite loop and a hang very early in the
boot. Also, since it doesn't perform the same rounding on start_pfn
itself but only on intermediate values following an invalid PFN, we
may still hit the same VM_BUG_ON() as before.

So instead, let's fix this at the core, and ensure that the BUG
check doesn't dereference struct page fields of invalid pages.

Fixes: 864b75f9d6 ("mm/page_alloc: fix memmap_init_zone pageblock alignment")
Tested-by: Jan Glauber <jglauber@cavium.com>
Tested-by: Shanker Donthineni <shankerd@codeaurora.org>
Cc: Daniel Vacek <neelx@redhat.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Paul Burton <paul.burton@imgtec.com>
Cc: Pavel Tatashin <pasha.tatashin@oracle.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-03-14 16:33:28 -07:00
Daniel Vacek 864b75f9d6 mm/page_alloc: fix memmap_init_zone pageblock alignment
Commit b92df1de5d ("mm: page_alloc: skip over regions of invalid pfns
where possible") introduced a bug where move_freepages() triggers a
VM_BUG_ON() on uninitialized page structure due to pageblock alignment.
To fix this, simply align the skipped pfns in memmap_init_zone() the
same way as in move_freepages_block().

Seen in one of the RHEL reports:

  crash> log | grep -e BUG -e RIP -e Call.Trace -e move_freepages_block -e rmqueue -e freelist -A1
  kernel BUG at mm/page_alloc.c:1389!
  invalid opcode: 0000 [#1] SMP
  --
  RIP: 0010:[<ffffffff8118833e>]  [<ffffffff8118833e>] move_freepages+0x15e/0x160
  RSP: 0018:ffff88054d727688  EFLAGS: 00010087
  --
  Call Trace:
   [<ffffffff811883b3>] move_freepages_block+0x73/0x80
   [<ffffffff81189e63>] __rmqueue+0x263/0x460
   [<ffffffff8118c781>] get_page_from_freelist+0x7e1/0x9e0
   [<ffffffff8118caf6>] __alloc_pages_nodemask+0x176/0x420
  --
  RIP  [<ffffffff8118833e>] move_freepages+0x15e/0x160
   RSP <ffff88054d727688>

  crash> page_init_bug -v | grep RAM
  <struct resource 0xffff88067fffd2f8>          1000 -        9bfff	System RAM (620.00 KiB)
  <struct resource 0xffff88067fffd3a0>        100000 -     430bffff	System RAM (  1.05 GiB = 1071.75 MiB = 1097472.00 KiB)
  <struct resource 0xffff88067fffd410>      4b0c8000 -     4bf9cfff	System RAM ( 14.83 MiB = 15188.00 KiB)
  <struct resource 0xffff88067fffd480>      4bfac000 -     646b1fff	System RAM (391.02 MiB = 400408.00 KiB)
  <struct resource 0xffff88067fffd560>      7b788000 -     7b7fffff	System RAM (480.00 KiB)
  <struct resource 0xffff88067fffd640>     100000000 -    67fffffff	System RAM ( 22.00 GiB)

  crash> page_init_bug | head -6
  <struct resource 0xffff88067fffd560>      7b788000 -     7b7fffff	System RAM (480.00 KiB)
  <struct page 0xffffea0001ede200>   1fffff00000000  0 <struct pglist_data 0xffff88047ffd9000> 1 <struct zone 0xffff88047ffd9800> DMA32          4096    1048575
  <struct page 0xffffea0001ede200> 505736 505344 <struct page 0xffffea0001ed8000> 505855 <struct page 0xffffea0001edffc0>
  <struct page 0xffffea0001ed8000>                0  0 <struct pglist_data 0xffff88047ffd9000> 0 <struct zone 0xffff88047ffd9000> DMA               1       4095
  <struct page 0xffffea0001edffc0>   1fffff00000400  0 <struct pglist_data 0xffff88047ffd9000> 1 <struct zone 0xffff88047ffd9800> DMA32          4096    1048575
  BUG, zones differ!

Note that this range follows two not populated sections
68000000-77ffffff in this zone.  7b788000-7b7fffff is the first one
after a gap.  This makes memmap_init_zone() skip all the pfns up to the
beginning of this range.  But this range is not pageblock (2M) aligned.
In fact no range has to be.

  crash> kmem -p 77fff000 78000000 7b5ff000 7b600000 7b787000 7b788000
        PAGE        PHYSICAL      MAPPING       INDEX CNT FLAGS
  ffffea0001e00000  78000000                0        0  0 0
  ffffea0001ed7fc0  7b5ff000                0        0  0 0
  ffffea0001ed8000  7b600000                0        0  0 0	<<<<
  ffffea0001ede1c0  7b787000                0        0  0 0
  ffffea0001ede200  7b788000                0        0  1 1fffff00000000

Top part of page flags should contain nodeid and zonenr, which is not
the case for page ffffea0001ed8000 here (<<<<).

  crash> log | grep -o fffea0001ed[^\ ]* | sort -u
  fffea0001ed8000
  fffea0001eded20
  fffea0001edffc0

  crash> bt -r | grep -o fffea0001ed[^\ ]* | sort -u
  fffea0001ed8000
  fffea0001eded00
  fffea0001eded20
  fffea0001edffc0

Initialization of the whole beginning of the section is skipped up to
the start of the range due to the commit b92df1de5d.  Now any code
calling move_freepages_block() (like reusing the page from a freelist as
in this example) with a page from the beginning of the range will get
the page rounded down to start_page ffffea0001ed8000 and passed to
move_freepages() which crashes on assertion getting wrong zonenr.

  >         VM_BUG_ON(page_zone(start_page) != page_zone(end_page));

Note, page_zone() derives the zone from page flags here.

From similar machine before commit b92df1de5d28:

  crash> kmem -p 77fff000 78000000 7b5ff000 7b600000 7b7fe000 7b7ff000
        PAGE        PHYSICAL      MAPPING       INDEX CNT FLAGS
  fffff73941e00000  78000000                0        0  1 1fffff00000000
  fffff73941ed7fc0  7b5ff000                0        0  1 1fffff00000000
  fffff73941ed8000  7b600000                0        0  1 1fffff00000000
  fffff73941edff80  7b7fe000                0        0  1 1fffff00000000
  fffff73941edffc0  7b7ff000 ffff8e67e04d3ae0     ad84  1 1fffff00020068 uptodate,lru,active,mappedtodisk

All the pages since the beginning of the section are initialized.
move_freepages()' not gonna blow up.

The same machine with this fix applied:

  crash> kmem -p 77fff000 78000000 7b5ff000 7b600000 7b7fe000 7b7ff000
        PAGE        PHYSICAL      MAPPING       INDEX CNT FLAGS
  ffffea0001e00000  78000000                0        0  0 0
  ffffea0001e00000  7b5ff000                0        0  0 0
  ffffea0001ed8000  7b600000                0        0  1 1fffff00000000
  ffffea0001edff80  7b7fe000                0        0  1 1fffff00000000
  ffffea0001edffc0  7b7ff000 ffff88017fb13720        8  2 1fffff00020068 uptodate,lru,active,mappedtodisk

At least the bare minimum of pages is initialized preventing the crash
as well.

Customers started to report this as soon as 7.4 (where b92df1de5d was
merged in RHEL) was released.  I remember reports from
September/October-ish times.  It's not easily reproduced and happens on
a handful of machines only.  I guess that's why.  But that does not make
it less serious, I think.

Though there actually is a report here:
  https://bugzilla.kernel.org/show_bug.cgi?id=196443

And there are reports for Fedora from July:
  https://bugzilla.redhat.com/show_bug.cgi?id=1473242
and CentOS:
  https://bugs.centos.org/view.php?id=13964
and we internally track several dozens reports for RHEL bug
  https://bugzilla.redhat.com/show_bug.cgi?id=1525121

Link: http://lkml.kernel.org/r/0485727b2e82da7efbce5f6ba42524b429d0391a.1520011945.git.neelx@redhat.com
Fixes: b92df1de5d ("mm: page_alloc: skip over regions of invalid pfns where possible")
Signed-off-by: Daniel Vacek <neelx@redhat.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Paul Burton <paul.burton@imgtec.com>
Cc: Pavel Tatashin <pasha.tatashin@oracle.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-03-09 16:40:01 -08:00
Juergen Gross 895f7b8e90 mm: don't defer struct page initialization for Xen pv guests
Commit f7f99100d8 ("mm: stop zeroing memory during allocation in
vmemmap") broke Xen pv domains in some configurations, as the "Pinned"
information in struct page of early page tables could get lost.

This will lead to the kernel trying to write directly into the page
tables instead of asking the hypervisor to do so.  The result is a crash
like the following:

  BUG: unable to handle kernel paging request at ffff8801ead19008
  IP: xen_set_pud+0x4e/0xd0
  PGD 1c0a067 P4D 1c0a067 PUD 23a0067 PMD 1e9de0067 PTE 80100001ead19065
  Oops: 0003 [#1] PREEMPT SMP
  Modules linked in:
  CPU: 0 PID: 0 Comm: swapper/0 Not tainted 4.14.0-default+ #271
  Hardware name: Dell Inc. Latitude E6440/0159N7, BIOS A07 06/26/2014
  task: ffffffff81c10480 task.stack: ffffffff81c00000
  RIP: e030:xen_set_pud+0x4e/0xd0
  Call Trace:
   __pmd_alloc+0x128/0x140
   ioremap_page_range+0x3f4/0x410
   __ioremap_caller+0x1c3/0x2e0
   acpi_os_map_iomem+0x175/0x1b0
   acpi_tb_acquire_table+0x39/0x66
   acpi_tb_validate_table+0x44/0x7c
   acpi_tb_verify_temp_table+0x45/0x304
   acpi_reallocate_root_table+0x12d/0x141
   acpi_early_init+0x4d/0x10a
   start_kernel+0x3eb/0x4a1
   xen_start_kernel+0x528/0x532
  Code: 48 01 e8 48 0f 42 15 a2 fd be 00 48 01 d0 48 ba 00 00 00 00 00 ea ff ff 48 c1 e8 0c 48 c1 e0 06 48 01 d0 48 8b 00 f6 c4 02 75 5d <4c> 89 65 00 5b 5d 41 5c c3 65 8b 05 52 9f fe 7e 89 c0 48 0f a3
  RIP: xen_set_pud+0x4e/0xd0 RSP: ffffffff81c03cd8
  CR2: ffff8801ead19008
  ---[ end trace 38eca2e56f1b642e ]---

Avoid this problem by not deferring struct page initialization when
running as Xen pv guest.

Pavel said:

: This is unique for Xen, so this particular issue won't effect other
: configurations.  I am going to investigate if there is a way to
: re-enable deferred page initialization on xen guests.

[akpm@linux-foundation.org: explicitly include xen.h]
Link: http://lkml.kernel.org/r/20180216154101.22865-1-jgross@suse.com
Fixes: f7f99100d8 ("mm: stop zeroing memory during allocation in vmemmap")
Signed-off-by: Juergen Gross <jgross@suse.com>
Reviewed-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Cc: Steven Sistare <steven.sistare@oracle.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Bob Picco <bob.picco@oracle.com>
Cc: <stable@vger.kernel.org>	[4.15.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-02-21 15:35:43 -08:00
Linus Torvalds 3ff1b28caa libnvdimm for 4.16
* Require struct page by default for filesystem DAX to remove a number of
   surprising failure cases.  This includes failures with direct I/O, gdb and
   fork(2).
 
 * Add support for the new Platform Capabilities Structure added to the NFIT in
   ACPI 6.2a.  This new table tells us whether the platform supports flushing
   of CPU and memory controller caches on unexpected power loss events.
 
 * Revamp vmem_altmap and dev_pagemap handling to clean up code and better
   support future future PCI P2P uses.
 
 * Deprecate the ND_IOCTL_SMART_THRESHOLD command whose payload has become
   out-of-sync with recent versions of the NVDIMM_FAMILY_INTEL spec, and
   instead rely on the generic ND_CMD_CALL approach used by the two other IOCTL
   families, NVDIMM_FAMILY_{HPE,MSFT}.
 
 * Enhance nfit_test so we can test some of the new things added in version 1.6
   of the DSM specification.  This includes testing firmware download and
   simulating the Last Shutdown State (LSS) status.
 -----BEGIN PGP SIGNATURE-----
 
 iQIcBAABAgAGBQJaeOg0AAoJEJ/BjXdf9fLBAFoQAI/IgcgJ2h9lfEpgjBRTC44t
 2p8dxwT1Ofw3Y1aR/tI8nYRXjRtAGuP4UIeRVnb1CL/N7PagJyoMGU+6hmzg+ptY
 c7cEDvw6nZOhrFwXx/xn7R53sYG8zH+UE6+jTR/PP/G4mQJfFCg4iF9R72Y7z0n7
 aurf82Kz137NPUy6dNr4V9bmPMJWAaOci9WOj5SKddR5ZSNbjoxylTwQRvre5y4r
 7HQTScEkirABOdSf1JoXTSUXCH/RC9UFFXR03ScHstGb1HjCj3KdcicVc50Q++Ub
 qsEudhE6i44PEW1Hh4Qkg6hjHMEa8qHP+ShBuRuVaUmlghYTQn66niJAYLZilwdz
 EVjE7vR+toHA5g3YCalEmYVutUEhIDkh/xfpd7vM6ZorUGJy95a2elEJs2fHBffC
 gEhnCip7FROPcK5RDNUM8hBgnG/q5wwWPQMKY+6rKDZQx3mXssCrKp2Vlx7kBwMG
 rpblkEpYjPonbLEHxsSU8yTg9Uq55ciIWgnOToffcjZvjbihi8WUVlHcwHUMPf/o
 DWElg+4qmG0Sdd4S2NeAGwTl1Ewrf2RrtUGMjHtH4OUFs1wo6ZmfrxFzzMfoZ1Od
 ko/s65v4uwtTzECh2o+XQaNsReR5YETXxmA40N/Jpo7/7twABIoZ/ASvj/3ZBYj+
 sie+u2rTod8/gQWSfHpJ
 =MIMX
 -----END PGP SIGNATURE-----

Merge tag 'libnvdimm-for-4.16' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm

Pull libnvdimm updates from Ross Zwisler:

 - Require struct page by default for filesystem DAX to remove a number
   of surprising failure cases. This includes failures with direct I/O,
   gdb and fork(2).

 - Add support for the new Platform Capabilities Structure added to the
   NFIT in ACPI 6.2a. This new table tells us whether the platform
   supports flushing of CPU and memory controller caches on unexpected
   power loss events.

 - Revamp vmem_altmap and dev_pagemap handling to clean up code and
   better support future future PCI P2P uses.

 - Deprecate the ND_IOCTL_SMART_THRESHOLD command whose payload has
   become out-of-sync with recent versions of the NVDIMM_FAMILY_INTEL
   spec, and instead rely on the generic ND_CMD_CALL approach used by
   the two other IOCTL families, NVDIMM_FAMILY_{HPE,MSFT}.

 - Enhance nfit_test so we can test some of the new things added in
   version 1.6 of the DSM specification. This includes testing firmware
   download and simulating the Last Shutdown State (LSS) status.

* tag 'libnvdimm-for-4.16' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm: (37 commits)
  libnvdimm, namespace: remove redundant initialization of 'nd_mapping'
  acpi, nfit: fix register dimm error handling
  libnvdimm, namespace: make min namespace size 4K
  tools/testing/nvdimm: force nfit_test to depend on instrumented modules
  libnvdimm/nfit_test: adding support for unit testing enable LSS status
  libnvdimm/nfit_test: add firmware download emulation
  nfit-test: Add platform cap support from ACPI 6.2a to test
  libnvdimm: expose platform persistence attribute for nd_region
  acpi: nfit: add persistent memory control flag for nd_region
  acpi: nfit: Add support for detect platform CPU cache flush on power loss
  device-dax: Fix trailing semicolon
  libnvdimm, btt: fix uninitialized err_lock
  dax: require 'struct page' by default for filesystem dax
  ext2: auto disable dax instead of failing mount
  ext4: auto disable dax instead of failing mount
  mm, dax: introduce pfn_t_special()
  mm: Fix devm_memremap_pages() collision handling
  mm: Fix memory size alignment in devm_memremap_pages_release()
  memremap: merge find_dev_pagemap into get_dev_pagemap
  memremap: change devm_memremap_pages interface to use struct dev_pagemap
  ...
2018-02-06 10:41:33 -08:00
Ross Zwisler ee95f4059a Merge branch 'for-4.16/nfit' into libnvdimm-for-next 2018-02-03 00:26:26 -07:00
Michal Hocko 9bb5a391f9 mm, memory_hotplug: fix memmap initialization
Bharata has noticed that onlining a newly added memory doesn't increase
the total memory, pointing to commit f7f99100d8 ("mm: stop zeroing
memory during allocation in vmemmap") as a culprit.  This commit has
changed the way how the memory for memmaps is initialized and moves it
from the allocation time to the initialization time.  This works
properly for the early memmap init path.

It doesn't work for the memory hotplug though because we need to mark
page as reserved when the sparsemem section is created and later
initialize it completely during onlining.  memmap_init_zone is called in
the early stage of onlining.  With the current code it calls
__init_single_page and as such it clears up the whole stage and
therefore online_pages_range skips those pages.

Fix this by skipping mm_zero_struct_page in __init_single_page for
memory hotplug path.  This is quite uggly but unifying both early init
and memory hotplug init paths is a large project.  Make sure we plug the
regression at least.

Link: http://lkml.kernel.org/r/20180130101141.GW21609@dhcp22.suse.cz
Fixes: f7f99100d8 ("mm: stop zeroing memory during allocation in vmemmap")
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Bharata B Rao <bharata@linux.vnet.ibm.com>
Tested-by: Bharata B Rao <bharata@linux.vnet.ibm.com>
Reviewed-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Cc: Steven Sistare <steven.sistare@oracle.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Bob Picco <bob.picco@oracle.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-01-31 17:18:40 -08:00
Shile Zhang 3c2c648842 mm/page_alloc.c: fix typos in comments
Link: http://lkml.kernel.org/r/1515485774-4768-1-git-send-email-zhangshile@gmail.com
Signed-off-by: Shile Zhang <zhangshile@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-01-31 17:18:39 -08:00
Jiankang Chen 48128397b0 mm/page_alloc.c: fix comment in __get_free_pages()
__get_free_pages() will return a virtual address, but it is not just a
32-bit address, for example on a 64-bit system.  And this comment really
confuses new readers of mm.

Link: http://lkml.kernel.org/r/1511780964-64864-1-git-send-email-chenjiankang1@huawei.com
Signed-off-by: Jiankang Chen <chenjiankang1@huawei.com>
Reported-by: Hanjun Guo <guohanjun@huawei.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Yisheng Xie <xieyisheng1@huawei.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-01-31 17:18:36 -08:00
Pavel Tatashin 80b1f41c09 mm: split deferred_init_range into initializing and freeing parts
In deferred_init_range() we initialize struct pages, and also free them
to buddy allocator.  We do it in separate loops, because buddy page is
computed ahead, so we do not want to access a struct page that has not
been initialized yet.

There is still, however, a corner case where it is potentially possible
to access uninitialized struct page: this is when buddy page is from the
next memblock range.

This patch fixes this problem by splitting deferred_init_range() into
two functions: one to initialize struct pages, and another to free them.

In addition, this patch brings the following improvements:
 - Get rid of __def_free() helper function. And simplifies loop logic by
   adding a new pfn validity check function: deferred_pfn_valid().
 - Reduces number of variables that we track. So, there is a higher
   chance that we will avoid using stack to store/load variables inside
   hot loops.
 - Enables future multi-threading of these functions: do initialization
   in multiple threads, wait for all threads to finish, do freeing part
   in multithreading.

Tested on x86 with 1T of memory to make sure no regressions are
introduced.

[akpm@linux-foundation.org: fix spello in comment]
Link: http://lkml.kernel.org/r/20171107150446.32055-2-pasha.tatashin@oracle.com
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Steven Sistare <steven.sistare@oracle.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-01-31 17:18:36 -08:00
Christoph Hellwig a99583e780 mm: pass the vmem_altmap to memmap_init_zone
Pass the vmem_altmap two levels down instead of needing a lookup.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2018-01-08 11:46:23 -08:00
Dave Young e8c24773d6 mm: check pfn_valid first in zero_resv_unavail
With latest kernel I get below bug while testing kdump:

  BUG: unable to handle kernel paging request at ffffea00034b1040
  IP: zero_resv_unavail+0xbd/0x126
  PGD 37b98067 P4D 37b98067 PUD 37b97067 PMD 0
  Oops: 0002 [#1] SMP
  Modules linked in:
  CPU: 0 PID: 0 Comm: swapper Not tainted 4.15.0-rc1+ #316
  Hardware name: LENOVO 20ARS1BJ02/20ARS1BJ02, BIOS GJET92WW (2.42 ) 03/03/2017
  task: ffffffff81a0e4c0 task.stack: ffffffff81a00000
  RIP: 0010:zero_resv_unavail+0xbd/0x126
  RSP: 0000:ffffffff81a03d88 EFLAGS: 00010006
  RAX: 0000000000000000 RBX: ffffea00034b1040 RCX: 0000000000000010
  RDX: 0000000000000000 RSI: 0000000000000092 RDI: ffffea00034b1040
  RBP: 00000000000d2c41 R08: 00000000000000c0 R09: 0000000000000a0d
  R10: 0000000000000002 R11: 0000000000007f01 R12: ffffffff81a03d90
  R13: ffffea0000000000 R14: 0000000000000063 R15: 0000000000000062
  FS:  0000000000000000(0000) GS:ffffffff81c73000(0000) knlGS:0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  CR2: ffffea00034b1040 CR3: 0000000037609000 CR4: 00000000000606b0
  Call Trace:
   ? free_area_init_nodes+0x640/0x664
   ? zone_sizes_init+0x58/0x72
   ? setup_arch+0xb50/0xc6c
   ? start_kernel+0x64/0x43d
   ? secondary_startup_64+0xa5/0xb0
  Code: c1 e8 0c 48 39 d8 76 27 48 89 de 48 c1 e3 06 48 c7 c7 7a 87 79 81 e8 b0 c0 3e ff 4c 01 eb b9 10 00 00 00 31 c0 48 89 df 49 ff c6 <f3> ab eb bc 6a 00 49 c7 c0 f0 93 d1 81 31 d2 83 ce ff 41 54 49
  RIP: zero_resv_unavail+0xbd/0x126 RSP: ffffffff81a03d88
  CR2: ffffea00034b1040
  ---[ end trace f5ba9e8f73c7ee26 ]---

This is introduced by commit a4a3ede213 ("mm: zero reserved and
unavailable struct pages").

The reason is some efi reserved boot ranges is not reported in E820 ram.
In my case it is a bgrt buffer:

  efi: mem00: [Boot Data          |RUN|  |  |  |  |  |  |   |WB|WT|WC|UC] range=[0x00000000d2c41000-0x00000000d2c85fff] (0MB)

Use "add_efi_memmap" can workaround the problem with another fix:

  http://lkml.kernel.org/r/20171130052327.GA3500@dhcp-128-65.nay.redhat.com

In zero_resv_unavail it would be better to check pfn_valid first before
zero the page struct.  This fixes the problem and potential other
similar problems.  Also as Pavel Tatashin suggested checks pfn_valid at
the beginning of the section.

The range is backed by real memory.  The memory range is efi "Boot
Service Data", that means after ExitBootServices() these ranges can be
used as system ram.  But some of them need to be reserved, for example
the bgrt image address in an acpi table, if the image memory is freed
then kexec reboot will fail because kexec inherit same acpi table to
initialize the driver.

Link: http://lkml.kernel.org/r/20171201095048.GA3084@dhcp-128-65.nay.redhat.com
Fixes: a4a3ede213 ("mm: zero reserved and unavailable struct pages")
Signed-off-by: Dave Young <dyoung@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Pavel Tatashin <pasha.tatashin@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-01-04 16:45:09 -08:00
Lucas Stach c24ad77d96 mm/page_alloc.c: avoid excessive IRQ disabled times in free_unref_page_list()
Since commit 9cca35d42e ("mm, page_alloc: enable/disable IRQs once
when freeing a list of pages") we see excessive IRQ disabled times of up
to 25ms on an embedded ARM system (tracing overhead included).

This is due to graphics buffers being freed back to the system via
release_pages().  Graphics buffers can be huge, so it's not hard to hit
cases where the list of pages to free has 2048 entries.  Disabling IRQs
while freeing all those pages is clearly not a good idea.

Introduce a batch limit, which allows IRQ servicing once every few
pages.  The batch count is the same as used in other parts of the MM
subsystem when dealing with IRQ disabled regions.

Link: http://lkml.kernel.org/r/20171207170314.4419-1-l.stach@pengutronix.de
Fixes: 9cca35d42e ("mm, page_alloc: enable/disable IRQs once when freeing a list of pages")
Signed-off-by: Lucas Stach <l.stach@pengutronix.de>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-12-14 16:00:48 -08:00
Mike Kravetz 63cd448908 mm/cma: fix alloc_contig_range ret code/potential leak
If the call __alloc_contig_migrate_range() in alloc_contig_range returns
-EBUSY, processing continues so that test_pages_isolated() is called
where there is a tracepoint to identify the busy pages.  However, it is
possible for busy pages to become available between the calls to these
two routines.  In this case, the range of pages may be allocated.
Unfortunately, the original return code (ret == -EBUSY) is still set and
returned to the caller.  Therefore, the caller believes the pages were
not allocated and they are leaked.

Update the comment to indicate that allocation is still possible even if
__alloc_contig_migrate_range returns -EBUSY.  Also, clear return code in
this case so that it is not accidentally used or returned to caller.

Link: http://lkml.kernel.org/r/20171122185214.25285-1-mike.kravetz@oracle.com
Fixes: 8ef5849fa8 ("mm/cma: always check which page caused allocation failure")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-29 18:40:42 -08:00
Michal Hocko 4b81cb2ff6 mm, memory_hotplug: do not back off draining pcp free pages from kworker context
drain_all_pages backs off when called from a kworker context since
commit 0ccce3b924 ("mm, page_alloc: drain per-cpu pages from workqueue
context") because the original IPI based pcp draining has been replaced
by a WQ based one and the check wanted to prevent from recursion and
inter workers dependencies.  This has made some sense at the time
because the system WQ has been used and one worker holding the lock
could be blocked while waiting for new workers to emerge which can be a
problem under OOM conditions.

Since then commit ce612879dd ("mm: move pcp and lru-pcp draining into
single wq") has moved draining to a dedicated (mm_percpu_wq) WQ with a
rescuer so we shouldn't depend on any other WQ activity to make a
forward progress so calling drain_all_pages from a worker context is
safe as long as this doesn't happen from mm_percpu_wq itself which is
not the case because all workers are required to _not_ depend on any MM
locks.

Why is this a problem in the first place? ACPI driven memory hot-remove
(acpi_device_hotplug) is executed from the worker context.  We end up
calling __offline_pages to free all the pages and that requires both
lru_add_drain_all_cpuslocked and drain_all_pages to do their job
otherwise we can have dangling pages on pcp lists and fail the offline
operation (__test_page_isolated_in_pageblock would see a page with 0 ref
count but without PageBuddy set).

Fix the issue by removing the worker check in drain_all_pages.
lru_add_drain_all_cpuslocked doesn't have this restriction so it works
as expected.

Link: http://lkml.kernel.org/r/20170828093341.26341-1-mhocko@kernel.org
Fixes: 0ccce3b924 ("mm, page_alloc: drain per-cpu pages from workqueue context")
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Tejun Heo <tj@kernel.org>
Cc: <stable@vger.kernel.org>	[4.11+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-29 18:40:42 -08:00
Vlastimil Babka 2583d67132 mm, compaction: split off flag for not updating skip hints
Pageblock skip hints were added as a heuristic for compaction, which
shares core code with CMA.  Since CMA reliability would suffer from the
heuristics, compact_control flag ignore_skip_hint was added for the CMA
use case.  Since 6815bf3f23 ("mm/compaction: respect ignore_skip_hint
in update_pageblock_skip") the flag also means that CMA won't *update*
the skip hints in addition to ignoring them.

Today, direct compaction can also ignore the skip hints in the last
resort attempt, but there's no reason not to set them when isolation
fails in such case.  Thus, this patch splits off a new no_set_skip_hint
flag to avoid the updating, which only CMA sets.  This should improve
the heuristics a bit, and allow us to simplify the persistent skip bit
handling as the next step.

Link: http://lkml.kernel.org/r/20171102121706.21504-2-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-17 16:10:00 -08:00
Oscar Salvador 0cd842f970 mm: make alloc_node_mem_map a void call if we don't have CONFIG_FLAT_NODE_MEM_MAP
free_area_init_node() calls alloc_node_mem_map(), but this function does
nothing unless we have CONFIG_FLAT_NODE_MEM_MAP.

As a cleanup, we can move the "#ifdef CONFIG_FLAT_NODE_MEM_MAP" within
alloc_node_mem_map() out of the function, and define a
alloc_node_mem_map() { } when CONFIG_FLAT_NODE_MEM_MAP is not present.

This also moves the printk that lays within the "#ifdef
CONFIG_FLAT_NODE_MEM_MAP" block from free_area_init_node() to
alloc_node_mem_map(), getting rid of the "#ifdef
CONFIG_FLAT_NODE_MEM_MAP" in free_area_init_node().

[akpm@linux-foundation.org: clean up the printk while we're there]
Link: http://lkml.kernel.org/r/20171114111935.GA11758@techadventures.net
Signed-off-by: Oscar Salvador <osalvador@techadventures.net>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-15 18:21:07 -08:00
Michal Hocko 0205f75571 mm: simplify nodemask printing
alloc_warn() and dump_header() have to explicitly handle NULL nodemask
which forces both paths to use pr_cont.  We can do better.  printk
already handles NULL pointers properly so all we need is to teach
nodemask_pr_args to handle NULL nodemask carefully.  This allows
simplification of both alloc_warn() and dump_header() and gets rid of
pr_cont altogether.

This patch has been motivated by patch from Joe Perches

  http://lkml.kernel.org/r/b31236dfe3fc924054fd7842bde678e71d193638.1509991345.git.joe@perches.com

[akpm@linux-foundation.org: fix tile warning, per Arnd]
Link: http://lkml.kernel.org/r/20171109100531.3cn2hcqnuj7mjaju@dhcp22.suse.cz
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Joe Perches <joe@perches.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-15 18:21:07 -08:00
Pavel Tatashin d135e57502 mm/page_alloc.c: broken deferred calculation
In reset_deferred_meminit() we determine number of pages that must not
be deferred.  We initialize pages for at least 2G of memory, but also
pages for reserved memory in this node.

The reserved memory is determined in this function:
memblock_reserved_memory_within(), which operates over physical
addresses, and returns size in bytes.  However, reset_deferred_meminit()
assumes that that this function operates with pfns, and returns page
count.

The result is that in the best case machine boots slower than expected
due to initializing more pages than needed in single thread, and in the
worst case panics because fewer than needed pages are initialized early.

Link: http://lkml.kernel.org/r/20171021011707.15191-1-pasha.tatashin@oracle.com
Fixes: 864b9a393d ("mm: consider memblock reservations for deferred memory initialization sizing")
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-15 18:21:07 -08:00
Tetsuo Handa 400e22499d mm: don't warn about allocations which stall for too long
Commit 63f53dea0c ("mm: warn about allocations which stall for too
long") was a great step for reducing possibility of silent hang up
problem caused by memory allocation stalls.  But this commit reverts it,
for it is possible to trigger OOM lockup and/or soft lockups when many
threads concurrently called warn_alloc() (in order to warn about memory
allocation stalls) due to current implementation of printk(), and it is
difficult to obtain useful information due to limitation of synchronous
warning approach.

Current printk() implementation flushes all pending logs using the
context of a thread which called console_unlock().  printk() should be
able to flush all pending logs eventually unless somebody continues
appending to printk() buffer.

Since warn_alloc() started appending to printk() buffer while waiting
for oom_kill_process() to make forward progress when oom_kill_process()
is processing pending logs, it became possible for warn_alloc() to force
oom_kill_process() loop inside printk().  As a result, warn_alloc()
significantly increased possibility of preventing oom_kill_process()
from making forward progress.

---------- Pseudo code start ----------
Before warn_alloc() was introduced:

  retry:
    if (mutex_trylock(&oom_lock)) {
      while (atomic_read(&printk_pending_logs) > 0) {
        atomic_dec(&printk_pending_logs);
        print_one_log();
      }
      // Send SIGKILL here.
      mutex_unlock(&oom_lock)
    }
    goto retry;

After warn_alloc() was introduced:

  retry:
    if (mutex_trylock(&oom_lock)) {
      while (atomic_read(&printk_pending_logs) > 0) {
        atomic_dec(&printk_pending_logs);
        print_one_log();
      }
      // Send SIGKILL here.
      mutex_unlock(&oom_lock)
    } else if (waited_for_10seconds()) {
      atomic_inc(&printk_pending_logs);
    }
    goto retry;
---------- Pseudo code end ----------

Although waited_for_10seconds() becomes true once per 10 seconds,
unbounded number of threads can call waited_for_10seconds() at the same
time.  Also, since threads doing waited_for_10seconds() keep doing
almost busy loop, the thread doing print_one_log() can use little CPU
resource.  Therefore, this situation can be simplified like

---------- Pseudo code start ----------
  retry:
    if (mutex_trylock(&oom_lock)) {
      while (atomic_read(&printk_pending_logs) > 0) {
        atomic_dec(&printk_pending_logs);
        print_one_log();
      }
      // Send SIGKILL here.
      mutex_unlock(&oom_lock)
    } else {
      atomic_inc(&printk_pending_logs);
    }
    goto retry;
---------- Pseudo code end ----------

when printk() is called faster than print_one_log() can process a log.

One of possible mitigation would be to introduce a new lock in order to
make sure that no other series of printk() (either oom_kill_process() or
warn_alloc()) can append to printk() buffer when one series of printk()
(either oom_kill_process() or warn_alloc()) is already in progress.

Such serialization will also help obtaining kernel messages in readable
form.

---------- Pseudo code start ----------
  retry:
    if (mutex_trylock(&oom_lock)) {
      mutex_lock(&oom_printk_lock);
      while (atomic_read(&printk_pending_logs) > 0) {
        atomic_dec(&printk_pending_logs);
        print_one_log();
      }
      // Send SIGKILL here.
      mutex_unlock(&oom_printk_lock);
      mutex_unlock(&oom_lock)
    } else {
      if (mutex_trylock(&oom_printk_lock)) {
        atomic_inc(&printk_pending_logs);
        mutex_unlock(&oom_printk_lock);
      }
    }
    goto retry;
---------- Pseudo code end ----------

But this commit does not go that direction, for we don't want to
introduce a new lock dependency, and we unlikely be able to obtain
useful information even if we serialized oom_kill_process() and
warn_alloc().

Synchronous approach is prone to unexpected results (e.g.  too late [1],
too frequent [2], overlooked [3]).  As far as I know, warn_alloc() never
helped with providing information other than "something is going wrong".
I want to consider asynchronous approach which can obtain information
during stalls with possibly relevant threads (e.g.  the owner of
oom_lock and kswapd-like threads) and serve as a trigger for actions
(e.g.  turn on/off tracepoints, ask libvirt daemon to take a memory dump
of stalling KVM guest for diagnostic purpose).

This commit temporarily loses ability to report e.g.  OOM lockup due to
unable to invoke the OOM killer due to !__GFP_FS allocation request.
But asynchronous approach will be able to detect such situation and emit
warning.  Thus, let's remove warn_alloc().

[1] https://bugzilla.kernel.org/show_bug.cgi?id=192981
[2] http://lkml.kernel.org/r/CAM_iQpWuPVGc2ky8M-9yukECtS+zKjiDasNymX7rMcBjBFyM_A@mail.gmail.com
[3] commit db73ee0d46 ("mm, vmscan: do not loop on too_many_isolated for ever"))

Link: http://lkml.kernel.org/r/1509017339-4802-1-git-send-email-penguin-kernel@I-love.SAKURA.ne.jp
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Reported-by: Cong Wang <xiyou.wangcong@gmail.com>
Reported-by: yuwang.yuwang <yuwang.yuwang@alibaba-inc.com>
Reported-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>

Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-15 18:21:07 -08:00
Vlastimil Babka b050e3769c mm, page_alloc: fix potential false positive in __zone_watermark_ok
Since commit 97a16fc82a ("mm, page_alloc: only enforce watermarks for
order-0 allocations"), __zone_watermark_ok() check for high-order
allocations will shortcut per-migratetype free list checks for
ALLOC_HARDER allocations, and return true as long as there's free page
of any migratetype.  The intention is that ALLOC_HARDER can allocate
from MIGRATE_HIGHATOMIC free lists, while normal allocations can't.

However, as a side effect, the watermark check will then also return
true when there are pages only on the MIGRATE_ISOLATE list, or (prior to
CMA conversion to ZONE_MOVABLE) on the MIGRATE_CMA list.  Since the
allocation cannot actually obtain isolated pages, and might not be able
to obtain CMA pages, this can result in a false positive.

The condition should be rare and perhaps the outcome is not a fatal one.
Still, it's better if the watermark check is correct.  There also
shouldn't be a performance tradeoff here.

Link: http://lkml.kernel.org/r/20171102125001.23708-1-vbabka@suse.cz
Fixes: 97a16fc82a ("mm, page_alloc: only enforce watermarks for order-0 allocations")
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-15 18:21:07 -08:00
Kemi Wang 4518085e12 mm, sysctl: make NUMA stats configurable
This is the second step which introduces a tunable interface that allow
numa stats configurable for optimizing zone_statistics(), as suggested
by Dave Hansen and Ying Huang.

=========================================================================

When page allocation performance becomes a bottleneck and you can
tolerate some possible tool breakage and decreased numa counter
precision, you can do:

	echo 0 > /proc/sys/vm/numa_stat

In this case, numa counter update is ignored.  We can see about
*4.8%*(185->176) drop of cpu cycles per single page allocation and
reclaim on Jesper's page_bench01 (single thread) and *8.1%*(343->315)
drop of cpu cycles per single page allocation and reclaim on Jesper's
page_bench03 (88 threads) running on a 2-Socket Broadwell-based server
(88 threads, 126G memory).

Benchmark link provided by Jesper D Brouer (increase loop times to
10000000):

  https://github.com/netoptimizer/prototype-kernel/tree/master/kernel/mm/bench

=========================================================================

When page allocation performance is not a bottleneck and you want all
tooling to work, you can do:

	echo 1 > /proc/sys/vm/numa_stat

This is system default setting.

Many thanks to Michal Hocko, Dave Hansen, Ying Huang and Vlastimil Babka
for comments to help improve the original patch.

[keescook@chromium.org: make sure mutex is a global static]
  Link: http://lkml.kernel.org/r/20171107213809.GA4314@beast
Link: http://lkml.kernel.org/r/1508290927-8518-1-git-send-email-kemi.wang@intel.com
Signed-off-by: Kemi Wang <kemi.wang@intel.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Reported-by: Jesper Dangaard Brouer <brouer@redhat.com>
Suggested-by: Dave Hansen <dave.hansen@intel.com>
Suggested-by: Ying Huang <ying.huang@intel.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: "Luis R . Rodriguez" <mcgrof@kernel.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christopher Lameter <cl@linux.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Tim Chen <tim.c.chen@intel.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Aaron Lu <aaron.lu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-15 18:21:07 -08:00
Vlastimil Babka 0fac3ba527 mm, page_alloc: simplify list handling in rmqueue_bulk()
rmqueue_bulk() fills an empty pcplist with pages from the free list.  It
tries to preserve increasing order by pfn to the caller, because it
leads to better performance with some I/O controllers, as explained in
commit e084b2d95e ("page-allocator: preserve PFN ordering when
__GFP_COLD is set").

To preserve the order, it's sufficient to add pages to the tail of the
list as they are retrieved.  The current code instead adds to the head
of the list, but then updates the list head pointer to the last added
page, in each step.  This does result in the same order, but is
needlessly confusing and potentially wasteful, with no apparent benefit.
This patch simplifies the code and adjusts comment accordingly.

Link: http://lkml.kernel.org/r/f6505442-98a9-12e4-b2cd-0fa83874c159@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-15 18:21:06 -08:00
Mel Gorman 453f85d43f mm: remove __GFP_COLD
As the page free path makes no distinction between cache hot and cold
pages, there is no real useful ordering of pages in the free list that
allocation requests can take advantage of.  Juding from the users of
__GFP_COLD, it is likely that a number of them are the result of copying
other sites instead of actually measuring the impact.  Remove the
__GFP_COLD parameter which simplifies a number of paths in the page
allocator.

This is potentially controversial but bear in mind that the size of the
per-cpu pagelists versus modern cache sizes means that the whole per-cpu
list can often fit in the L3 cache.  Hence, there is only a potential
benefit for microbenchmarks that alloc/free pages in a tight loop.  It's
even worse when THP is taken into account which has little or no chance
of getting a cache-hot page as the per-cpu list is bypassed and the
zeroing of multiple pages will thrash the cache anyway.

The truncate microbenchmarks are not shown as this patch affects the
allocation path and not the free path.  A page fault microbenchmark was
tested but it showed no sigificant difference which is not surprising
given that the __GFP_COLD branches are a miniscule percentage of the
fault path.

Link: http://lkml.kernel.org/r/20171018075952.10627-9-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-15 18:21:06 -08:00
Mel Gorman 2d4894b5d2 mm: remove cold parameter from free_hot_cold_page*
Most callers users of free_hot_cold_page claim the pages being released
are cache hot.  The exception is the page reclaim paths where it is
likely that enough pages will be freed in the near future that the
per-cpu lists are going to be recycled and the cache hotness information
is lost.  As no one really cares about the hotness of pages being
released to the allocator, just ditch the parameter.

The APIs are renamed to indicate that it's no longer about hot/cold
pages.  It should also be less confusing as there are subtle differences
between them.  __free_pages drops a reference and frees a page when the
refcount reaches zero.  free_hot_cold_page handled pages whose refcount
was already zero which is non-obvious from the name.  free_unref_page
should be more obvious.

No performance impact is expected as the overhead is marginal.  The
parameter is removed simply because it is a bit stupid to have a useless
parameter copied everywhere.

[mgorman@techsingularity.net: add pages to head, not tail]
  Link: http://lkml.kernel.org/r/20171019154321.qtpzaeftoyyw4iey@techsingularity.net
Link: http://lkml.kernel.org/r/20171018075952.10627-8-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-15 18:21:06 -08:00
Mel Gorman 9cca35d42e mm, page_alloc: enable/disable IRQs once when freeing a list of pages
Patch series "Follow-up for speed up page cache truncation", v2.

This series is a follow-on for Jan Kara's series "Speed up page cache
truncation" series.  We both ended up looking at the same problem but
saw different problems based on the same data.  This series builds upon
his work.

A variety of workloads were compared on four separate machines but each
machine showed gains albeit at different levels.  Minimally, some of the
differences are due to NUMA where truncating data from a remote node is
slower than a local node.  The workloads checked were

o sparse truncate microbenchmark, tiny
o sparse truncate microbenchmark, large
o reaim-io disk workfile
o dbench4 (modified by mmtests to produce more stable results)
o filebench varmail configuration for small memory size
o bonnie, directory operations, working set size 2*RAM

reaim-io, dbench and filebench all showed minor gains.  Truncation does
not dominate those workloads but were tested to ensure no other
regressions.  They will not be reported further.

The sparse truncate microbench was written by Jan.  It creates a number
of files and then times how long it takes to truncate each one.  The
"tiny" configuraiton creates a number of files that easily fits in
memory and times how long it takes to truncate files with page cache.
The large configuration uses enough files to have data that is twice the
size of memory and so timings there include truncating page cache and
working set shadow entries in the radix tree.

Patches 1-4 are the most relevant parts of this series.  Patches 5-8 are
optional as they are deleting code that is essentially useless but has a
negligible performance impact.

The changelogs have more information on performance but just for bonnie
delete options, the main comparison is

bonnie
                                      4.14.0-rc5             4.14.0-rc5             4.14.0-rc5
                                          jan-v2                vanilla                 mel-v2
Hmean     SeqCreate ops         76.20 (   0.00%)       75.80 (  -0.53%)       76.80 (   0.79%)
Hmean     SeqCreate read        85.00 (   0.00%)       85.00 (   0.00%)       85.00 (   0.00%)
Hmean     SeqCreate del      13752.31 (   0.00%)    12090.23 ( -12.09%)    15304.84 (  11.29%)
Hmean     RandCreate ops        76.00 (   0.00%)       75.60 (  -0.53%)       77.00 (   1.32%)
Hmean     RandCreate read       96.80 (   0.00%)       96.80 (   0.00%)       97.00 (   0.21%)
Hmean     RandCreate del     13233.75 (   0.00%)    11525.35 ( -12.91%)    14446.61 (   9.16%)

Jan's series is the baseline and the vanilla kernel is 12% slower where
as this series on top gains another 11%.  This is from a different
machine than the data in the changelogs but the detailed data was not
collected as there was no substantial change in v2.

This patch (of 8):

Freeing a list of pages current enables/disables IRQs for each page
freed.  This patch splits freeing a list of pages into two operations --
preparing the pages for freeing and the actual freeing.  This is a
tradeoff - we're taking two passes of the list to free in exchange for
avoiding multiple enable/disable of IRQs.

sparsetruncate (tiny)
                              4.14.0-rc4             4.14.0-rc4
                           janbatch-v1r1            oneirq-v1r1
Min          Time      149.00 (   0.00%)      141.00 (   5.37%)
1st-qrtle    Time      150.00 (   0.00%)      142.00 (   5.33%)
2nd-qrtle    Time      151.00 (   0.00%)      142.00 (   5.96%)
3rd-qrtle    Time      151.00 (   0.00%)      143.00 (   5.30%)
Max-90%      Time      153.00 (   0.00%)      144.00 (   5.88%)
Max-95%      Time      155.00 (   0.00%)      147.00 (   5.16%)
Max-99%      Time      201.00 (   0.00%)      195.00 (   2.99%)
Max          Time      236.00 (   0.00%)      230.00 (   2.54%)
Amean        Time      152.65 (   0.00%)      144.37 (   5.43%)
Stddev       Time        9.78 (   0.00%)       10.44 (  -6.72%)
Coeff        Time        6.41 (   0.00%)        7.23 ( -12.84%)
Best99%Amean Time      152.07 (   0.00%)      143.72 (   5.50%)
Best95%Amean Time      150.75 (   0.00%)      142.37 (   5.56%)
Best90%Amean Time      150.59 (   0.00%)      142.19 (   5.58%)
Best75%Amean Time      150.36 (   0.00%)      141.92 (   5.61%)
Best50%Amean Time      150.04 (   0.00%)      141.69 (   5.56%)
Best25%Amean Time      149.85 (   0.00%)      141.38 (   5.65%)

With a tiny number of files, each file truncated has resident page cache
and it shows that time to truncate is roughtly 5-6% with some minor
jitter.

                                      4.14.0-rc4             4.14.0-rc4
                                   janbatch-v1r1            oneirq-v1r1
Hmean     SeqCreate ops         65.27 (   0.00%)       81.86 (  25.43%)
Hmean     SeqCreate read        39.48 (   0.00%)       47.44 (  20.16%)
Hmean     SeqCreate del      24963.95 (   0.00%)    26319.99 (   5.43%)
Hmean     RandCreate ops        65.47 (   0.00%)       82.01 (  25.26%)
Hmean     RandCreate read       42.04 (   0.00%)       51.75 (  23.09%)
Hmean     RandCreate del     23377.66 (   0.00%)    23764.79 (   1.66%)

As expected, there is a small gain for the delete operation.

[mgorman@techsingularity.net: use page_private and set_page_private helpers]
  Link: http://lkml.kernel.org/r/20171018101547.mjycw7zreb66jzpa@techsingularity.net
Link: http://lkml.kernel.org/r/20171018075952.10627-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Jan Kara <jack@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-15 18:21:06 -08:00
Aaron Lu 85ccc8fa81 mm/page_alloc: make sure __rmqueue() etc are always inline
__rmqueue(), __rmqueue_fallback(), __rmqueue_smallest() and
__rmqueue_cma_fallback() are all in page allocator's hot path and better
be finished as soon as possible.  One way to make them faster is by making
them inline.  But as Andrew Morton and Andi Kleen pointed out:

  https://lkml.org/lkml/2017/10/10/1252
  https://lkml.org/lkml/2017/10/10/1279

To make sure they are inlined, we should use __always_inline for them.

With the will-it-scale/page_fault1/process benchmark, when using nr_cpu
processes to stress buddy, the results for will-it-scale.processes with
and without the patch are:

On a 2-sockets Intel-Skylake machine:

   compiler          base        head
  gcc-4.4.7       6496131     6911823 +6.4%
  gcc-4.9.4       7225110     7731072 +7.0%
  gcc-5.4.1       7054224     7688146 +9.0%
  gcc-6.2.0       7059794     7651675 +8.4%

On a 4-sockets Intel-Skylake machine:

   compiler          base        head
  gcc-4.4.7      13162890    13508193 +2.6%
  gcc-4.9.4      14997463    15484353 +3.2%
  gcc-5.4.1      14708711    15449805 +5.0%
  gcc-6.2.0      14574099    15349204 +5.3%

The above 4 compilers are used because I've done the tests through
Intel's Linux Kernel Performance(LKP) infrastructure and they are the
available compilers there.

The benefit being less on 4 sockets machine is due to the lock
contention there(perf-profile/native_queued_spin_lock_slowpath=81%) is
less severe than on the 2 sockets machine(85%).

What the benchmark does is: it forks nr_cpu processes and then each
process does the following:
    1 mmap() 128M anonymous space;
    2 writes to each page there to trigger actual page allocation;
    3 munmap() it.
in a loop.

  https://github.com/antonblanchard/will-it-scale/blob/master/tests/page_fault1.c

Binary size wise, I have locally built them with different compilers:

[aaron@aaronlu obj]$ size */*/mm/page_alloc.o
   text    data     bss     dec     hex filename
  37409    9904    8524   55837    da1d gcc-4.9.4/base/mm/page_alloc.o
  38273    9904    8524   56701    dd7d gcc-4.9.4/head/mm/page_alloc.o
  37465    9840    8428   55733    d9b5 gcc-5.5.0/base/mm/page_alloc.o
  38169    9840    8428   56437    dc75 gcc-5.5.0/head/mm/page_alloc.o
  37573    9840    8428   55841    da21 gcc-6.4.0/base/mm/page_alloc.o
  38261    9840    8428   56529    dcd1 gcc-6.4.0/head/mm/page_alloc.o
  36863    9840    8428   55131    d75b gcc-7.2.0/base/mm/page_alloc.o
  37711    9840    8428   55979    daab gcc-7.2.0/head/mm/page_alloc.o

Text size increased about 800 bytes for mm/page_alloc.o.

[aaron@aaronlu obj]$ size */*/vmlinux
   text    data     bss     dec       hex     filename
10342757   5903208 17723392 33969357  20654cd gcc-4.9.4/base/vmlinux
10342757   5903208 17723392 33969357  20654cd gcc-4.9.4/head/vmlinux
10332448   5836608 17715200 33884256  2050860 gcc-5.5.0/base/vmlinux
10332448   5836608 17715200 33884256  2050860 gcc-5.5.0/head/vmlinux
10094546   5836696 17715200 33646442  201676a gcc-6.4.0/base/vmlinux
10094546   5836696 17715200 33646442  201676a gcc-6.4.0/head/vmlinux
10018775   5828732 17715200 33562707  2002053 gcc-7.2.0/base/vmlinux
10018775   5828732 17715200 33562707  2002053 gcc-7.2.0/head/vmlinux

Text size for vmlinux has no change though, probably due to function
alignment.

Link: http://lkml.kernel.org/r/20171013063111.GA26032@intel.com
Signed-off-by: Aaron Lu <aaron.lu@intel.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Kemi Wang <kemi.wang@intel.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-15 18:21:05 -08:00
Pavel Tatashin f7f99100d8 mm: stop zeroing memory during allocation in vmemmap
vmemmap_alloc_block() will no longer zero the block, so zero memory at
its call sites for everything except struct pages.  Struct page memory
is zero'd by struct page initialization.

Replace allocators in sparse-vmemmap to use the non-zeroing version.
So, we will get the performance improvement by zeroing the memory in
parallel when struct pages are zeroed.

Add struct page zeroing as a part of initialization of other fields in
__init_single_page().

This single thread performance collected on: Intel(R) Xeon(R) CPU E7-8895
v3 @ 2.60GHz with 1T of memory (268400646 pages in 8 nodes):

                         BASE            FIX
sparse_init     11.244671836s   0.007199623s
zone_sizes_init  4.879775891s   8.355182299s
                  --------------------------
Total           16.124447727s   8.362381922s

sparse_init is where memory for struct pages is zeroed, and the zeroing
part is moved later in this patch into __init_single_page(), which is
called from zone_sizes_init().

[akpm@linux-foundation.org: make vmemmap_alloc_block_zero() private to sparse-vmemmap.c]
Link: http://lkml.kernel.org/r/20171013173214.27300-10-pasha.tatashin@oracle.com
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Reviewed-by: Steven Sistare <steven.sistare@oracle.com>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Reviewed-by: Bob Picco <bob.picco@oracle.com>
Tested-by: Bob Picco <bob.picco@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Sam Ravnborg <sam@ravnborg.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-15 18:21:05 -08:00
Pavel Tatashin a4a3ede213 mm: zero reserved and unavailable struct pages
Some memory is reserved but unavailable: not present in memblock.memory
(because not backed by physical pages), but present in memblock.reserved.
Such memory has backing struct pages, but they are not initialized by
going through __init_single_page().

In some cases these struct pages are accessed even if they do not
contain any data.  One example is page_to_pfn() might access page->flags
if this is where section information is stored (CONFIG_SPARSEMEM,
SECTION_IN_PAGE_FLAGS).

One example of such memory: trim_low_memory_range() unconditionally
reserves from pfn 0, but e820__memblock_setup() might provide the
exiting memory from pfn 1 (i.e.  KVM).

Since struct pages are zeroed in __init_single_page(), and not during
allocation time, we must zero such struct pages explicitly.

The patch involves adding a new memblock iterator:
	for_each_resv_unavail_range(i, p_start, p_end)

Which iterates through reserved && !memory lists, and we zero struct pages
explicitly by calling mm_zero_struct_page().

===

Here is more detailed example of problem that this patch is addressing:

Run tested on qemu with the following arguments:

	-enable-kvm -cpu kvm64 -m 512 -smp 2

This patch reports that there are 98 unavailable pages.

They are: pfn 0 and pfns in range [159, 255].

Note, trim_low_memory_range() reserves only pfns in range [0, 15], it does
not reserve [159, 255] ones.

e820__memblock_setup() reports linux that the following physical ranges are
available:
    [1 , 158]
[256, 130783]

Notice, that exactly unavailable pfns are missing!

Now, lets check what we have in zone 0: [1, 131039]

pfn 0, is not part of the zone, but pfns [1, 158], are.

However, the bigger problem we have if we do not initialize these struct
pages is with memory hotplug.  Because, that path operates at 2M
boundaries (section_nr).  And checks if 2M range of pages is hot
removable.  It starts with first pfn from zone, rounds it down to 2M
boundary (sturct pages are allocated at 2M boundaries when vmemmap is
created), and checks if that section is hot removable.  In this case
start with pfn 1 and convert it down to pfn 0.  Later pfn is converted
to struct page, and some fields are checked.  Now, if we do not zero
struct pages, we get unpredictable results.

In fact when CONFIG_VM_DEBUG is enabled, and we explicitly set all
vmemmap memory to ones, the following panic is observed with kernel test
without this patch applied:

  BUG: unable to handle kernel NULL pointer dereference at          (null)
  IP: is_pageblock_removable_nolock+0x35/0x90
  PGD 0 P4D 0
  Oops: 0000 [#1] PREEMPT
  ...
  task: ffff88001f4e2900 task.stack: ffffc90000314000
  RIP: 0010:is_pageblock_removable_nolock+0x35/0x90
  Call Trace:
   ? is_mem_section_removable+0x5a/0xd0
   show_mem_removable+0x6b/0xa0
   dev_attr_show+0x1b/0x50
   sysfs_kf_seq_show+0xa1/0x100
   kernfs_seq_show+0x22/0x30
   seq_read+0x1ac/0x3a0
   kernfs_fop_read+0x36/0x190
   ? security_file_permission+0x90/0xb0
   __vfs_read+0x16/0x30
   vfs_read+0x81/0x130
   SyS_read+0x44/0xa0
   entry_SYSCALL_64_fastpath+0x1f/0xbd

Link: http://lkml.kernel.org/r/20171013173214.27300-7-pasha.tatashin@oracle.com
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Reviewed-by: Steven Sistare <steven.sistare@oracle.com>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Reviewed-by: Bob Picco <bob.picco@oracle.com>
Tested-by: Bob Picco <bob.picco@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Sam Ravnborg <sam@ravnborg.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-15 18:21:05 -08:00