__GFP_REPEAT was designed to allow retry-but-eventually-fail semantic to
the page allocator. This has been true but only for allocations
requests larger than PAGE_ALLOC_COSTLY_ORDER. It has been always
ignored for smaller sizes. This is a bit unfortunate because there is
no way to express the same semantic for those requests and they are
considered too important to fail so they might end up looping in the
page allocator for ever, similarly to GFP_NOFAIL requests.
Now that the whole tree has been cleaned up and accidental or misled
usage of __GFP_REPEAT flag has been removed for !costly requests we can
give the original flag a better name and more importantly a more useful
semantic. Let's rename it to __GFP_RETRY_MAYFAIL which tells the user
that the allocator would try really hard but there is no promise of a
success. This will work independent of the order and overrides the
default allocator behavior. Page allocator users have several levels of
guarantee vs. cost options (take GFP_KERNEL as an example)
- GFP_KERNEL & ~__GFP_RECLAIM - optimistic allocation without _any_
attempt to free memory at all. The most light weight mode which even
doesn't kick the background reclaim. Should be used carefully because
it might deplete the memory and the next user might hit the more
aggressive reclaim
- GFP_KERNEL & ~__GFP_DIRECT_RECLAIM (or GFP_NOWAIT)- optimistic
allocation without any attempt to free memory from the current
context but can wake kswapd to reclaim memory if the zone is below
the low watermark. Can be used from either atomic contexts or when
the request is a performance optimization and there is another
fallback for a slow path.
- (GFP_KERNEL|__GFP_HIGH) & ~__GFP_DIRECT_RECLAIM (aka GFP_ATOMIC) -
non sleeping allocation with an expensive fallback so it can access
some portion of memory reserves. Usually used from interrupt/bh
context with an expensive slow path fallback.
- GFP_KERNEL - both background and direct reclaim are allowed and the
_default_ page allocator behavior is used. That means that !costly
allocation requests are basically nofail but there is no guarantee of
that behavior so failures have to be checked properly by callers
(e.g. OOM killer victim is allowed to fail currently).
- GFP_KERNEL | __GFP_NORETRY - overrides the default allocator behavior
and all allocation requests fail early rather than cause disruptive
reclaim (one round of reclaim in this implementation). The OOM killer
is not invoked.
- GFP_KERNEL | __GFP_RETRY_MAYFAIL - overrides the default allocator
behavior and all allocation requests try really hard. The request
will fail if the reclaim cannot make any progress. The OOM killer
won't be triggered.
- GFP_KERNEL | __GFP_NOFAIL - overrides the default allocator behavior
and all allocation requests will loop endlessly until they succeed.
This might be really dangerous especially for larger orders.
Existing users of __GFP_REPEAT are changed to __GFP_RETRY_MAYFAIL
because they already had their semantic. No new users are added.
__alloc_pages_slowpath is changed to bail out for __GFP_RETRY_MAYFAIL if
there is no progress and we have already passed the OOM point.
This means that all the reclaim opportunities have been exhausted except
the most disruptive one (the OOM killer) and a user defined fallback
behavior is more sensible than keep retrying in the page allocator.
[akpm@linux-foundation.org: fix arch/sparc/kernel/mdesc.c]
[mhocko@suse.com: semantic fix]
Link: http://lkml.kernel.org/r/20170626123847.GM11534@dhcp22.suse.cz
[mhocko@kernel.org: address other thing spotted by Vlastimil]
Link: http://lkml.kernel.org/r/20170626124233.GN11534@dhcp22.suse.cz
Link: http://lkml.kernel.org/r/20170623085345.11304-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Alex Belits <alex.belits@cavium.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: David Daney <david.daney@cavium.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: NeilBrown <neilb@suse.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Andrey reported a potential deadlock with the memory hotplug lock and
the cpu hotplug lock.
The reason is that memory hotplug takes the memory hotplug lock and then
calls stop_machine() which calls get_online_cpus(). That's the reverse
lock order to get_online_cpus(); get_online_mems(); in mm/slub_common.c
The problem has been there forever. The reason why this was never
reported is that the cpu hotplug locking had this homebrewn recursive
reader writer semaphore construct which due to the recursion evaded the
full lock dep coverage. The memory hotplug code copied that construct
verbatim and therefor has similar issues.
Three steps to fix this:
1) Convert the memory hotplug locking to a per cpu rwsem so the
potential issues get reported proper by lockdep.
2) Lock the online cpus in mem_hotplug_begin() before taking the memory
hotplug rwsem and use stop_machine_cpuslocked() in the page_alloc
code to avoid recursive locking.
3) The cpu hotpluck locking in #2 causes a recursive locking of the cpu
hotplug lock via __offline_pages() -> lru_add_drain_all(). Solve this
by invoking lru_add_drain_all_cpuslocked() instead.
Link: http://lkml.kernel.org/r/20170704093421.506836322@linutronix.de
Reported-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since current_order starts as MAX_ORDER-1 and is then only decremented,
the second half of the loop condition seems superfluous. However, if
order is 0, we may decrement current_order past 0, making it UINT_MAX.
This is obviously too subtle ([1], [2]).
Since we need to add some comment anyway, change the two variables to
signed, making the counting-down for loop look more familiar, and
apparently also making gcc generate slightly smaller code.
[1] https://lkml.org/lkml/2016/6/20/493
[2] https://lkml.org/lkml/2017/6/19/345
[akpm@linux-foundation.org: fix up reject fixupping]
Link: http://lkml.kernel.org/r/20170621185529.2265-1-linux@rasmusvillemoes.dk
Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Reported-by: Hao Lee <haolee.swjtu@gmail.com>
Acked-by: Wei Yang <weiyang@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit 3bc48f96cf ("mm, page_alloc: split smallest stolen page
in fallback") we pick the smallest (but sufficient) page of all that
have been stolen from a pageblock of different migratetype. However,
there are cases when we decide not to steal the whole pageblock.
Practically in the current implementation it means that we are trying to
fallback for a MIGRATE_MOVABLE allocation of order X, go through the
freelists from MAX_ORDER-1 down to X, and find free page of order Y. If
Y is less than pageblock_order / 2, we decide not to steal all pages
from the pageblock. When Y > X, it means we are potentially splitting a
larger page than we need, as there might be other pages of order Z,
where X <= Z < Y. Since Y is already too small to steal whole
pageblock, picking smallest available Z will result in the same decision
and we avoid splitting a higher-order page in a MIGRATE_UNMOVABLE or
MIGRATE_RECLAIMABLE pageblock.
This patch therefore changes the fallback algorithm so that in the
situation described above, we switch the fallback search strategy to go
from order X upwards to find the smallest suitable fallback. In theory
there shouldn't be a downside of this change wrt fragmentation.
This has been tested with mmtests' stress-highalloc performing
GFP_KERNEL order-4 allocations, here is the relevant extfrag tracepoint
statistics:
4.12.0-rc2 4.12.0-rc2
1-kernel4 2-kernel4
Page alloc extfrag event 25640976 69680977
Extfrag fragmenting 25621086 69661364
Extfrag fragmenting for unmovable 74409 73204
Extfrag fragmenting unmovable placed with movable 69003 67684
Extfrag fragmenting unmovable placed with reclaim. 5406 5520
Extfrag fragmenting for reclaimable 6398 8467
Extfrag fragmenting reclaimable placed with movable 869 884
Extfrag fragmenting reclaimable placed with unmov. 5529 7583
Extfrag fragmenting for movable 25540279 69579693
Since we force movable allocations to steal the smallest available page
(which we then practially always split), we steal less per fallback, so
the number of fallbacks increases and steals potentially happen from
different pageblocks. This is however not an issue for movable pages
that can be compacted.
Importantly, the "unmovable placed with movable" statistics is lower,
which is the result of less fragmentation in the unmovable pageblocks.
The effect on reclaimable allocation is a bit unclear.
Link: http://lkml.kernel.org/r/20170529093947.22618-1-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 20b2f52b73 ("numa: add CONFIG_MOVABLE_NODE for
movable-dedicated node") has introduced CONFIG_MOVABLE_NODE without a
good explanation on why it is actually useful.
It makes a lot of sense to make movable node semantic opt in but we
already have that because the feature has to be explicitly enabled on
the kernel command line. A config option on top only makes the
configuration space larger without a good reason. It also adds an
additional ifdefery that pollutes the code.
Just drop the config option and make it de-facto always enabled. This
shouldn't introduce any change to the semantic.
Link: http://lkml.kernel.org/r/20170529114141.536-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Yasuaki Ishimatsu <yasu.isimatu@gmail.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Kani Toshimitsu <toshi.kani@hpe.com>
Cc: Chen Yucong <slaoub@gmail.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm: per-lruvec slab stats"
Josef is working on a new approach to balancing slab caches and the page
cache. For this to work, he needs slab cache statistics on the lruvec
level. These patches implement that by adding infrastructure that
allows updating and reading generic VM stat items per lruvec, then
switches some existing VM accounting sites, including the slab
accounting ones, to this new cgroup-aware API.
I'll follow up with more patches on this, because there is actually
substantial simplification that can be done to the memory controller
when we replace private memcg accounting with making the existing VM
accounting sites cgroup-aware. But this is enough for Josef to base his
slab reclaim work on, so here goes.
This patch (of 5):
To re-implement slab cache vs. page cache balancing, we'll need the
slab counters at the lruvec level, which, ever since lru reclaim was
moved from the zone to the node, is the intersection of the node, not
the zone, and the memcg.
We could retain the per-zone counters for when the page allocator dumps
its memory information on failures, and have counters on both levels -
which on all but NUMA node 0 is usually redundant. But let's keep it
simple for now and just move them. If anybody complains we can restore
the per-zone counters.
[hannes@cmpxchg.org: fix oops]
Link: http://lkml.kernel.org/r/20170605183511.GA8915@cmpxchg.org
Link: http://lkml.kernel.org/r/20170530181724.27197-3-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Josef Bacik <josef@toxicpanda.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The main allocator function __alloc_pages_nodemask() takes a zonelist
pointer as one of its parameters. All of its callers directly or
indirectly obtain the zonelist via node_zonelist() using a preferred
node id and gfp_mask. We can make the code a bit simpler by doing the
zonelist lookup in __alloc_pages_nodemask(), passing it a preferred node
id instead (gfp_mask is already another parameter).
There are some code size benefits thanks to removal of inlined
node_zonelist():
bloat-o-meter add/remove: 2/2 grow/shrink: 4/36 up/down: 399/-1351 (-952)
This will also make things simpler if we proceed with converting cpusets
to zonelists.
Link: http://lkml.kernel.org/r/20170517081140.30654-4-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Christoph Lameter <cl@linux.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Dimitri Sivanich <sivanich@sgi.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
I would like to stress that this patchset aims to fix issues and cleanup
the code *within the existing documented semantics*, i.e. patch 1
ignores mempolicy restrictions if the set of allowed nodes has no
intersection with set of nodes allowed by cpuset. I believe discussing
potential changes of the semantics can be better done once we have a
baseline with no known bugs of the current semantics.
I've recently summarized the cpuset/mempolicy issues in a LSF/MM
proposal [1] and the discussion itself [2]. I've been trying to rewrite
the handling as proposed, with the idea that changing semantics to make
all mempolicies static wrt cpuset updates (and discarding the relative
and default modes) can be tried on top, as there's a high risk of being
rejected/reverted because somebody might still care about the removed
modes.
However I haven't yet figured out how to properly:
1) make mempolicies swappable instead of rebinding in place. I thought
mbind() already works that way and uses refcounting to avoid
use-after-free of the old policy by a parallel allocation, but turns
out true refcounting is only done for shared (shmem) mempolicies, and
the actual protection for mbind() comes from mmap_sem. Extending the
refcounting means more overhead in allocator hot path. Also swapping
whole mempolicies means that we have to allocate the new ones, which
can fail, and reverting of the partially done work also means
allocating (note that mbind() doesn't care and will just leave part
of the range updated and part not updated when returning -ENOMEM...).
2) make cpuset's task->mems_allowed also swappable (after converting it
from nodemask to zonelist, which is the easy part) for mostly the
same reasons.
The good news is that while trying to do the above, I've at least
figured out how to hopefully close the remaining premature OOM's, and do
a buch of cleanups on top, removing quite some of the code that was also
supposed to prevent the cpuset update races, but doesn't work anymore
nowadays. This should fix the most pressing concerns with this topic
and give us a better baseline before either proceeding with the original
proposal, or pushing a change of semantics that removes the problem 1)
above. I'd be then fine with trying to change the semantic first and
rewrite later.
Patchset has been tested with the LTP cpuset01 stress test.
[1] https://lkml.kernel.org/r/4c44a589-5fd8-08d0-892c-e893bb525b71@suse.cz
[2] https://lwn.net/Articles/717797/
[3] https://marc.info/?l=linux-mm&m=149191957922828&w=2
This patch (of 6):
Commit e47483bca2 ("mm, page_alloc: fix premature OOM when racing with
cpuset mems update") has fixed known recent regressions found by LTP's
cpuset01 testcase. I have however found that by modifying the testcase
to use per-vma mempolicies via bind(2) instead of per-task mempolicies
via set_mempolicy(2), the premature OOM still happens and the issue is
much older.
The root of the problem is that the cpuset's mems_allowed and
mempolicy's nodemask can temporarily have no intersection, thus
get_page_from_freelist() cannot find any usable zone. The current
semantic for empty intersection is to ignore mempolicy's nodemask and
honour cpuset restrictions. This is checked in node_zonelist(), but the
racy update can happen after we already passed the check. Such races
should be protected by the seqlock task->mems_allowed_seq, but it
doesn't work here, because 1) mpol_rebind_mm() does not happen under
seqlock for write, and doing so would lead to deadlock, as it takes
mmap_sem for write, while the allocation can have mmap_sem for read when
it's taking the seqlock for read. And 2) the seqlock cookie of callers
of node_zonelist() (alloc_pages_vma() and alloc_pages_current()) is
different than the one of __alloc_pages_slowpath(), so there's still a
potential race window.
This patch fixes the issue by having __alloc_pages_slowpath() check for
empty intersection of cpuset and ac->nodemask before OOM or allocation
failure. If it's indeed empty, the nodemask is ignored and allocation
retried, which mimics node_zonelist(). This works fine, because almost
all callers of __alloc_pages_nodemask are obtaining the nodemask via
node_zonelist(). The only exception is new_node_page() from hotplug,
where the potential violation of nodemask isn't an issue, as there's
already a fallback allocation attempt without any nodemask. If there's
a future caller that needs to have its specific nodemask honoured over
task's cpuset restrictions, we'll have to e.g. add a gfp flag for that.
Link: http://lkml.kernel.org/r/20170517081140.30654-2-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Dimitri Sivanich <sivanich@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The functions are not used in some configurations. Adding the attribute
fixes the following warnings when building with clang:
mm/page_alloc.c:409:19: error: function 'bad_range' is not needed and
will not be emitted [-Werror,-Wunneeded-internal-declaration]
mm/page_alloc.c:1106:30: error: unused function 'meminit_pfn_in_nid'
[-Werror,-Wunused-function]
Link: http://lkml.kernel.org/r/20170518182030.165633-1-mka@chromium.org
Signed-off-by: Matthias Kaehlcke <mka@chromium.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Allow hash tables to scale with memory but at slower pace, when
HASH_ADAPT is provided every time memory quadruples the sizes of hash
tables will only double instead of quadrupling as well. This algorithm
starts working only when memory size reaches a certain point, currently
set to 64G.
This is example of dentry hash table size, before and after four various
memory configurations:
MEMORY SCALE HASH_SIZE
old new old new
8G 13 13 8M 8M
16G 13 13 16M 16M
32G 13 13 32M 32M
64G 13 13 64M 64M
128G 13 14 128M 64M
256G 13 14 256M 128M
512G 13 15 512M 128M
1024G 13 15 1024M 256M
2048G 13 16 2048M 256M
4096G 13 16 4096M 512M
8192G 13 17 8192M 512M
16384G 13 17 16384M 1024M
32768G 13 18 32768M 1024M
65536G 13 18 65536M 2048M
The effect of this change on runtime is undetectable as filesystem
growth is not proportional to machine memory size as is currently
assumed. The change effects only large memory machine. Additional
tuning might be needed, but that can be done by the clients of the
kmem_cache_create interface, not the generic cache allocator itself.
The adaptive hashing is disabled on 32 bit systems to avoid confusion of
whether base should be different for smaller systems, and to avoid
overflows.
[mhocko@suse.com: drop HASH_ADAPT]
Link: http://lkml.kernel.org/r/20170509094607.GG6481@dhcp22.suse.cz
[pasha.tatashin@oracle.com: UL -> ULL fix]
Link: http://lkml.kernel.org/r/1495300013-653283-2-git-send-email-pasha.tatashin@oracle.com
[pasha.tatashin@oracle.com: disable adaptive hash on 32 bit systems]
Link: http://lkml.kernel.org/r/1495469329-755807-2-git-send-email-pasha.tatashin@oracle.com
Link: http://lkml.kernel.org/r/1488432825-92126-5-git-send-email-pasha.tatashin@oracle.com
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: David Miller <davem@davemloft.net>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Babu Moger <babu.moger@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add a new flag HASH_ZERO which when provided grantees that the hash
table that is returned by alloc_large_system_hash() is zeroed. In most
cases that is what is needed by the caller. Use page level allocator's
__GFP_ZERO flags to zero the memory. It is using memset() which is
efficient method to zero memory and is optimized for most platforms.
Link: http://lkml.kernel.org/r/1488432825-92126-3-git-send-email-pasha.tatashin@oracle.com
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Reviewed-by: Babu Moger <babu.moger@oracle.com>
Cc: David Miller <davem@davemloft.net>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__pageblock_pfn_to_page has two users currently, set_zone_contiguous
which checks whether the given zone contains holes and
pageblock_pfn_to_page which then carefully returns a first valid page
from the given pfn range for the given zone. This doesn't handle zones
which are not fully populated though. Memory pageblocks can be offlined
or might not have been onlined yet. In such a case the zone should be
considered to have holes otherwise pfn walkers can touch and play with
offline pages.
Current callers of pageblock_pfn_to_page in compaction seem to work
properly right now because they only isolate PageBuddy
(isolate_freepages_block) or PageLRU resp. __PageMovable
(isolate_migratepages_block) which will be always false for these pages.
It would be safer to skip these pages altogether, though.
In order to do this patch adds a new memory section state
(SECTION_IS_ONLINE) which is set in memory_present (during boot time) or
in online_pages_range during the memory hotplug. Similarly
offline_mem_sections clears the bit and it is called when the memory
range is offlined.
pfn_to_online_page helper is then added which check the mem section and
only returns a page if it is onlined already.
Use the new helper in __pageblock_pfn_to_page and skip the whole page
block in such a case.
[mhocko@suse.com: check valid section number in pfn_to_online_page (Vlastimil),
mark sections online after all struct pages are initialized in
online_pages_range (Vlastimil)]
Link: http://lkml.kernel.org/r/20170518164210.GD18333@dhcp22.suse.cz
Link: http://lkml.kernel.org/r/20170515085827.16474-8-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Tobias Regnery <tobias.regnery@gmail.com>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm: make movable onlining suck less", v4.
Movable onlining is a real hack with many downsides - mainly
reintroduction of lowmem/highmem issues we used to have on 32b systems -
but it is the only way to make the memory hotremove more reliable which
is something that people are asking for.
The current semantic of memory movable onlinening is really cumbersome,
however. The main reason for this is that the udev driven approach is
basically unusable because udev races with the memory probing while only
the last memory block or the one adjacent to the existing zone_movable
are allowed to be onlined movable. In short the criterion for the
successful online_movable changes under udev's feet. A reliable udev
approach would require a 2 phase approach where the first successful
movable online would have to check all the previous blocks and online
them in descending order. This is hard to be considered sane.
This patchset aims at making the onlining semantic more usable. First
of all it allows to online memory movable as long as it doesn't clash
with the existing ZONE_NORMAL. That means that ZONE_NORMAL and
ZONE_MOVABLE cannot overlap. Currently I preserve the original ordering
semantic so the zone always precedes the movable zone but I have plans
to remove this restriction in future because it is not really necessary.
First 3 patches are cleanups which should be ready to be merged right
away (unless I have missed something subtle of course).
Patch 4 deals with ZONE_DEVICE dependencies down the __add_pages path.
Patch 5 deals with implicit assumptions of register_one_node on pgdat
initialization.
Patches 6-10 deal with offline holes in the zone for pfn walkers. I
hope I got all of them right but people familiar with compaction should
double check this.
Patch 11 is the core of the change. In order to make it easier to
review I have tried it to be as minimalistic as possible and the large
code removal is moved to patch 14.
Patch 12 is a trivial follow up cleanup. Patch 13 fixes sparse warnings
and finally patch 14 removes the unused code.
I have tested the patches in kvm:
# qemu-system-x86_64 -enable-kvm -monitor pty -m 2G,slots=4,maxmem=4G -numa node,mem=1G -numa node,mem=1G ...
and then probed the additional memory by
(qemu) object_add memory-backend-ram,id=mem1,size=1G
(qemu) device_add pc-dimm,id=dimm1,memdev=mem1
Then I have used this simple script to probe the memory block by hand
# cat probe_memblock.sh
#!/bin/sh
BLOCK_NR=$1
# echo $((0x100000000+$BLOCK_NR*(128<<20))) > /sys/devices/system/memory/probe
# for i in $(seq 10); do sh probe_memblock.sh $i; done
# grep . /sys/devices/system/memory/memory3?/valid_zones 2>/dev/null
/sys/devices/system/memory/memory33/valid_zones:Normal Movable
/sys/devices/system/memory/memory34/valid_zones:Normal Movable
/sys/devices/system/memory/memory35/valid_zones:Normal Movable
/sys/devices/system/memory/memory36/valid_zones:Normal Movable
/sys/devices/system/memory/memory37/valid_zones:Normal Movable
/sys/devices/system/memory/memory38/valid_zones:Normal Movable
/sys/devices/system/memory/memory39/valid_zones:Normal Movable
The main difference to the original implementation is that all new
memblocks can be both online_kernel and online_movable initially because
there is no clash obviously. For the comparison the original
implementation would have
/sys/devices/system/memory/memory33/valid_zones:Normal
/sys/devices/system/memory/memory34/valid_zones:Normal
/sys/devices/system/memory/memory35/valid_zones:Normal
/sys/devices/system/memory/memory36/valid_zones:Normal
/sys/devices/system/memory/memory37/valid_zones:Normal
/sys/devices/system/memory/memory38/valid_zones:Normal
/sys/devices/system/memory/memory39/valid_zones:Normal Movable
Now
# echo online_movable > /sys/devices/system/memory/memory34/state
# grep . /sys/devices/system/memory/memory3?/valid_zones 2>/dev/null
/sys/devices/system/memory/memory33/valid_zones:Normal Movable
/sys/devices/system/memory/memory34/valid_zones:Movable
/sys/devices/system/memory/memory35/valid_zones:Movable
/sys/devices/system/memory/memory36/valid_zones:Movable
/sys/devices/system/memory/memory37/valid_zones:Movable
/sys/devices/system/memory/memory38/valid_zones:Movable
/sys/devices/system/memory/memory39/valid_zones:Movable
Block 33 can still be online both kernel and movable while all
the remaining can be only movable.
/proc/zonelist says
Node 0, zone Normal
pages free 0
min 0
low 0
high 0
spanned 0
present 0
--
Node 0, zone Movable
pages free 32753
min 85
low 117
high 149
spanned 32768
present 32768
A new memblock at a lower address will result in a new memblock (32)
which will still allow both Normal and Movable.
# sh probe_memblock.sh 0
# grep . /sys/devices/system/memory/memory3[2-5]/valid_zones 2>/dev/null
/sys/devices/system/memory/memory32/valid_zones:Normal Movable
/sys/devices/system/memory/memory33/valid_zones:Normal Movable
/sys/devices/system/memory/memory34/valid_zones:Movable
/sys/devices/system/memory/memory35/valid_zones:Movable
and online_kernel will convert it to the zone normal properly
while 33 can be still onlined both ways.
# echo online_kernel > /sys/devices/system/memory/memory32/state
# grep . /sys/devices/system/memory/memory3[2-5]/valid_zones 2>/dev/null
/sys/devices/system/memory/memory32/valid_zones:Normal
/sys/devices/system/memory/memory33/valid_zones:Normal Movable
/sys/devices/system/memory/memory34/valid_zones:Movable
/sys/devices/system/memory/memory35/valid_zones:Movable
/proc/zoneinfo will now tell
Node 0, zone Normal
pages free 65441
min 165
low 230
high 295
spanned 65536
present 65536
--
Node 0, zone Movable
pages free 32740
min 82
low 114
high 146
spanned 32768
present 32768
so both zones have one memblock spanned and present.
Onlining 39 should associate this block to the movable zone
# echo online > /sys/devices/system/memory/memory39/state
/proc/zoneinfo will now tell
Node 0, zone Normal
pages free 32765
min 80
low 112
high 144
spanned 32768
present 32768
--
Node 0, zone Movable
pages free 65501
min 160
low 225
high 290
spanned 196608
present 65536
so we will have a movable zone which spans 6 memblocks, 2 present and 4
representing a hole.
Offlining both movable blocks will lead to the zone with no present
pages which is the expected behavior I believe.
# echo offline > /sys/devices/system/memory/memory39/state
# echo offline > /sys/devices/system/memory/memory34/state
# grep -A6 "Movable\|Normal" /proc/zoneinfo
Node 0, zone Normal
pages free 32735
min 90
low 122
high 154
spanned 32768
present 32768
--
Node 0, zone Movable
pages free 0
min 0
low 0
high 0
spanned 196608
present 0
As a bonus we will get a nice cleanup in the memory hotplug codebase.
This patch (of 16):
init_currently_empty_zone doesn't have any error to return yet it is
still an int and callers try to be defensive and try to handle potential
error. Remove this nonsense and simplify all callers.
This patch shouldn't have any visible effect
Link: http://lkml.kernel.org/r/20170515085827.16474-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Acked-by: Balbir Singh <bsingharora@gmail.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Tobias Regnery <tobias.regnery@gmail.com>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We have seen an early OOM killer invocation on ppc64 systems with
crashkernel=4096M:
kthreadd invoked oom-killer: gfp_mask=0x16040c0(GFP_KERNEL|__GFP_COMP|__GFP_NOTRACK), nodemask=7, order=0, oom_score_adj=0
kthreadd cpuset=/ mems_allowed=7
CPU: 0 PID: 2 Comm: kthreadd Not tainted 4.4.68-1.gd7fe927-default #1
Call Trace:
dump_stack+0xb0/0xf0 (unreliable)
dump_header+0xb0/0x258
out_of_memory+0x5f0/0x640
__alloc_pages_nodemask+0xa8c/0xc80
kmem_getpages+0x84/0x1a0
fallback_alloc+0x2a4/0x320
kmem_cache_alloc_node+0xc0/0x2e0
copy_process.isra.25+0x260/0x1b30
_do_fork+0x94/0x470
kernel_thread+0x48/0x60
kthreadd+0x264/0x330
ret_from_kernel_thread+0x5c/0xa4
Mem-Info:
active_anon:0 inactive_anon:0 isolated_anon:0
active_file:0 inactive_file:0 isolated_file:0
unevictable:0 dirty:0 writeback:0 unstable:0
slab_reclaimable:5 slab_unreclaimable:73
mapped:0 shmem:0 pagetables:0 bounce:0
free:0 free_pcp:0 free_cma:0
Node 7 DMA free:0kB min:0kB low:0kB high:0kB active_anon:0kB inactive_anon:0kB active_file:0kB inactive_file:0kB unevictable:0kB isolated(anon):0kB isolated(file):0kB present:52428800kB managed:110016kB mlocked:0kB dirty:0kB writeback:0kB mapped:0kB shmem:0kB slab_reclaimable:320kB slab_unreclaimable:4672kB kernel_stack:1152kB pagetables:0kB unstable:0kB bounce:0kB free_pcp:0kB local_pcp:0kB free_cma:0kB writeback_tmp:0kB pages_scanned:0 all_unreclaimable? yes
lowmem_reserve[]: 0 0 0 0
Node 7 DMA: 0*64kB 0*128kB 0*256kB 0*512kB 0*1024kB 0*2048kB 0*4096kB 0*8192kB 0*16384kB = 0kB
0 total pagecache pages
0 pages in swap cache
Swap cache stats: add 0, delete 0, find 0/0
Free swap = 0kB
Total swap = 0kB
819200 pages RAM
0 pages HighMem/MovableOnly
817481 pages reserved
0 pages cma reserved
0 pages hwpoisoned
the reason is that the managed memory is too low (only 110MB) while the
rest of the the 50GB is still waiting for the deferred intialization to
be done. update_defer_init estimates the initial memoty to initialize
to 2GB at least but it doesn't consider any memory allocated in that
range. In this particular case we've had
Reserving 4096MB of memory at 128MB for crashkernel (System RAM: 51200MB)
so the low 2GB is mostly depleted.
Fix this by considering memblock allocations in the initial static
initialization estimation. Move the max_initialise to
reset_deferred_meminit and implement a simple memblock_reserved_memory
helper which iterates all reserved blocks and sums the size of all that
start below the given address. The cumulative size is than added on top
of the initial estimation. This is still not ideal because
reset_deferred_meminit doesn't consider holes and so reservation might
be above the initial estimation whihch we ignore but let's make the
logic simpler until we really need to handle more complicated cases.
Fixes: 3a80a7fa79 ("mm: meminit: initialise a subset of struct pages if CONFIG_DEFERRED_STRUCT_PAGE_INIT is set")
Link: http://lkml.kernel.org/r/20170531104010.GI27783@dhcp22.suse.cz
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Tested-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: <stable@vger.kernel.org> [4.2+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Roman Gushchin has reported that the OOM killer can trivially selects
next OOM victim when a thread doing memory allocation from page fault
path was selected as first OOM victim.
allocate invoked oom-killer: gfp_mask=0x14280ca(GFP_HIGHUSER_MOVABLE|__GFP_ZERO), nodemask=(null), order=0, oom_score_adj=0
allocate cpuset=/ mems_allowed=0
CPU: 1 PID: 492 Comm: allocate Not tainted 4.12.0-rc1-mm1+ #181
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Ubuntu-1.8.2-1ubuntu1 04/01/2014
Call Trace:
oom_kill_process+0x219/0x3e0
out_of_memory+0x11d/0x480
__alloc_pages_slowpath+0xc84/0xd40
__alloc_pages_nodemask+0x245/0x260
alloc_pages_vma+0xa2/0x270
__handle_mm_fault+0xca9/0x10c0
handle_mm_fault+0xf3/0x210
__do_page_fault+0x240/0x4e0
trace_do_page_fault+0x37/0xe0
do_async_page_fault+0x19/0x70
async_page_fault+0x28/0x30
...
Out of memory: Kill process 492 (allocate) score 899 or sacrifice child
Killed process 492 (allocate) total-vm:2052368kB, anon-rss:1894576kB, file-rss:4kB, shmem-rss:0kB
allocate: page allocation failure: order:0, mode:0x14280ca(GFP_HIGHUSER_MOVABLE|__GFP_ZERO), nodemask=(null)
allocate cpuset=/ mems_allowed=0
CPU: 1 PID: 492 Comm: allocate Not tainted 4.12.0-rc1-mm1+ #181
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Ubuntu-1.8.2-1ubuntu1 04/01/2014
Call Trace:
__alloc_pages_slowpath+0xd32/0xd40
__alloc_pages_nodemask+0x245/0x260
alloc_pages_vma+0xa2/0x270
__handle_mm_fault+0xca9/0x10c0
handle_mm_fault+0xf3/0x210
__do_page_fault+0x240/0x4e0
trace_do_page_fault+0x37/0xe0
do_async_page_fault+0x19/0x70
async_page_fault+0x28/0x30
...
oom_reaper: reaped process 492 (allocate), now anon-rss:0kB, file-rss:0kB, shmem-rss:0kB
...
allocate invoked oom-killer: gfp_mask=0x0(), nodemask=(null), order=0, oom_score_adj=0
allocate cpuset=/ mems_allowed=0
CPU: 1 PID: 492 Comm: allocate Not tainted 4.12.0-rc1-mm1+ #181
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Ubuntu-1.8.2-1ubuntu1 04/01/2014
Call Trace:
oom_kill_process+0x219/0x3e0
out_of_memory+0x11d/0x480
pagefault_out_of_memory+0x68/0x80
mm_fault_error+0x8f/0x190
? handle_mm_fault+0xf3/0x210
__do_page_fault+0x4b2/0x4e0
trace_do_page_fault+0x37/0xe0
do_async_page_fault+0x19/0x70
async_page_fault+0x28/0x30
...
Out of memory: Kill process 233 (firewalld) score 10 or sacrifice child
Killed process 233 (firewalld) total-vm:246076kB, anon-rss:20956kB, file-rss:0kB, shmem-rss:0kB
There is a race window that the OOM reaper completes reclaiming the
first victim's memory while nothing but mutex_trylock() prevents the
first victim from calling out_of_memory() from pagefault_out_of_memory()
after memory allocation for page fault path failed due to being selected
as an OOM victim.
This is a side effect of commit 9a67f6488e ("mm: consolidate
GFP_NOFAIL checks in the allocator slowpath") because that commit
silently changed the behavior from
/* Avoid allocations with no watermarks from looping endlessly */
to
/*
* Give up allocations without trying memory reserves if selected
* as an OOM victim
*/
in __alloc_pages_slowpath() by moving the location to check TIF_MEMDIE
flag. I have noticed this change but I didn't post a patch because I
thought it is an acceptable change other than noise by warn_alloc()
because !__GFP_NOFAIL allocations are allowed to fail. But we
overlooked that failing memory allocation from page fault path makes
difference due to the race window explained above.
While it might be possible to add a check to pagefault_out_of_memory()
that prevents the first victim from calling out_of_memory() or remove
out_of_memory() from pagefault_out_of_memory(), changing
pagefault_out_of_memory() does not suppress noise by warn_alloc() when
allocating thread was selected as an OOM victim. There is little point
with printing similar backtraces and memory information from both
out_of_memory() and warn_alloc().
Instead, if we guarantee that current thread can try allocations with no
watermarks once when current thread looping inside
__alloc_pages_slowpath() was selected as an OOM victim, we can follow "who
can use memory reserves" rules and suppress noise by warn_alloc() and
prevent memory allocations from page fault path from calling
pagefault_out_of_memory().
If we take the comment literally, this patch would do
- if (test_thread_flag(TIF_MEMDIE))
- goto nopage;
+ if (alloc_flags == ALLOC_NO_WATERMARKS || (gfp_mask & __GFP_NOMEMALLOC))
+ goto nopage;
because gfp_pfmemalloc_allowed() returns false if __GFP_NOMEMALLOC is
given. But if I recall correctly (I couldn't find the message), the
condition is meant to apply to only OOM victims despite the comment.
Therefore, this patch preserves TIF_MEMDIE check.
Fixes: 9a67f6488e ("mm: consolidate GFP_NOFAIL checks in the allocator slowpath")
Link: http://lkml.kernel.org/r/201705192112.IAF69238.OQOHSJLFOFFMtV@I-love.SAKURA.ne.jp
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Reported-by: Roman Gushchin <guro@fb.com>
Tested-by: Roman Gushchin <guro@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: <stable@vger.kernel.org> [4.11]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The previous patch ("mm: prevent potential recursive reclaim due to
clearing PF_MEMALLOC") has shown that simply setting and clearing
PF_MEMALLOC in current->flags can result in wrongly clearing a
pre-existing PF_MEMALLOC flag and potentially lead to recursive reclaim.
Let's introduce helpers that support proper nesting by saving the
previous stat of the flag, similar to the existing memalloc_noio_* and
memalloc_nofs_* helpers. Convert existing setting/clearing of
PF_MEMALLOC within mm to the new helpers.
There are no known issues with the converted code, but the change makes
it more robust.
Link: http://lkml.kernel.org/r/20170405074700.29871-3-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Suggested-by: Michal Hocko <mhocko@suse.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Boris Brezillon <boris.brezillon@free-electrons.com>
Cc: Chris Leech <cleech@redhat.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Josef Bacik <jbacik@fb.com>
Cc: Lee Duncan <lduncan@suse.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Richard Weinberger <richard@nod.at>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "more robust PF_MEMALLOC handling"
This series aims to unify the setting and clearing of PF_MEMALLOC, which
prevents recursive reclaim. There are some places that clear the flag
unconditionally from current->flags, which may result in clearing a
pre-existing flag. This already resulted in a bug report that Patch 1
fixes (without the new helpers, to make backporting easier). Patch 2
introduces the new helpers, modelled after existing memalloc_noio_* and
memalloc_nofs_* helpers, and converts mm core to use them. Patches 3
and 4 convert non-mm code.
This patch (of 4):
__alloc_pages_direct_compact() sets PF_MEMALLOC to prevent deadlock
during page migration by lock_page() (see the comment in
__unmap_and_move()). Then it unconditionally clears the flag, which can
clear a pre-existing PF_MEMALLOC flag and result in recursive reclaim.
This was not a problem until commit a8161d1ed6 ("mm, page_alloc:
restructure direct compaction handling in slowpath"), because direct
compation was called only after direct reclaim, which was skipped when
PF_MEMALLOC flag was set.
Even now it's only a theoretical issue, as the new callsite of
__alloc_pages_direct_compact() is reached only for costly orders and
when gfp_pfmemalloc_allowed() is true, which means either
__GFP_NOMEMALLOC is in gfp_flags or in_interrupt() is true. There is no
such known context, but let's play it safe and make
__alloc_pages_direct_compact() robust for cases where PF_MEMALLOC is
already set.
Fixes: a8161d1ed6 ("mm, page_alloc: restructure direct compaction handling in slowpath")
Link: http://lkml.kernel.org/r/20170405074700.29871-2-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reported-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Boris Brezillon <boris.brezillon@free-electrons.com>
Cc: Chris Leech <cleech@redhat.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Josef Bacik <jbacik@fb.com>
Cc: Lee Duncan <lduncan@suse.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The migrate scanner in async compaction is currently limited to
MIGRATE_MOVABLE pageblocks. This is a heuristic intended to reduce
latency, based on the assumption that non-MOVABLE pageblocks are
unlikely to contain movable pages.
However, with the exception of THP's, most high-order allocations are
not movable. Should the async compaction succeed, this increases the
chance that the non-MOVABLE allocations will fallback to a MOVABLE
pageblock, making the long-term fragmentation worse.
This patch attempts to help the situation by changing async direct
compaction so that the migrate scanner only scans the pageblocks of the
requested migratetype. If it's a non-MOVABLE type and there are such
pageblocks that do contain movable pages, chances are that the
allocation can succeed within one of such pageblocks, removing the need
for a fallback. If that fails, the subsequent sync attempt will ignore
this restriction.
In testing based on 4.9 kernel with stress-highalloc from mmtests
configured for order-4 GFP_KERNEL allocations, this patch has reduced
the number of unmovable allocations falling back to movable pageblocks
by 30%. The number of movable allocations falling back is reduced by
12%.
Link: http://lkml.kernel.org/r/20170307131545.28577-8-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When stealing pages from pageblock of a different migratetype, we count
how many free pages were stolen, and change the pageblock's migratetype
if more than half of the pageblock was free. This might be too
conservative, as there might be other pages that are not free, but were
allocated with the same migratetype as our allocation requested.
While we cannot determine the migratetype of allocated pages precisely
(at least without the page_owner functionality enabled), we can count
pages that compaction would try to isolate for migration - those are
either on LRU or __PageMovable(). The rest can be assumed to be
MIGRATE_RECLAIMABLE or MIGRATE_UNMOVABLE, which we cannot easily
distinguish. This counting can be done as part of free page stealing
with little additional overhead.
The page stealing code is changed so that it considers free pages plus
pages of the "good" migratetype for the decision whether to change
pageblock's migratetype.
The result should be more accurate migratetype of pageblocks wrt the
actual pages in the pageblocks, when stealing from semi-occupied
pageblocks. This should help the efficiency of page grouping by
mobility.
In testing based on 4.9 kernel with stress-highalloc from mmtests
configured for order-4 GFP_KERNEL allocations, this patch has reduced
the number of unmovable allocations falling back to movable pageblocks
by 47%. The number of movable allocations falling back to other
pageblocks are increased by 55%, but these events don't cause permanent
fragmentation, so the tradeoff should be positive. Later patches also
offset the movable fallback increase to some extent.
[akpm@linux-foundation.org: merge fix]
Link: http://lkml.kernel.org/r/20170307131545.28577-5-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The __rmqueue_fallback() function is called when there's no free page of
requested migratetype, and we need to steal from a different one.
There are various heuristics to make this event infrequent and reduce
permanent fragmentation. The main one is to try stealing from a
pageblock that has the most free pages, and possibly steal them all at
once and convert the whole pageblock. Precise searching for such
pageblock would be expensive, so instead the heuristics walks the free
lists from MAX_ORDER down to requested order and assumes that the block
with highest-order free page is likely to also have the most free pages
in total.
Chances are that together with the highest-order page, we steal also
pages of lower orders from the same block. But then we still split the
highest order page. This is wasteful and can contribute to
fragmentation instead of avoiding it.
This patch thus changes __rmqueue_fallback() to just steal the page(s)
and put them on the freelist of the requested migratetype, and only
report whether it was successful. Then we pick (and eventually split)
the smallest page with __rmqueue_smallest(). This all happens under
zone lock, so nobody can steal it from us in the process. This should
reduce fragmentation due to fallbacks. At worst we are only stealing a
single highest-order page and waste some cycles by moving it between
lists and then removing it, but fallback is not exactly hot path so that
should not be a concern. As a side benefit the patch removes some
duplicate code by reusing __rmqueue_smallest().
[vbabka@suse.cz: fix endless loop in the modified __rmqueue()]
Link: http://lkml.kernel.org/r/59d71b35-d556-4fc9-ee2e-1574259282fd@suse.cz
Link: http://lkml.kernel.org/r/20170307131545.28577-4-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
o Pretty much a full rewrite of the processing of function plugins.
i.e. echo do_IRQ:stacktrace > set_ftrace_filter
o The rewrite was needed to add plugins to be unique to tracing instances.
i.e. mkdir instance/foo; cd instances/foo; echo do_IRQ:stacktrace > set_ftrace_filter
The old way was written very hacky. This removes a lot of those hacks.
o New "function-fork" tracing option. When set, pids in the set_ftrace_pid
will have their children added when the processes with their pids
listed in the set_ftrace_pid file forks.
o Exposure of "maxactive" for kretprobe in kprobe_events
o Allow for builtin init functions to be traced by the function tracer
(via the kernel command line). Module init function tracing will come
in the next release.
o Added more selftests, and have selftests also test in an instance.
-----BEGIN PGP SIGNATURE-----
iQExBAABCAAbBQJZCRchFBxyb3N0ZWR0QGdvb2RtaXMub3JnAAoJEMm5BfJq2Y3L
zuIH/RsLUb8Hj6GmhAvn/tblUDzWyqlXX2h79VVlo/XrWayHYNHnKOmua1WwMZC6
xESXb/AffAc89VWTkKsrwaK7yfRPG6+w8zTZOcFuXSBpqSGG/oey9Fxj5Wqqpche
oJ2UY7ngxANAipkP5GxdYTafFSoWhGZGfUUtW+5tAHoFHzqO2lOjO8olbXP69sON
kVX/b461S20cVvRe5H/F0klXLSc37Tlp5YznXy4H4V4HcJSN1Fb6/uozOXALZ4se
SBpVMWmVVoGJorzj+ic7gVOeohvC8RnR400HbeMVwaI0Lj50noidDj/5Hv8F7T+D
h1B8vATNZLFAFUOSHINCBIu6Vj0=
=t8mg
-----END PGP SIGNATURE-----
Merge tag 'trace-v4.12' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace
Pull tracing updates from Steven Rostedt:
"New features for this release:
- Pretty much a full rewrite of the processing of function plugins.
i.e. echo do_IRQ:stacktrace > set_ftrace_filter
- The rewrite was needed to add plugins to be unique to tracing
instances. i.e. mkdir instance/foo; cd instances/foo; echo
do_IRQ:stacktrace > set_ftrace_filter The old way was written very
hacky. This removes a lot of those hacks.
- New "function-fork" tracing option. When set, pids in the
set_ftrace_pid will have their children added when the processes
with their pids listed in the set_ftrace_pid file forks.
- Exposure of "maxactive" for kretprobe in kprobe_events
- Allow for builtin init functions to be traced by the function
tracer (via the kernel command line). Module init function tracing
will come in the next release.
- Added more selftests, and have selftests also test in an instance"
* tag 'trace-v4.12' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace: (60 commits)
ring-buffer: Return reader page back into existing ring buffer
selftests: ftrace: Allow some event trigger tests to run in an instance
selftests: ftrace: Have some basic tests run in a tracing instance too
selftests: ftrace: Have event tests also run in an tracing instance
selftests: ftrace: Make func_event_triggers and func_traceonoff_triggers tests do instances
selftests: ftrace: Allow some tests to be run in a tracing instance
tracing/ftrace: Allow for instances to trigger their own stacktrace probes
tracing/ftrace: Allow for the traceonoff probe be unique to instances
tracing/ftrace: Enable snapshot function trigger to work with instances
tracing/ftrace: Allow instances to have their own function probes
tracing/ftrace: Add a better way to pass data via the probe functions
ftrace: Dynamically create the probe ftrace_ops for the trace_array
tracing: Pass the trace_array into ftrace_probe_ops functions
tracing: Have the trace_array hold the list of registered func probes
ftrace: If the hash for a probe fails to update then free what was initialized
ftrace: Have the function probes call their own function
ftrace: Have each function probe use its own ftrace_ops
ftrace: Have unregister_ftrace_function_probe_func() return a value
ftrace: Add helper function ftrace_hash_move_and_update_ops()
ftrace: Remove data field from ftrace_func_probe structure
...
Commit c0a32fc5a2 ("mm: more intensive memory corruption debugging")
changed to check debug_guardpage_minorder() > 0 when reporting
allocation failures. The reasoning was
When we use guard page to debug memory corruption, it shrinks
available pages to 1/2, 1/4, 1/8 and so on, depending on parameter
value. In such case memory allocation failures can be common and
printing errors can flood dmesg. If somebody debug corruption,
allocation failures are not the things he/she is interested about.
but this is misguided.
Allocation requests with __GFP_NOWARN flag by definition do not cause
flooding of allocation failure messages. Allocation requests with
__GFP_NORETRY flag likely also have __GFP_NOWARN flag. Costly
allocation requests likely also have __GFP_NOWARN flag.
Allocation requests without __GFP_DIRECT_RECLAIM flag likely also have
__GFP_NOWARN flag or __GFP_HIGH flag. Non-costly allocation requests
with __GFP_DIRECT_RECLAIM flag basically retry forever due to the "too
small to fail" memory-allocation rule.
Therefore, as a whole, shrinking available pages by
debug_guardpage_minorder= kernel boot parameter might cause flooding of
OOM killer messages but unlikely causes flooding of allocation failure
messages. Let's remove debug_guardpage_minorder() > 0 check which would
likely be pointless.
Link: http://lkml.kernel.org/r/1491910035-4231-1-git-send-email-penguin-kernel@I-love.SAKURA.ne.jp
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Stanislaw Gruszka <sgruszka@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Rafael J . Wysocki" <rafael.j.wysocki@intel.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
On SPARSEMEM systems page poisoning is enabled after buddy is up,
because of the dependency on page extension init. This causes the pages
released by free_all_bootmem not to be poisoned. This either delays or
misses the identification of some issues because the pages have to
undergo another cycle of alloc-free-alloc for any corruption to be
detected.
Enable page poisoning early by getting rid of the PAGE_EXT_DEBUG_POISON
flag. Since all the free pages will now be poisoned, the flag need not
be verified before checking the poison during an alloc.
[vinmenon@codeaurora.org: fix Kconfig]
Link: http://lkml.kernel.org/r/1490878002-14423-1-git-send-email-vinmenon@codeaurora.org
Link: http://lkml.kernel.org/r/1490358246-11001-1-git-send-email-vinmenon@codeaurora.org
Signed-off-by: Vinayak Menon <vinmenon@codeaurora.org>
Acked-by: Laura Abbott <labbott@redhat.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Akinobu Mita <akinobu.mita@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__GFP_NOWARN, which is usually added to avoid warnings from callsites
that expect to fail and have fallbacks, currently also suppresses
allocation stall warnings. These trigger when an allocation is stuck
inside the allocator for 10 seconds or longer.
But there is no class of allocations that can get legitimately stuck in
the allocator for this long. This always indicates a problem.
Always emit stall warnings. Restrict __GFP_NOWARN to alloc failures.
Link: http://lkml.kernel.org/r/20170125181150.GA16398@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
GFP_NOFS context is used for the following 5 reasons currently:
- to prevent from deadlocks when the lock held by the allocation
context would be needed during the memory reclaim
- to prevent from stack overflows during the reclaim because the
allocation is performed from a deep context already
- to prevent lockups when the allocation context depends on other
reclaimers to make a forward progress indirectly
- just in case because this would be safe from the fs POV
- silence lockdep false positives
Unfortunately overuse of this allocation context brings some problems to
the MM. Memory reclaim is much weaker (especially during heavy FS
metadata workloads), OOM killer cannot be invoked because the MM layer
doesn't have enough information about how much memory is freeable by the
FS layer.
In many cases it is far from clear why the weaker context is even used
and so it might be used unnecessarily. We would like to get rid of
those as much as possible. One way to do that is to use the flag in
scopes rather than isolated cases. Such a scope is declared when really
necessary, tracked per task and all the allocation requests from within
the context will simply inherit the GFP_NOFS semantic.
Not only this is easier to understand and maintain because there are
much less problematic contexts than specific allocation requests, this
also helps code paths where FS layer interacts with other layers (e.g.
crypto, security modules, MM etc...) and there is no easy way to convey
the allocation context between the layers.
Introduce memalloc_nofs_{save,restore} API to control the scope of
GFP_NOFS allocation context. This is basically copying
memalloc_noio_{save,restore} API we have for other restricted allocation
context GFP_NOIO. The PF_MEMALLOC_NOFS flag already exists and it is
just an alias for PF_FSTRANS which has been xfs specific until recently.
There are no more PF_FSTRANS users anymore so let's just drop it.
PF_MEMALLOC_NOFS is now checked in the MM layer and drops __GFP_FS
implicitly same as PF_MEMALLOC_NOIO drops __GFP_IO. memalloc_noio_flags
is renamed to current_gfp_context because it now cares about both
PF_MEMALLOC_NOFS and PF_MEMALLOC_NOIO contexts. Xfs code paths preserve
their semantic. kmem_flags_convert() doesn't need to evaluate the flag
anymore.
This patch shouldn't introduce any functional changes.
Let's hope that filesystems will drop direct GFP_NOFS (resp. ~__GFP_FS)
usage as much as possible and only use a properly documented
memalloc_nofs_{save,restore} checkpoints where they are appropriate.
[akpm@linux-foundation.org: fix comment typo, reflow comment]
Link: http://lkml.kernel.org/r/20170306131408.9828-5-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Chris Mason <clm@fb.com>
Cc: David Sterba <dsterba@suse.cz>
Cc: Jan Kara <jack@suse.cz>
Cc: Brian Foster <bfoster@redhat.com>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Nikolay Borisov <nborisov@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Introduce two helpers, is_migrate_highatomic() and is_migrate_highatomic_page().
Simplify the code, no functional changes.
[akpm@linux-foundation.org: use static inlines rather than macros, per mhocko]
Link: http://lkml.kernel.org/r/58B94F15.6060606@huawei.com
Signed-off-by: Xishi Qiu <qiuxishi@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The backoff mechanism is not needed. If we have MAX_RECLAIM_RETRIES
loops without progress, we'll OOM anyway; backing off might cut one or
two iterations off that in the rare OOM case. If we have intermittent
success reclaiming a few pages, the backoff function gets reset also,
and so is of little help in these scenarios.
We might want a backoff function for when there IS progress, but not
enough to be satisfactory. But this isn't that. Remove it.
Link: http://lkml.kernel.org/r/20170228214007.5621-10-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Jia He <hejianet@gmail.com>
Cc: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
NR_PAGES_SCANNED counts number of pages scanned since the last page free
event in the allocator. This was used primarily to measure the
reclaimability of zones and nodes, and determine when reclaim should
give up on them. In that role, it has been replaced in the preceding
patches by a different mechanism.
Being implemented as an efficient vmstat counter, it was automatically
exported to userspace as well. It's however unlikely that anyone
outside the kernel is using this counter in any meaningful way.
Remove the counter and the unused pgdat_reclaimable().
Link: http://lkml.kernel.org/r/20170228214007.5621-8-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Jia He <hejianet@gmail.com>
Cc: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm: kswapd spinning on unreclaimable nodes - fixes and
cleanups".
Jia reported a scenario in which the kswapd of a node indefinitely spins
at 100% CPU usage. We have seen similar cases at Facebook.
The kernel's current method of judging its ability to reclaim a node (or
whether to back off and sleep) is based on the amount of scanned pages
in proportion to the amount of reclaimable pages. In Jia's and our
scenarios, there are no reclaimable pages in the node, however, and the
condition for backing off is never met. Kswapd busyloops in an attempt
to restore the watermarks while having nothing to work with.
This series reworks the definition of an unreclaimable node based not on
scanning but on whether kswapd is able to actually reclaim pages in
MAX_RECLAIM_RETRIES (16) consecutive runs. This is the same criteria
the page allocator uses for giving up on direct reclaim and invoking the
OOM killer. If it cannot free any pages, kswapd will go to sleep and
leave further attempts to direct reclaim invocations, which will either
make progress and re-enable kswapd, or invoke the OOM killer.
Patch #1 fixes the immediate problem Jia reported, the remainder are
smaller fixlets, cleanups, and overall phasing out of the old method.
Patch #6 is the odd one out. It's a nice cleanup to get_scan_count(),
and directly related to #5, but in itself not relevant to the series.
If the whole series is too ambitious for 4.11, I would consider the
first three patches fixes, the rest cleanups.
This patch (of 9):
Jia He reports a problem with kswapd spinning at 100% CPU when
requesting more hugepages than memory available in the system:
$ echo 4000 >/proc/sys/vm/nr_hugepages
top - 13:42:59 up 3:37, 1 user, load average: 1.09, 1.03, 1.01
Tasks: 1 total, 1 running, 0 sleeping, 0 stopped, 0 zombie
%Cpu(s): 0.0 us, 12.5 sy, 0.0 ni, 85.5 id, 2.0 wa, 0.0 hi, 0.0 si, 0.0 st
KiB Mem: 31371520 total, 30915136 used, 456384 free, 320 buffers
KiB Swap: 6284224 total, 115712 used, 6168512 free. 48192 cached Mem
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
76 root 20 0 0 0 0 R 100.0 0.000 217:17.29 kswapd3
At that time, there are no reclaimable pages left in the node, but as
kswapd fails to restore the high watermarks it refuses to go to sleep.
Kswapd needs to back away from nodes that fail to balance. Up until
commit 1d82de618d ("mm, vmscan: make kswapd reclaim in terms of
nodes") kswapd had such a mechanism. It considered zones whose
theoretically reclaimable pages it had reclaimed six times over as
unreclaimable and backed away from them. This guard was erroneously
removed as the patch changed the definition of a balanced node.
However, simply restoring this code wouldn't help in the case reported
here: there *are* no reclaimable pages that could be scanned until the
threshold is met. Kswapd would stay awake anyway.
Introduce a new and much simpler way of backing off. If kswapd runs
through MAX_RECLAIM_RETRIES (16) cycles without reclaiming a single
page, make it back off from the node. This is the same number of shots
direct reclaim takes before declaring OOM. Kswapd will go to sleep on
that node until a direct reclaimer manages to reclaim some pages, thus
proving the node reclaimable again.
[hannes@cmpxchg.org: check kswapd failure against the cumulative nr_reclaimed count]
Link: http://lkml.kernel.org/r/20170306162410.GB2090@cmpxchg.org
[shakeelb@google.com: fix condition for throttle_direct_reclaim]
Link: http://lkml.kernel.org/r/20170314183228.20152-1-shakeelb@google.com
Link: http://lkml.kernel.org/r/20170228214007.5621-2-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Reported-by: Jia He <hejianet@gmail.com>
Tested-by: Jia He <hejianet@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
guide for user-space API documents, rather sparsely populated at the
moment, but it's a start. Markus improved the infrastructure for
converting diagrams. Mauro has converted much of the USB documentation
over to RST. Plus the usual set of fixes, improvements, and tweaks.
There's a bit more than the usual amount of reaching out of Documentation/
to fix comments elsewhere in the tree; I have acks for those where I could
get them.
-----BEGIN PGP SIGNATURE-----
iQIcBAABAgAGBQJZB1elAAoJEI3ONVYwIuV6wUIQAJSM/4rNdj6z+GXeWhRfbsOo
vqqVYluvXQIJaaqdsy9dgcfThhOXWYsPyVF6Xd+bDJpwF3BMZYbX1CI1Mo3kRD+7
9+Pf68cYSHRoU3l/sFI8q0zfKbHtmFteIvnRQoFtRaExqgTR8glUfxNDyN9XuNAZ
3naS4qMZivM4gjMcSpIB/wFOQpV+6qVIs6VTFLdCC8wodT3W/Wmb+bqrCVJ0twbB
t8jJeYHt2wsiTdqrKU+VilAUAZ1Lby+DNfeWrO18rC1ohktPyUzOGg8JmTKUBpVO
qj1OJwD6abuaNh/J9bXsh8u0OrVrBKWjVrhq9IFYDlm92fu3Bgr6YeoaVPEpcklt
jdlgZnWs9/oXa6d32aMc9F7mP9a0Q1qikFTYINhaHQZCb4VDRuQ9hCSuqWm5jlVy
lmVAoxLa0zSdOoXaYuO3HC99ku1cIn814CXMDz/IwKXkqUCV+zl+H3AGkvxGyQ5M
eblw2TnQnc6e1LRcxt5bgpFR1JYMbCJhu0U5XrNFueQV8ReB15dvL7h4y21dWJKF
2Sr83rwfG1rpZQiSqCjOXxIzuXbEGH3+a+zCDV5IHhQRt/VNDOt2hgmcyucSSJ5h
5GRFYgTlGvoT/6LdIT39QooHB+4tSDRtEQ6lh0q2ZtVV2rfG/I6/PR5sUbWM65SN
vAfctRm2afHLhdonSX5O
=41m+
-----END PGP SIGNATURE-----
Merge tag 'docs-4.12' of git://git.lwn.net/linux
Pull documentation update from Jonathan Corbet:
"A reasonably busy cycle for documentation this time around. There is a
new guide for user-space API documents, rather sparsely populated at
the moment, but it's a start. Markus improved the infrastructure for
converting diagrams. Mauro has converted much of the USB documentation
over to RST. Plus the usual set of fixes, improvements, and tweaks.
There's a bit more than the usual amount of reaching out of
Documentation/ to fix comments elsewhere in the tree; I have acks for
those where I could get them"
* tag 'docs-4.12' of git://git.lwn.net/linux: (74 commits)
docs: Fix a couple typos
docs: Fix a spelling error in vfio-mediated-device.txt
docs: Fix a spelling error in ioctl-number.txt
MAINTAINERS: update file entry for HSI subsystem
Documentation: allow installing man pages to a user defined directory
Doc/PM: Sync with intel_powerclamp code behavior
zr364xx.rst: usb/devices is now at /sys/kernel/debug/
usb.rst: move documentation from proc_usb_info.txt to USB ReST book
convert philips.txt to ReST and add to media docs
docs-rst: usb: update old usbfs-related documentation
arm: Documentation: update a path name
docs: process/4.Coding.rst: Fix a couple of document refs
docs-rst: fix usb cross-references
usb: gadget.h: be consistent at kernel doc macros
usb: composite.h: fix two warnings when building docs
usb: get rid of some ReST doc build errors
usb.rst: get rid of some Sphinx errors
usb/URB.txt: convert to ReST and update it
usb/persist.txt: convert to ReST and add to driver-api book
usb/hotplug.txt: convert to ReST and add to driver-api book
...
This reverts commit 374ad05ab6.
While the patch worked great for userspace allocations, the fact that
softirq loses the per-cpu allocator caused problems. It needs to be
redone taking into account that a separate list is needed for hard/soft
IRQs or alternatively find a cheap way of detecting reentry due to an
interrupt. Both are possible but sufficiently tricky that it shouldn't
be rushed.
Jesper had one method for allowing softirqs but reported that the cost
was high enough that it performed similarly to a plain revert. His
figures for netperf TCP_STREAM were as follows
Baseline v4.10.0 : 60316 Mbit/s
Current 4.11.0-rc6: 47491 Mbit/s
Jesper's patch : 60662 Mbit/s
This patch : 60106 Mbit/s
As this is a regression, I wish to revert to noirq allocator for now and
go back to the drawing board.
Link: http://lkml.kernel.org/r/20170415145350.ixy7vtrzdzve57mh@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reported-by: Tariq Toukan <ttoukan.linux@gmail.com>
Acked-by: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We currently have 2 specific WQ_RECLAIM workqueues in the mm code.
vmstat_wq for updating pcp stats and lru_add_drain_wq dedicated to drain
per cpu lru caches. This seems more than necessary because both can run
on a single WQ. Both do not block on locks requiring a memory
allocation nor perform any allocations themselves. We will save one
rescuer thread this way.
On the other hand drain_all_pages() queues work on the system wq which
doesn't have rescuer and so this depend on memory allocation (when all
workers are stuck allocating and new ones cannot be created).
Initially we thought this would be more of a theoretical problem but
Hugh Dickins has reported:
: 4.11-rc has been giving me hangs after hours of swapping load. At
: first they looked like memory leaks ("fork: Cannot allocate memory");
: but for no good reason I happened to do "cat /proc/sys/vm/stat_refresh"
: before looking at /proc/meminfo one time, and the stat_refresh stuck
: in D state, waiting for completion of flush_work like many kworkers.
: kthreadd waiting for completion of flush_work in drain_all_pages().
This worker should be using WQ_RECLAIM as well in order to guarantee a
forward progress. We can reuse the same one as for lru draining and
vmstat.
Link: http://lkml.kernel.org/r/20170307131751.24936-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Suggested-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@suse.de>
Tested-by: Yang Li <pku.leo@gmail.com>
Tested-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Relying on free_reserved_area() to call ftrace to free init memory proved to
not be sufficient. The issue is that on x86, when debug_pagealloc is
enabled, the init memory is not freed, but simply set as not present. Since
ftrace was uninformed of this, starting function tracing still tries to
update pages that are not present according to the page tables, causing
ftrace to bug, as well as killing the kernel itself.
Instead of relying on free_reserved_area(), have init/main.c call ftrace
directly just before it frees the init memory. Then it needs to use
__init_begin and __init_end to know where the init memory location is.
Looking at all archs (and testing what I can), it appears that this should
work for each of them.
Reported-by: kernel test robot <xiaolong.ye@intel.com>
Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Adding a hook into free_reserve_area() that informs ftrace that boot up init
text is being free, lets ftrace safely remove those init functions from its
records, which keeps ftrace from trying to modify text that no longer
exists.
Note, this still does not allow for tracing .init text of modules, as
modules require different work for freeing its init code.
Link: http://lkml.kernel.org/r/1488502497.7212.24.camel@linux.intel.com
Cc: linux-mm@kvack.org
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Requested-by: Todd Brandt <todd.e.brandt@linux.intel.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Commit 13ad59df67 ("mm, page_alloc: avoid page_to_pfn() when merging
buddies") moved the check for memory holes out of page_is_buddy() and
had the callers do the check.
But this wasn't done correctly in one place which caused ia64 to crash
very early in boot.
Update to fix that and make ia64 boot again.
[ v2: Vlastimil pointed out we don't need to call page_to_pfn()
since we already have the result of that in "buddy_pfn" ]
Fixes: 13ad59df67 ("avoid page_to_pfn() when merging buddies")
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Update the .c files that depend on these APIs.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Fix typos and add the following to the scripts/spelling.txt:
algined||aligned
While we are here, fix the "appplication" in the touched line in
drivers/block/loop.c. Also, fix the "may not naturally ..." to
"may not be naturally ..." in the touched line in mm/page_alloc.
Link: http://lkml.kernel.org/r/1481573103-11329-9-git-send-email-yamada.masahiro@socionext.com
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
arch_zone_lowest/highest_possible_pfn[] is set to 0 and [ZONE_MOVABLE]
is skipped in the loop. No need to reset them to 0 again.
This patch just removes the redundant code.
Link: http://lkml.kernel.org/r/20170209141731.60208-1-richard.weiyang@gmail.com
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When @node_reclaim_node isn't 0, the page allocator tries to reclaim
pages if the amount of free memory in the zones are below the low
watermark. On Power platform, none of NUMA nodes are scanned for page
reclaim because no nodes match the condition in zone_allows_reclaim().
On Power platform, RECLAIM_DISTANCE is set to 10 which is the distance
of Node-A to Node-A. So the preferred node even won't be scanned for
page reclaim.
__alloc_pages_nodemask()
get_page_from_freelist()
zone_allows_reclaim()
Anton proposed the test code as below:
# cat alloc.c
:
int main(int argc, char *argv[])
{
void *p;
unsigned long size;
unsigned long start, end;
start = time(NULL);
size = strtoul(argv[1], NULL, 0);
printf("To allocate %ldGB memory\n", size);
size <<= 30;
p = malloc(size);
assert(p);
memset(p, 0, size);
end = time(NULL);
printf("Used time: %ld seconds\n", end - start);
sleep(3600);
return 0;
}
The system I use for testing has two NUMA nodes. Both have 128GB
memory. In below scnario, the page caches on node#0 should be reclaimed
when it encounters pressure to accommodate request of allocation.
# echo 2 > /proc/sys/vm/zone_reclaim_mode; \
sync; \
echo 3 > /proc/sys/vm/drop_caches; \
# taskset -c 0 cat file.32G > /dev/null; \
grep FilePages /sys/devices/system/node/node0/meminfo
Node 0 FilePages: 33619712 kB
# taskset -c 0 ./alloc 128
# grep FilePages /sys/devices/system/node/node0/meminfo
Node 0 FilePages: 33619840 kB
# grep MemFree /sys/devices/system/node/node0/meminfo
Node 0 MemFree: 186816 kB
With the patch applied, the pagecache on node-0 is reclaimed when its
free memory is running out. It's the expected behaviour.
# echo 2 > /proc/sys/vm/zone_reclaim_mode; \
sync; \
echo 3 > /proc/sys/vm/drop_caches
# taskset -c 0 cat file.32G > /dev/null; \
grep FilePages /sys/devices/system/node/node0/meminfo
Node 0 FilePages: 33605568 kB
# taskset -c 0 ./alloc 128
# grep FilePages /sys/devices/system/node/node0/meminfo
Node 0 FilePages: 1379520 kB
# grep MemFree /sys/devices/system/node/node0/meminfo
Node 0 MemFree: 317120 kB
Fixes: 5f7a75acdb ("mm: page_alloc: do not cache reclaim distances")
Link: http://lkml.kernel.org/r/1486532455-29613-1-git-send-email-gwshan@linux.vnet.ibm.com
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Anton Blanchard <anton@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: <stable@vger.kernel.org> [3.16+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently alloc_contig_range assumes that the compaction should be done
with the default GFP_KERNEL flags. This is probably right for all
current uses of this interface, but may change as CMA is used in more
use-cases (including being the default DMA memory allocator on some
platforms).
Change the function prototype, to allow for passing through the GFP mask
set by upper layers.
Also respect global restrictions by applying memalloc_noio_flags to the
passed in flags.
Link: http://lkml.kernel.org/r/20170127172328.18574-1-l.stach@pengutronix.de
Signed-off-by: Lucas Stach <l.stach@pengutronix.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Radim Krcmar <rkrcmar@redhat.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Alexander Graf <agraf@suse.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We had considered all of the non-lru pages as unmovable before commit
bda807d444 ("mm: migrate: support non-lru movable page migration").
But now some of non-lru pages like zsmalloc, virtio-balloon pages also
become movable. So we can offline such blocks by using non-lru page
migration.
This patch straightforwardly adds non-lru migration code, which means
adding non-lru related code to the functions which scan over pfn and
collect pages to be migrated and isolate them before migration.
Signed-off-by: Yisheng Xie <xieyisheng1@huawei.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Hanjun Guo <guohanjun@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Taku Izumi <izumi.taku@jp.fujitsu.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Yisheng Xie <xieyisheng1@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As suggested by Vlastimil Babka and Tejun Heo, this patch uses a static
work_struct to co-ordinate the draining of per-cpu pages on the
workqueue. Only one task can drain at a time but this is better than
the previous scheme that allowed multiple tasks to send IPIs at a time.
One consideration is whether parallel requests should synchronise
against each other. This patch does not synchronise for a global drain
as the common case for such callers is expected to be multiple parallel
direct reclaimers competing for pages when the watermark is close to
min. Draining the per-cpu list is unlikely to make much progress and
serialising the drain is of dubious merit. Drains are synchonrised for
callers such as memory hotplug and CMA that care about the drain being
complete when the function returns.
Link: http://lkml.kernel.org/r/20170125083038.rzb5f43nptmk7aed@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Suggested-by: Tejun Heo <tj@kernel.org>
Suggested-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit 682a3385e7 ("mm, page_alloc: inline the fast path of the
zonelist iterator") we replace a NULL nodemask with
cpuset_current_mems_allowed in the fast path, so that
get_page_from_freelist() filters nodes allowed by the cpuset via
for_next_zone_zonelist_nodemask().
In that case it's pointless to additionaly check __cpuset_zone_allowed()
in each iteration, which we can avoid by not adding ALLOC_CPUSET to
alloc_flags in that scenario.
This saves some cycles in the allocator fast path on systems with one or
more non-root cpuset configured. In the slow path, ALLOC_CPUSET is
reset according to __alloc_pages_slowpath(). Without configured
cpusets, this code is disabled by a static key.
Link: http://lkml.kernel.org/r/20170124150511.5710-2-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The allocation fast path contains two similar checks for zoneref->zone
being NULL, where zoneref points either to the first zone in the
zonelist, or to the preferred zone. These can be NULL either due to
empty zonelist, or no zone being compatible with given nodemask or
task's cpuset.
These checks are unnecessary, because the zonelist walks in
first_zones_zonelist() and get_page_from_freelist() handle a NULL
starting zoneref->zone or preferred_zoneref->zone safely. It's safe to
fallback to __alloc_pages_slowpath() where we also have the check early
enough.
Link: http://lkml.kernel.org/r/20170124150511.5710-1-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Many workloads that allocate pages are not handling an interrupt at a
time. As allocation requests may be from IRQ context, it's necessary to
disable/enable IRQs for every page allocation. This cost is the bulk of
the free path but also a significant percentage of the allocation path.
This patch alters the locking and checks such that only irq-safe
allocation requests use the per-cpu allocator. All others acquire the
irq-safe zone->lock and allocate from the buddy allocator. It relies on
disabling preemption to safely access the per-cpu structures. It could
be slightly modified to avoid soft IRQs using it but it's not clear it's
worthwhile.
This modification may slow allocations from IRQ context slightly but the
main gain from the per-cpu allocator is that it scales better for
allocations from multiple contexts. There is an implicit assumption
that intensive allocations from IRQ contexts on multiple CPUs from a
single NUMA node are rare and that the fast majority of scaling issues
are encountered in !IRQ contexts such as page faulting. It's worth
noting that this patch is not required for a bulk page allocator but it
significantly reduces the overhead.
The following is results from a page allocator micro-benchmark. Only
order-0 is interesting as higher orders do not use the per-cpu allocator
4.10.0-rc2 4.10.0-rc2
vanilla irqsafe-v1r5
Amean alloc-odr0-1 287.15 ( 0.00%) 219.00 ( 23.73%)
Amean alloc-odr0-2 221.23 ( 0.00%) 183.23 ( 17.18%)
Amean alloc-odr0-4 187.00 ( 0.00%) 151.38 ( 19.05%)
Amean alloc-odr0-8 167.54 ( 0.00%) 132.77 ( 20.75%)
Amean alloc-odr0-16 156.00 ( 0.00%) 123.00 ( 21.15%)
Amean alloc-odr0-32 149.00 ( 0.00%) 118.31 ( 20.60%)
Amean alloc-odr0-64 138.77 ( 0.00%) 116.00 ( 16.41%)
Amean alloc-odr0-128 145.00 ( 0.00%) 118.00 ( 18.62%)
Amean alloc-odr0-256 136.15 ( 0.00%) 125.00 ( 8.19%)
Amean alloc-odr0-512 147.92 ( 0.00%) 121.77 ( 17.68%)
Amean alloc-odr0-1024 147.23 ( 0.00%) 126.15 ( 14.32%)
Amean alloc-odr0-2048 155.15 ( 0.00%) 129.92 ( 16.26%)
Amean alloc-odr0-4096 164.00 ( 0.00%) 136.77 ( 16.60%)
Amean alloc-odr0-8192 166.92 ( 0.00%) 138.08 ( 17.28%)
Amean alloc-odr0-16384 159.00 ( 0.00%) 138.00 ( 13.21%)
Amean free-odr0-1 165.00 ( 0.00%) 89.00 ( 46.06%)
Amean free-odr0-2 113.00 ( 0.00%) 63.00 ( 44.25%)
Amean free-odr0-4 99.00 ( 0.00%) 54.00 ( 45.45%)
Amean free-odr0-8 88.00 ( 0.00%) 47.38 ( 46.15%)
Amean free-odr0-16 83.00 ( 0.00%) 46.00 ( 44.58%)
Amean free-odr0-32 80.00 ( 0.00%) 44.38 ( 44.52%)
Amean free-odr0-64 72.62 ( 0.00%) 43.00 ( 40.78%)
Amean free-odr0-128 78.00 ( 0.00%) 42.00 ( 46.15%)
Amean free-odr0-256 80.46 ( 0.00%) 57.00 ( 29.16%)
Amean free-odr0-512 96.38 ( 0.00%) 64.69 ( 32.88%)
Amean free-odr0-1024 107.31 ( 0.00%) 72.54 ( 32.40%)
Amean free-odr0-2048 108.92 ( 0.00%) 78.08 ( 28.32%)
Amean free-odr0-4096 113.38 ( 0.00%) 82.23 ( 27.48%)
Amean free-odr0-8192 112.08 ( 0.00%) 82.85 ( 26.08%)
Amean free-odr0-16384 110.38 ( 0.00%) 81.92 ( 25.78%)
Amean total-odr0-1 452.15 ( 0.00%) 308.00 ( 31.88%)
Amean total-odr0-2 334.23 ( 0.00%) 246.23 ( 26.33%)
Amean total-odr0-4 286.00 ( 0.00%) 205.38 ( 28.19%)
Amean total-odr0-8 255.54 ( 0.00%) 180.15 ( 29.50%)
Amean total-odr0-16 239.00 ( 0.00%) 169.00 ( 29.29%)
Amean total-odr0-32 229.00 ( 0.00%) 162.69 ( 28.96%)
Amean total-odr0-64 211.38 ( 0.00%) 159.00 ( 24.78%)
Amean total-odr0-128 223.00 ( 0.00%) 160.00 ( 28.25%)
Amean total-odr0-256 216.62 ( 0.00%) 182.00 ( 15.98%)
Amean total-odr0-512 244.31 ( 0.00%) 186.46 ( 23.68%)
Amean total-odr0-1024 254.54 ( 0.00%) 198.69 ( 21.94%)
Amean total-odr0-2048 264.08 ( 0.00%) 208.00 ( 21.24%)
Amean total-odr0-4096 277.38 ( 0.00%) 219.00 ( 21.05%)
Amean total-odr0-8192 279.00 ( 0.00%) 220.92 ( 20.82%)
Amean total-odr0-16384 269.38 ( 0.00%) 219.92 ( 18.36%)
This is the alloc, free and total overhead of allocating order-0 pages
in batches of 1 page up to 16384 pages. Avoiding disabling/enabling
overhead massively reduces overhead. Alloc overhead is roughly reduced
by 14-20% in most cases. The free path is reduced by 26-46% and the
total reduction is significant.
Many users require zeroing of pages from the page allocator which is the
vast cost of allocation. Hence, the impact on a basic page faulting
benchmark is not that significant
4.10.0-rc2 4.10.0-rc2
vanilla irqsafe-v1r5
Hmean page_test 656632.98 ( 0.00%) 675536.13 ( 2.88%)
Hmean brk_test 3845502.67 ( 0.00%) 3867186.94 ( 0.56%)
Stddev page_test 10543.29 ( 0.00%) 4104.07 ( 61.07%)
Stddev brk_test 33472.36 ( 0.00%) 15538.39 ( 53.58%)
CoeffVar page_test 1.61 ( 0.00%) 0.61 ( 62.15%)
CoeffVar brk_test 0.87 ( 0.00%) 0.40 ( 53.84%)
Max page_test 666513.33 ( 0.00%) 678640.00 ( 1.82%)
Max brk_test 3882800.00 ( 0.00%) 3887008.66 ( 0.11%)
This is from aim9 and the most notable outcome is that fault variability
is reduced by the patch. The headline improvement is small as the
overall fault cost, zeroing, page table insertion etc dominate relative
to disabling/enabling IRQs in the per-cpu allocator.
Similarly, little benefit was seen on networking benchmarks both
localhost and between physical server/clients where other costs
dominate. It's possible that this will only be noticable on very high
speed networks.
Jesper Dangaard Brouer independently tested this with a separate
microbenchmark from
https://github.com/netoptimizer/prototype-kernel/tree/master/kernel/mm/bench
Micro-benchmarked with [1] page_bench02:
modprobe page_bench02 page_order=0 run_flags=$((2#010)) loops=$((10**8)); \
rmmod page_bench02 ; dmesg --notime | tail -n 4
Compared to baseline: 213 cycles(tsc) 53.417 ns
- against this : 184 cycles(tsc) 46.056 ns
- Saving : -29 cycles
- Very close to expected 27 cycles saving [see below [2]]
Micro benchmarking via time_bench_sample[3], we get the cost of these
operations:
time_bench: Type:for_loop Per elem: 0 cycles(tsc) 0.232 ns (step:0)
time_bench: Type:spin_lock_unlock Per elem: 33 cycles(tsc) 8.334 ns (step:0)
time_bench: Type:spin_lock_unlock_irqsave Per elem: 62 cycles(tsc) 15.607 ns (step:0)
time_bench: Type:irqsave_before_lock Per elem: 57 cycles(tsc) 14.344 ns (step:0)
time_bench: Type:spin_lock_unlock_irq Per elem: 34 cycles(tsc) 8.560 ns (step:0)
time_bench: Type:simple_irq_disable_before_lock Per elem: 37 cycles(tsc) 9.289 ns (step:0)
time_bench: Type:local_BH_disable_enable Per elem: 19 cycles(tsc) 4.920 ns (step:0)
time_bench: Type:local_IRQ_disable_enable Per elem: 7 cycles(tsc) 1.864 ns (step:0)
time_bench: Type:local_irq_save_restore Per elem: 38 cycles(tsc) 9.665 ns (step:0)
[Mel's patch removes a ^^^^^^^^^^^^^^^^] ^^^^^^^^^ expected saving - preempt cost
time_bench: Type:preempt_disable_enable Per elem: 11 cycles(tsc) 2.794 ns (step:0)
[adds a preempt ^^^^^^^^^^^^^^^^^^^^^^] ^^^^^^^^^ adds this cost
time_bench: Type:funcion_call_cost Per elem: 6 cycles(tsc) 1.689 ns (step:0)
time_bench: Type:func_ptr_call_cost Per elem: 11 cycles(tsc) 2.767 ns (step:0)
time_bench: Type:page_alloc_put Per elem: 211 cycles(tsc) 52.803 ns (step:0)
Thus, expected improvement is: 38-11 = 27 cycles.
[mgorman@techsingularity.net: s/preempt_enable_no_resched/preempt_enable/]
Link: http://lkml.kernel.org/r/20170208143128.25ahymqlyspjcixu@techsingularity.net
Link: http://lkml.kernel.org/r/20170123153906.3122-5-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Jesper Dangaard Brouer <brouer@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Dmitry has reported the following lockdep splat
lock_acquire+0x2a1/0x630 kernel/locking/lockdep.c:3753
__mutex_lock_common kernel/locking/mutex.c:521 [inline]
mutex_lock_nested+0x24e/0xff0 kernel/locking/mutex.c:621
pcpu_alloc+0xbda/0x1280 mm/percpu.c:896
__alloc_percpu+0x24/0x30 mm/percpu.c:1075
smpcfd_prepare_cpu+0x73/0xd0 kernel/smp.c:44
cpuhp_invoke_callback+0x254/0x1480 kernel/cpu.c:136
cpuhp_up_callbacks+0x81/0x2a0 kernel/cpu.c:493
_cpu_up+0x1e3/0x2a0 kernel/cpu.c:1057
do_cpu_up+0x73/0xa0 kernel/cpu.c:1087
cpu_up+0x18/0x20 kernel/cpu.c:1095
smp_init+0xe9/0xee kernel/smp.c:564
kernel_init_freeable+0x439/0x690 init/main.c:1010
kernel_init+0x13/0x180 init/main.c:941
ret_from_fork+0x2a/0x40 arch/x86/entry/entry_64.S:433
cpu_hotplug_begin
cpu_hotplug.lock
pcpu_alloc
pcpu_alloc_mutex
get_online_cpus+0x62/0x90 kernel/cpu.c:248
drain_all_pages+0xf8/0x710 mm/page_alloc.c:2385
__alloc_pages_direct_reclaim mm/page_alloc.c:3440 [inline]
__alloc_pages_slowpath+0x8fd/0x2370 mm/page_alloc.c:3778
__alloc_pages_nodemask+0x8f5/0xc60 mm/page_alloc.c:3980
__alloc_pages include/linux/gfp.h:426 [inline]
__alloc_pages_node include/linux/gfp.h:439 [inline]
alloc_pages_node include/linux/gfp.h:453 [inline]
pcpu_alloc_pages mm/percpu-vm.c:93 [inline]
pcpu_populate_chunk+0x1e1/0x900 mm/percpu-vm.c:282
pcpu_alloc+0xe01/0x1280 mm/percpu.c:998
__alloc_percpu_gfp+0x27/0x30 mm/percpu.c:1062
bpf_array_alloc_percpu kernel/bpf/arraymap.c:34 [inline]
array_map_alloc+0x532/0x710 kernel/bpf/arraymap.c:99
find_and_alloc_map kernel/bpf/syscall.c:34 [inline]
map_create kernel/bpf/syscall.c:188 [inline]
SYSC_bpf kernel/bpf/syscall.c:870 [inline]
SyS_bpf+0xd64/0x2500 kernel/bpf/syscall.c:827
entry_SYSCALL_64_fastpath+0x1f/0xc2
pcpu_alloc
pcpu_alloc_mutex
drain_all_pages
get_online_cpus
cpu_hotplug.lock
cpu_hotplug_begin+0x206/0x2e0 kernel/cpu.c:304
_cpu_up+0xca/0x2a0 kernel/cpu.c:1011
do_cpu_up+0x73/0xa0 kernel/cpu.c:1087
cpu_up+0x18/0x20 kernel/cpu.c:1095
smp_init+0xe9/0xee kernel/smp.c:564
kernel_init_freeable+0x439/0x690 init/main.c:1010
kernel_init+0x13/0x180 init/main.c:941
ret_from_fork+0x2a/0x40 arch/x86/entry/entry_64.S:433
cpu_hotplug_begin
cpu_hotplug.lock
Pulling cpu hotplug locks inside the page allocator is just too
dangerous. Let's remove the dependency by dropping get_online_cpus()
from drain_all_pages. This is not so simple though because now we do
not have a protection against cpu hotplug which means 2 things:
- the work item might be executed on a different cpu in worker from
unbound pool so it doesn't run on pinned on the cpu
- we have to make sure that we do not race with page_alloc_cpu_dead
calling drain_pages_zone
Disabling preemption in drain_local_pages_wq will solve the first
problem drain_local_pages will determine its local CPU from the WQ
context which will be stable after that point, page_alloc_cpu_dead is
pinned to the CPU already. The later condition is achieved by disabling
IRQs in drain_pages_zone.
Fixes: mm, page_alloc: drain per-cpu pages from workqueue context
Link: http://lkml.kernel.org/r/20170207201950.20482-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The per-cpu page allocator can be drained immediately via
drain_all_pages() which sends IPIs to every CPU. In the next patch, the
per-cpu allocator will only be used for interrupt-safe allocations which
prevents draining it from IPI context. This patch uses workqueues to
drain the per-cpu lists instead.
This is slower but no slowdown during intensive reclaim was measured and
the paths that use drain_all_pages() are not that sensitive to
performance. This is particularly true as the path would only be
triggered when reclaim is failing. It also makes a some sense to avoid
storming a machine with IPIs when it's under memory pressure. Arguably,
it should be further adjusted so that only one caller at a time is
draining pages but it's beyond the scope of the current patch.
Link: http://lkml.kernel.org/r/20170123153906.3122-4-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
alloc_pages_nodemask does a number of preperation steps that determine
what zones can be used for the allocation depending on a variety of
factors. This is fine but a hypothetical caller that wanted multiple
order-0 pages has to do the preparation steps multiple times. This
patch structures __alloc_pages_nodemask such that it's relatively easy
to build a bulk order-0 page allocator. There is no functional change.
Link: http://lkml.kernel.org/r/20170123153906.3122-3-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Use per-cpu allocator for !irq requests and prepare for a
bulk allocator", v5.
This series is motivated by a conversation led by Jesper Dangaard Brouer
at the last LSF/MM proposing a generic page pool for DMA-coherent pages.
Part of his motivation was due to the overhead of allocating multiple
order-0 that led some drivers to use high-order allocations and
splitting them. This is very slow in some cases.
The first two patches in this series restructure the page allocator such
that it is relatively easy to introduce an order-0 bulk page allocator.
A patch exists to do that and has been handed over to Jesper until an
in-kernel users is created. The third patch prevents the per-cpu
allocator being drained from IPI context as that can potentially corrupt
the list after patch four is merged. The final patch alters the per-cpu
alloctor to make it exclusive to !irq requests. This cuts
allocation/free overhead by roughly 30%.
Performance tests from both Jesper and me are included in the patch.
This patch (of 4):
buffered_rmqueue removes a page from a given zone and uses the per-cpu
list for order-0. This is fine but a hypothetical caller that wanted
multiple order-0 pages has to disable/reenable interrupts multiple
times. This patch structures buffere_rmqueue such that it's relatively
easy to build a bulk order-0 page allocator. There is no functional
change.
[mgorman@techsingularity.net: failed per-cpu refill may blow up]
Link: http://lkml.kernel.org/r/20170124112723.mshmgwq2ihxku2um@techsingularity.net
Link: http://lkml.kernel.org/r/20170123153906.3122-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The patch "mm, page_alloc: warn_alloc print nodemask" implicitly sets
the allocation nodemask to cpuset_current_mems_allowed when there is no
effective mempolicy. cpuset_current_mems_allowed is only effective when
cpusets are enabled, which is also printed by warn_alloc(), so setting
the nodemask to cpuset_current_mems_allowed is redundant and prevents
debugging issues where ac->nodemask is not set properly in the page
allocator.
This provides better debugging output since
cpuset_print_current_mems_allowed() is already provided.
Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1701181347320.142399@chino.kir.corp.google.com
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now that __GFP_NOFAIL doesn't override decisions to skip the oom killer
we are left with requests which require to loop inside the allocator
without invoking the oom killer (e.g. GFP_NOFS|__GFP_NOFAIL used by fs
code) and so they might, in very unlikely situations, loop for ever -
e.g. other parallel request could starve them.
This patch tries to limit the likelihood of such a lockup by giving
these __GFP_NOFAIL requests a chance to move on by consuming a small
part of memory reserves. We are using ALLOC_HARDER which should be
enough to prevent from the starvation by regular allocation requests,
yet it shouldn't consume enough from the reserves to disrupt high
priority requests (ALLOC_HIGH).
While we are at it, let's introduce a helper __alloc_pages_cpuset_fallback
which enforces the cpusets but allows to fallback to ignore them if the
first attempt fails. __GFP_NOFAIL requests can be considered important
enough to allow cpuset runaway in order for the system to move on. It
is highly unlikely that any of these will be GFP_USER anyway.
Link: http://lkml.kernel.org/r/20161220134904.21023-4-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__alloc_pages_may_oom makes sure to skip the OOM killer depending on the
allocation request. This includes lowmem requests, costly high order
requests and others. For a long time __GFP_NOFAIL acted as an override
for all those rules. This is not documented and it can be quite
surprising as well. E.g. GFP_NOFS requests are not invoking the OOM
killer but GFP_NOFS|__GFP_NOFAIL does so if we try to convert some of
the existing open coded loops around allocator to nofail request (and we
have done that in the past) then such a change would have a non trivial
side effect which is far from obvious. Note that the primary motivation
for skipping the OOM killer is to prevent from pre-mature invocation.
The exception has been added by commit 82553a937f ("oom: invoke oom
killer for __GFP_NOFAIL"). The changelog points out that the oom killer
has to be invoked otherwise the request would be looping for ever. But
this argument is rather weak because the OOM killer doesn't really
guarantee a forward progress for those exceptional cases:
- it will hardly help to form costly order which in turn can result in
the system panic because of no oom killable task in the end - I believe
we certainly do not want to put the system down just because there is a
nasty driver asking for order-9 page with GFP_NOFAIL not realizing all
the consequences. It is much better this request would loop for ever
than the massive system disruption
- lowmem is also highly unlikely to be freed during OOM killer
- GFP_NOFS request could trigger while there is still a lot of memory
pinned by filesystems.
This patch simply removes the __GFP_NOFAIL special case in order to have a
more clear semantic without surprising side effects.
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Nils Holland <nholland@tisys.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Tetsuo Handa has pointed out that commit 0a0337e0d1 ("mm, oom: rework
oom detection") has subtly changed semantic for costly high order
requests with __GFP_NOFAIL and withtout __GFP_REPEAT and those can fail
right now. My code inspection didn't reveal any such users in the tree
but it is true that this might lead to unexpected allocation failures
and subsequent OOPs.
__alloc_pages_slowpath wrt. GFP_NOFAIL is hard to follow currently.
There are few special cases but we are lacking a catch all place to be
sure we will not miss any case where the non failing allocation might
fail. This patch reorganizes the code a bit and puts all those special
cases under nopage label which is the generic go-to-fail path. Non
failing allocations are retried or those that cannot retry like
non-sleeping allocation go to the failure point directly. This should
make the code flow much easier to follow and make it less error prone
for future changes.
While we are there we have to move the stall check up to catch
potentially looping non-failing allocations.
[akpm@linux-foundation.org: fix alloc_flags may-be-used-uninitalized]
Link: http://lkml.kernel.org/r/20161220134904.21023-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
show_mem() allows to filter out node specific data which is irrelevant
to the allocation request via SHOW_MEM_FILTER_NODES. The filtering is
done in skip_free_areas_node which skips all nodes which are not in the
mems_allowed of the current process. This works most of the time as
expected because the nodemask shouldn't be outside of the allocating
task but there are some exceptions. E.g. memory hotplug might want to
request allocations from outside of the allowed nodes (see
new_node_page).
Get rid of this hardcoded behavior and push the allocation mask down the
show_mem path and use it instead of cpuset_current_mems_allowed. NULL
nodemask is interpreted as cpuset_current_mems_allowed.
[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/20170117091543.25850-5-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
warn_alloc is currently used for to report an allocation failure or an
allocation stall. We print some details of the allocation request like
the gfp mask and the request order. We do not print the allocation
nodemask which is important when debugging the reason for the allocation
failure as well. We alreaddy print the nodemask in the OOM report.
Add nodemask to warn_alloc and print it in warn_alloc as well.
Link: http://lkml.kernel.org/r/20170117091543.25850-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "show_mem updates", v2.
This is a mixture of one bug fix (patch 1), an enhancement (patch 2) and
cleanups (the rest of the series). First two patches should be really
straightforward. Patch 3 removes some arch specific show_mem
implementations because I think they are quite outdated and do not
really serve any useful purpose anymore. I think we should really
strive to have a consistent show_mem output regardless of the
architecture. If some architecture is really special and wants to dump
something additional we should do that via an arch specific hook.
The last patch adds nodemask parameter so that we do not rely on the
hardcoded mems_allowed of the current task when doing the node
filtering. I consider this more a cleanup than a fix because basically
all users use a nodemask which is a subset of mems_allowed. There is
only one call path in the memory hotplug which doesn't comply with this
but that is hardly something to worry about.
This patch (of 4):
Commit 599d0c954f ("mm, vmscan: move LRU lists to node") has added per
numa node statistics to show_mem but it forgot to add
skip_free_areas_node to filter out nodes which are outside of the
allocating task numa policy. Add this check to not pollute the output
with the pointless information.
Link: http://lkml.kernel.org/r/20170117091543.25850-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When using a sparse memory model memmap_init_zone() when invoked with
the MEMMAP_EARLY context will skip over pages which aren't valid - ie.
which aren't in a populated region of the sparse memory map. However if
the memory map is extremely sparse then it can spend a long time
linearly checking each PFN in a large non-populated region of the memory
map & skipping it in turn.
When CONFIG_HAVE_MEMBLOCK_NODE_MAP is enabled, we have sufficient
information to quickly discover the next valid PFN given an invalid one
by searching through the list of memory regions & skipping forwards to
the first PFN covered by the memory region to the right of the
non-populated region. Implement this in order to speed up
memmap_init_zone() for systems with extremely sparse memory maps.
James said "I have tested this patch on a virtual model of a Samurai CPU
with a sparse memory map. The kernel boot time drops from 109 to
62 seconds. "
Link: http://lkml.kernel.org/r/20161125185518.29885-1-paul.burton@imgtec.com
Signed-off-by: Paul Burton <paul.burton@imgtec.com>
Tested-by: James Hartley <james.hartley@imgtec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Higher order requests oom debugging is currently quite hard. We do have
some compaction points which can tell us how the compaction is operating
but there is no trace point to tell us about compaction retry logic.
This patch adds a one which will have the following format
bash-3126 [001] .... 1498.220001: compact_retry: order=9 priority=COMPACT_PRIO_SYNC_LIGHT compaction_result=withdrawn retries=0 max_retries=16 should_retry=0
we can see that the order 9 request is not retried even though we are in
the highest compaction priority mode becase the last compaction attempt
was withdrawn. This means that compaction_zonelist_suitable must have
returned false and there is no suitable zone to compact for this request
and so no need to retry further.
another example would be
<...>-3137 [001] .... 81.501689: compact_retry: order=9 priority=COMPACT_PRIO_SYNC_LIGHT compaction_result=failed retries=0 max_retries=16 should_retry=0
in this case the order-9 compaction failed to find any suitable block.
We do not retry anymore because this is a costly request and those do
not go below COMPACT_PRIO_SYNC_LIGHT priority.
Link: http://lkml.kernel.org/r/20161220130135.15719-4-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
should_reclaim_retry is the central decision point for declaring the
OOM. It might be really useful to expose data used for this decision
making when debugging an unexpected oom situations.
Say we have an OOM report:
[ 52.264001] mem_eater invoked oom-killer: gfp_mask=0x24280ca(GFP_HIGHUSER_MOVABLE|__GFP_ZERO), nodemask=0, order=0, oom_score_adj=0
[ 52.267549] CPU: 3 PID: 3148 Comm: mem_eater Tainted: G W 4.8.0-oomtrace3-00006-gb21338b386d2 #1024
Now we can check the tracepoint data to see how we have ended up in this
situation:
mem_eater-3148 [003] .... 52.432801: reclaim_retry_zone: node=0 zone=DMA32 order=0 reclaimable=51 available=11134 min_wmark=11084 no_progress_loops=1 wmark_check=1
mem_eater-3148 [003] .... 52.433269: reclaim_retry_zone: node=0 zone=DMA32 order=0 reclaimable=51 available=11103 min_wmark=11084 no_progress_loops=1 wmark_check=1
mem_eater-3148 [003] .... 52.433712: reclaim_retry_zone: node=0 zone=DMA32 order=0 reclaimable=51 available=11100 min_wmark=11084 no_progress_loops=2 wmark_check=1
mem_eater-3148 [003] .... 52.434067: reclaim_retry_zone: node=0 zone=DMA32 order=0 reclaimable=51 available=11097 min_wmark=11084 no_progress_loops=3 wmark_check=1
mem_eater-3148 [003] .... 52.434414: reclaim_retry_zone: node=0 zone=DMA32 order=0 reclaimable=51 available=11094 min_wmark=11084 no_progress_loops=4 wmark_check=1
mem_eater-3148 [003] .... 52.434761: reclaim_retry_zone: node=0 zone=DMA32 order=0 reclaimable=51 available=11091 min_wmark=11084 no_progress_loops=5 wmark_check=1
mem_eater-3148 [003] .... 52.435108: reclaim_retry_zone: node=0 zone=DMA32 order=0 reclaimable=51 available=11087 min_wmark=11084 no_progress_loops=6 wmark_check=1
mem_eater-3148 [003] .... 52.435478: reclaim_retry_zone: node=0 zone=DMA32 order=0 reclaimable=51 available=11084 min_wmark=11084 no_progress_loops=7 wmark_check=0
mem_eater-3148 [003] .... 52.435478: reclaim_retry_zone: node=0 zone=DMA order=0 reclaimable=0 available=1126 min_wmark=179 no_progress_loops=7 wmark_check=0
The above shows that we can quickly deduce that the reclaim stopped
making any progress (see no_progress_loops increased in each round) and
while there were still some 51 reclaimable pages they couldn't be
dropped for some reason (vmscan trace points would tell us more about
that part). available will represent reclaimable + free_pages scaled
down per no_progress_loops factor. This is essentially an optimistic
estimate of how much memory we would have when reclaiming everything.
This can be compared to min_wmark to get a rought idea but the
wmark_check tells the result of the watermark check which is more
precise (includes lowmem reserves, considers the order etc.). As we can
see no zone is eligible in the end and that is why we have triggered the
oom in this situation.
Please note that higher order requests might fail on the wmark_check
even when there is much more memory available than min_wmark - e.g.
when the memory is fragmented. A follow up tracepoint will help to
debug those situations.
Link: http://lkml.kernel.org/r/20161220130135.15719-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
On architectures that allow memory holes, page_is_buddy() has to perform
page_to_pfn() to check for the memory hole. After the previous patch,
we have the pfn already available in __free_one_page(), which is the
only caller of page_is_buddy(), so move the check there and avoid
page_to_pfn().
Link: http://lkml.kernel.org/r/20161216120009.20064-2-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In __free_one_page() we do the buddy merging arithmetics on "page/buddy
index", which is just the lower MAX_ORDER bits of pfn. The operations
we do that affect the higher bits are bitwise AND and subtraction (in
that order), where the final result will be the same with the higher
bits left unmasked, as long as these bits are equal for both buddies -
which must be true by the definition of a buddy.
We can therefore use pfn's directly instead of "index" and skip the
zeroing of >MAX_ORDER bits. This can help a bit by itself, although
compiler might be smart enough already. It also helps the next patch to
avoid page_to_pfn() for memory hole checks.
Link: http://lkml.kernel.org/r/20161216120009.20064-1-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Tetsuo has been stressing OOM killer path with many parallel allocation
requests when he has noticed that it is not all that hard to swamp
kernel logs with warn_alloc messages caused by allocation stalls. Even
though the allocation stall message is triggered only once in 10s there
might be many different tasks hitting it roughly around the same time.
A big part of the output is show_mem() which can generate a lot of
output even on a small machines. There is no reason to show the state
of memory counter for each allocation stall, especially when multiple of
them are reported in a short time period. Chances are that not much has
changed since the last report. This patch simply rate limits show_mem
called from warn_alloc to only dump something once per second. This
should be enough to give us a clue why an allocation might be stalling
while burst of warnings will not swamp log with too much data.
While we are at it, extract all the show_mem related handling (filters)
into a separate function warn_alloc_show_mem. This will make the code
cleaner and as a bonus point we can distinguish which part of warn_alloc
got throttled due to rate limiting as ___ratelimit dumps the caller.
[akpm@linux-foundation.org: reduce scope of the ratelimit_states]
Link: http://lkml.kernel.org/r/20161215101510.9030-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Ganapatrao Kulkarni reported that the LTP test cpuset01 in stress mode
triggers OOM killer in few seconds, despite lots of free memory. The
test attempts to repeatedly fault in memory in one process in a cpuset,
while changing allowed nodes of the cpuset between 0 and 1 in another
process.
The problem comes from insufficient protection against cpuset changes,
which can cause get_page_from_freelist() to consider all zones as
non-eligible due to nodemask and/or current->mems_allowed. This was
masked in the past by sufficient retries, but since commit 682a3385e7
("mm, page_alloc: inline the fast path of the zonelist iterator") we fix
the preferred_zoneref once, and don't iterate over the whole zonelist in
further attempts, thus the only eligible zones might be placed in the
zonelist before our starting point and we always miss them.
A previous patch fixed this problem for current->mems_allowed. However,
cpuset changes also update the task's mempolicy nodemask. The fix has
two parts. We have to repeat the preferred_zoneref search when we
detect cpuset update by way of seqcount, and we have to check the
seqcount before considering OOM.
[akpm@linux-foundation.org: fix typo in comment]
Link: http://lkml.kernel.org/r/20170120103843.24587-5-vbabka@suse.cz
Fixes: c33d6c06f6 ("mm, page_alloc: avoid looking up the first zone in a zonelist twice")
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reported-by: Ganapatrao Kulkarni <gpkulkarni@gmail.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is a preparation for the following patch to make review simpler.
While the primary motivation is a bug fix, this also simplifies the fast
path, although the moved code is only enabled when cpusets are in use.
Link: http://lkml.kernel.org/r/20170120103843.24587-4-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Ganapatrao Kulkarni <gpkulkarni@gmail.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Ganapatrao Kulkarni reported that the LTP test cpuset01 in stress mode
triggers OOM killer in few seconds, despite lots of free memory. The
test attempts to repeatedly fault in memory in one process in a cpuset,
while changing allowed nodes of the cpuset between 0 and 1 in another
process.
One possible cause is that in the fast path we find the preferred
zoneref according to current mems_allowed, so that it points to the
middle of the zonelist, skipping e.g. zones of node 1 completely. If
the mems_allowed is updated to contain only node 1, we never reach it in
the zonelist, and trigger OOM before checking the cpuset_mems_cookie.
This patch fixes the particular case by redoing the preferred zoneref
search if we switch back to the original nodemask. The condition is
also slightly changed so that when the last non-root cpuset is removed,
we don't miss it.
Note that this is not a full fix, and more patches will follow.
Link: http://lkml.kernel.org/r/20170120103843.24587-3-vbabka@suse.cz
Fixes: 682a3385e7 ("mm, page_alloc: inline the fast path of the zonelist iterator")
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reported-by: Ganapatrao Kulkarni <gpkulkarni@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "fix premature OOM regression in 4.7+ due to cpuset races".
This is v2 of my attempt to fix the recent report based on LTP cpuset
stress test [1]. The intention is to go to stable 4.9 LTSS with this,
as triggering repeated OOMs is not nice. That's why the patches try to
be not too intrusive.
Unfortunately why investigating I found that modifying the testcase to
use per-VMA policies instead of per-task policies will bring the OOM's
back, but that seems to be much older and harder to fix problem. I have
posted a RFC [2] but I believe that fixing the recent regressions has a
higher priority.
Longer-term we might try to think how to fix the cpuset mess in a better
and less error prone way. I was for example very surprised to learn,
that cpuset updates change not only task->mems_allowed, but also
nodemask of mempolicies. Until now I expected the parameter to
alloc_pages_nodemask() to be stable. I wonder why do we then treat
cpusets specially in get_page_from_freelist() and distinguish HARDWALL
etc, when there's unconditional intersection between mempolicy and
cpuset. I would expect the nodemask adjustment for saving overhead in
g_p_f(), but that clearly doesn't happen in the current form. So we
have both crazy complexity and overhead, AFAICS.
[1] https://lkml.kernel.org/r/CAFpQJXUq-JuEP=QPidy4p_=FN0rkH5Z-kfB4qBvsf6jMS87Edg@mail.gmail.com
[2] https://lkml.kernel.org/r/7c459f26-13a6-a817-e508-b65b903a8378@suse.cz
This patch (of 4):
Since commit c33d6c06f6 ("mm, page_alloc: avoid looking up the first
zone in a zonelist twice") we have a wrong check for NULL preferred_zone,
which can theoretically happen due to concurrent cpuset modification. We
check the zoneref pointer which is never NULL and we should check the zone
pointer. Also document this in first_zones_zonelist() comment per Michal
Hocko.
Fixes: c33d6c06f6 ("mm, page_alloc: avoid looking up the first zone in a zonelist twice")
Link: http://lkml.kernel.org/r/20170120103843.24587-2-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Ganapatrao Kulkarni <gpkulkarni@gmail.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 73e64c51af ("mm, compaction: allow compaction for GFP_NOFS
requests") changed compation to skip FS pages if not explicitly allowed
to touch them, but missed to update the CMA compact_control.
This leads to a very high isolation failure rate, crippling performance
of CMA even on a lightly loaded system. Re-allow CMA to compact FS
pages by setting the correct GFP flags, restoring CMA behavior and
performance to the kernel 4.9 level.
Fixes: 73e64c51af (mm, compaction: allow compaction for GFP_NOFS requests)
Link: http://lkml.kernel.org/r/20170113115155.24335-1-l.stach@pengutronix.de
Signed-off-by: Lucas Stach <l.stach@pengutronix.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch does two things.
First it goes through and renames the __page_frag prefixed functions to
__page_frag_cache so that we can be clear that we are draining or
refilling the cache, not the frags themselves.
Second we drop the order parameter from __page_frag_cache_drain since we
don't actually need to pass it since all fragments are either order 0 or
must be a compound page.
Link: http://lkml.kernel.org/r/20170104023954.13451.5678.stgit@localhost.localdomain
Signed-off-by: Alexander Duyck <alexander.h.duyck@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Page fragment updates", v4.
This patch series takes care of a few cleanups for the page fragments
API.
First we do some renames so that things are much more consistent. First
we move the page_frag_ portion of the name to the front of the functions
names. Secondly we split out the cache specific functions from the
other page fragment functions by adding the word "cache" to the name.
Finally I added a bit of documentation that will hopefully help to
explain some of this. I plan to revisit this later as we get things
more ironed out in the near future with the changes planned for the DMA
setup to support eXpress Data Path.
This patch (of 3):
This patch renames the page frag functions to be more consistent with
other APIs. Specifically we place the name page_frag first in the name
and then have either an alloc or free call name that we append as the
suffix. This makes it a bit clearer in terms of naming.
In addition we drop the leading double underscores since we are
technically no longer a backing interface and instead the front end that
is called from the networking APIs.
Link: http://lkml.kernel.org/r/20170104023854.13451.67390.stgit@localhost.localdomain
Signed-off-by: Alexander Duyck <alexander.h.duyck@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The VM_BUG_ON() check in move_freepages() checks whether the node id of
a page matches the node id of its zone. However, it does this before
having checked whether the struct page pointer refers to a valid struct
page to begin with. This is guaranteed in most cases, but may not be
the case if CONFIG_HOLES_IN_ZONE=y.
So reorder the VM_BUG_ON() with the pfn_valid_within() check.
Link: http://lkml.kernel.org/r/1481706707-6211-2-git-send-email-ard.biesheuvel@linaro.org
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Hanjun Guo <hanjun.guo@linaro.org>
Cc: Yisheng Xie <xieyisheng1@huawei.com>
Cc: Robert Richter <rrichter@cavium.com>
Cc: James Morse <james.morse@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The flag was introduced by commit 78afd5612d ("mm: add
__GFP_OTHER_NODE flag") to allow proper accounting of remote node
allocations done by kernel daemons on behalf of a process - e.g.
khugepaged.
After "mm: fix remote numa hits statistics" we do not need and actually
use the flag so we can safely remove it because all allocations which
are satisfied from their "home" node are accounted properly.
[mhocko@suse.com: fix build]
Link: http://lkml.kernel.org/r/20170106122225.GK5556@dhcp22.suse.cz
Link: http://lkml.kernel.org/r/20170102153057.9451-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Taku Izumi <izumi.taku@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Jia He has noticed that commit b9f00e147f ("mm, page_alloc: reduce
branches in zone_statistics") has an unintentional side effect that
remote node allocation requests are accounted as NUMA_MISS rathat than
NUMA_HIT and NUMA_OTHER if such a request doesn't use __GFP_OTHER_NODE.
There are many of these potentially because the flag is used very rarely
while we have many users of __alloc_pages_node.
Fix this by simply ignoring __GFP_OTHER_NODE (it can be removed in a
follow up patch) and treat all allocations that were satisfied from the
preferred zone's node as NUMA_HITS because this is the same node we
requested the allocation from in most cases. If this is not the local
node then we just account it as NUMA_OTHER rather than NUMA_LOCAL.
One downsize would be that an allocation request for a node which is
outside of the mempolicy nodemask would be reported as a hit which is a
bit weird but that was the case before b9f00e147f already.
Fixes: b9f00e147f ("mm, page_alloc: reduce branches in zone_statistics")
Link: http://lkml.kernel.org/r/20170102153057.9451-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Jia He <hejianet@gmail.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz> # with cbmc[1] superpowers
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Taku Izumi <izumi.taku@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add a function that allows us to batch free a page that has multiple
references outstanding. Specifically this function can be used to drop
a page being used in the page frag alloc cache. With this drivers can
make use of functionality similar to the page frag alloc cache without
having to do any workarounds for the fact that there is no function that
frees multiple references.
Link: http://lkml.kernel.org/r/20161110113606.76501.70752.stgit@ahduyck-blue-test.jf.intel.com
Signed-off-by: Alexander Duyck <alexander.h.duyck@intel.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Hans-Christian Noren Egtvedt <egtvedt@samfundet.no>
Cc: Helge Deller <deller@gmx.de>
Cc: James Hogan <james.hogan@imgtec.com>
Cc: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Keguang Zhang <keguang.zhang@gmail.com>
Cc: Ley Foon Tan <lftan@altera.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Rich Felker <dalias@libc.org>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Steven Miao <realmz6@gmail.com>
Cc: Tobias Klauser <tklauser@distanz.ch>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Merge updates from Andrew Morton:
- various misc bits
- most of MM (quite a lot of MM material is awaiting the merge of
linux-next dependencies)
- kasan
- printk updates
- procfs updates
- MAINTAINERS
- /lib updates
- checkpatch updates
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (123 commits)
init: reduce rootwait polling interval time to 5ms
binfmt_elf: use vmalloc() for allocation of vma_filesz
checkpatch: don't emit unified-diff error for rename-only patches
checkpatch: don't check c99 types like uint8_t under tools
checkpatch: avoid multiple line dereferences
checkpatch: don't check .pl files, improve absolute path commit log test
scripts/checkpatch.pl: fix spelling
checkpatch: don't try to get maintained status when --no-tree is given
lib/ida: document locking requirements a bit better
lib/rbtree.c: fix typo in comment of ____rb_erase_color
lib/Kconfig.debug: make CONFIG_STRICT_DEVMEM depend on CONFIG_DEVMEM
MAINTAINERS: add drm and drm/i915 irc channels
MAINTAINERS: add "C:" for URI for chat where developers hang out
MAINTAINERS: add drm and drm/i915 bug filing info
MAINTAINERS: add "B:" for URI where to file bugs
get_maintainer: look for arbitrary letter prefixes in sections
printk: add Kconfig option to set default console loglevel
printk/sound: handle more message headers
printk/btrfs: handle more message headers
printk/kdb: handle more message headers
...
Pull smp hotplug updates from Thomas Gleixner:
"This is the final round of converting the notifier mess to the state
machine. The removal of the notifiers and the related infrastructure
will happen around rc1, as there are conversions outstanding in other
trees.
The whole exercise removed about 2000 lines of code in total and in
course of the conversion several dozen bugs got fixed. The new
mechanism allows to test almost every hotplug step standalone, so
usage sites can exercise all transitions extensively.
There is more room for improvement, like integrating all the
pointlessly different architecture mechanisms of synchronizing,
setting cpus online etc into the core code"
* 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (60 commits)
tracing/rb: Init the CPU mask on allocation
soc/fsl/qbman: Convert to hotplug state machine
soc/fsl/qbman: Convert to hotplug state machine
zram: Convert to hotplug state machine
KVM/PPC/Book3S HV: Convert to hotplug state machine
arm64/cpuinfo: Convert to hotplug state machine
arm64/cpuinfo: Make hotplug notifier symmetric
mm/compaction: Convert to hotplug state machine
iommu/vt-d: Convert to hotplug state machine
mm/zswap: Convert pool to hotplug state machine
mm/zswap: Convert dst-mem to hotplug state machine
mm/zsmalloc: Convert to hotplug state machine
mm/vmstat: Convert to hotplug state machine
mm/vmstat: Avoid on each online CPU loops
mm/vmstat: Drop get_online_cpus() from init_cpu_node_state/vmstat_cpu_dead()
tracing/rb: Convert to hotplug state machine
oprofile/nmi timer: Convert to hotplug state machine
net/iucv: Use explicit clean up labels in iucv_init()
x86/pci/amd-bus: Convert to hotplug state machine
x86/oprofile/nmi: Convert to hotplug state machine
...
Vlastimil Babka pointed out that commit 479f854a20 ("mm, page_alloc:
defer debugging checks of pages allocated from the PCP") will allow the
per-cpu list counter to be out of sync with the per-cpu list contents if
a struct page is corrupted.
The consequence is an infinite loop if the per-cpu lists get fully
drained by free_pcppages_bulk because all the lists are empty but the
count is positive. The infinite loop occurs here
do {
batch_free++;
if (++migratetype == MIGRATE_PCPTYPES)
migratetype = 0;
list = &pcp->lists[migratetype];
} while (list_empty(list));
What the user sees is a bad page warning followed by a soft lockup with
interrupts disabled in free_pcppages_bulk().
This patch keeps the accounting in sync.
Fixes: 479f854a20 ("mm, page_alloc: defer debugging checks of pages allocated from the PCP")
Link: http://lkml.kernel.org/r/20161202112951.23346-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: <stable@vger.kernel.org> [4.7+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, unreserve_highatomic_pageblock bails out if it found
highatomic pageblock regardless of really moving free pages from the one
so that it could mitigate unreserve logic's goal which saves OOM of a
process.
This patch makes unreserve functions bail out only if it moves some
pages out of !highatomic free list to avoid such false positive.
Another potential problem is that by race between page freeing and
reserve highatomic function, pages could be in highatomic free list even
though the pageblock is !high atomic migratetype. In that case,
unreserve_highatomic_pageblock can be void if count of highatomic
reserve is less than pageblock_nr_pages. We could solve it simply via
draining all of reserved pages before the OOM. It would have a
safeguard role to exhuast reserved pages before converging to OOM.
Link: http://lkml.kernel.org/r/1476259429-18279-5-git-send-email-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Sangseok Lee <sangseok.lee@lge.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is race between page freeing and unreserved highatomic.
CPU 0 CPU 1
free_hot_cold_page
mt = get_pfnblock_migratetype
set_pcppage_migratetype(page, mt)
unreserve_highatomic_pageblock
spin_lock_irqsave(&zone->lock)
move_freepages_block
set_pageblock_migratetype(page)
spin_unlock_irqrestore(&zone->lock)
free_pcppages_bulk
__free_one_page(mt) <- mt is stale
By above race, a page on CPU 0 could go non-highorderatomic free list
since the pageblock's type is changed. By that, unreserve logic of
highorderatomic can decrease reserved count on a same pageblock severak
times and then it will make mismatch between nr_reserved_highatomic and
the number of reserved pageblock.
So, this patch verifies whether the pageblock is highatomic or not and
decrease the count only if the pageblock is highatomic.
Link: http://lkml.kernel.org/r/1476259429-18279-3-git-send-email-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Sangseok Lee <sangseok.lee@lge.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "use up highorder free pages before OOM", v3.
I got OOM report from production team with v4.4 kernel. It had enough
free memory but failed to allocate GFP_KERNEL order-0 page and finally
encountered OOM kill. It occured during QA process which launches
several apps, switching and so on. It happned rarely. IOW, In normal
situation, it was not a problem but if we are unluck so that several
apps uses peak memory at the same time, it can happen. If we manage to
pass the phase, the system can go working well.
I could reproduce it with my test(memory spike easily. Look at below.
The reason is free pages(19M) of DMA32 zone are reserved for
HIGHORDERATOMIC and doesn't unreserved before the OOM.
balloon invoked oom-killer: gfp_mask=0x24280ca(GFP_HIGHUSER_MOVABLE|__GFP_ZERO), order=0, oom_score_adj=0
balloon cpuset=/ mems_allowed=0
CPU: 1 PID: 8473 Comm: balloon Tainted: G W OE 4.8.0-rc7-00219-g3f74c9559583-dirty #3161
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Ubuntu-1.8.2-1ubuntu1 04/01/2014
Call Trace:
dump_stack+0x63/0x90
dump_header+0x5c/0x1ce
oom_kill_process+0x22e/0x400
out_of_memory+0x1ac/0x210
__alloc_pages_nodemask+0x101e/0x1040
handle_mm_fault+0xa0a/0xbf0
__do_page_fault+0x1dd/0x4d0
trace_do_page_fault+0x43/0x130
do_async_page_fault+0x1a/0xa0
async_page_fault+0x28/0x30
Mem-Info:
active_anon:383949 inactive_anon:106724 isolated_anon:0
active_file:15 inactive_file:44 isolated_file:0
unevictable:0 dirty:0 writeback:24 unstable:0
slab_reclaimable:2483 slab_unreclaimable:3326
mapped:0 shmem:0 pagetables:1906 bounce:0
free:6898 free_pcp:291 free_cma:0
Node 0 active_anon:1535796kB inactive_anon:426896kB active_file:60kB inactive_file:176kB unevictable:0kB isolated(anon):0kB isolated(file):0kB mapped:0kB dirty:0kB writeback:96kB shmem:0kB writeback_tmp:0kB unstable:0kB pages_scanned:1418 all_unreclaimable? no
DMA free:8188kB min:44kB low:56kB high:68kB active_anon:7648kB inactive_anon:0kB active_file:0kB inactive_file:4kB unevictable:0kB writepending:0kB present:15992kB managed:15908kB mlocked:0kB slab_reclaimable:0kB slab_unreclaimable:20kB kernel_stack:0kB pagetables:0kB bounce:0kB free_pcp:0kB local_pcp:0kB free_cma:0kB
lowmem_reserve[]: 0 1952 1952 1952
DMA32 free:19404kB min:5628kB low:7624kB high:9620kB active_anon:1528148kB inactive_anon:426896kB active_file:60kB inactive_file:420kB unevictable:0kB writepending:96kB present:2080640kB managed:2030092kB mlocked:0kB slab_reclaimable:9932kB slab_unreclaimable:13284kB kernel_stack:2496kB pagetables:7624kB bounce:0kB free_pcp:900kB local_pcp:112kB free_cma:0kB
lowmem_reserve[]: 0 0 0 0
DMA: 0*4kB 0*8kB 0*16kB 0*32kB 0*64kB 0*128kB 0*256kB 0*512kB 0*1024kB 0*2048kB 2*4096kB (H) = 8192kB
DMA32: 7*4kB (H) 8*8kB (H) 30*16kB (H) 31*32kB (H) 14*64kB (H) 9*128kB (H) 2*256kB (H) 2*512kB (H) 4*1024kB (H) 5*2048kB (H) 0*4096kB = 19484kB
51131 total pagecache pages
50795 pages in swap cache
Swap cache stats: add 3532405601, delete 3532354806, find 124289150/1822712228
Free swap = 8kB
Total swap = 255996kB
524158 pages RAM
0 pages HighMem/MovableOnly
12658 pages reserved
0 pages cma reserved
0 pages hwpoisoned
Another example exceeded the limit by the race is
in:imklog: page allocation failure: order:0, mode:0x2280020(GFP_ATOMIC|__GFP_NOTRACK)
CPU: 0 PID: 476 Comm: in:imklog Tainted: G E 4.8.0-rc7-00217-g266ef83c51e5-dirty #3135
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Ubuntu-1.8.2-1ubuntu1 04/01/2014
Call Trace:
dump_stack+0x63/0x90
warn_alloc_failed+0xdb/0x130
__alloc_pages_nodemask+0x4d6/0xdb0
new_slab+0x339/0x490
___slab_alloc.constprop.74+0x367/0x480
__slab_alloc.constprop.73+0x20/0x40
__kmalloc+0x1a4/0x1e0
alloc_indirect.isra.14+0x1d/0x50
virtqueue_add_sgs+0x1c4/0x470
__virtblk_add_req+0xae/0x1f0
virtio_queue_rq+0x12d/0x290
__blk_mq_run_hw_queue+0x239/0x370
blk_mq_run_hw_queue+0x8f/0xb0
blk_mq_insert_requests+0x18c/0x1a0
blk_mq_flush_plug_list+0x125/0x140
blk_flush_plug_list+0xc7/0x220
blk_finish_plug+0x2c/0x40
__do_page_cache_readahead+0x196/0x230
filemap_fault+0x448/0x4f0
ext4_filemap_fault+0x36/0x50
__do_fault+0x75/0x140
handle_mm_fault+0x84d/0xbe0
__do_page_fault+0x1dd/0x4d0
trace_do_page_fault+0x43/0x130
do_async_page_fault+0x1a/0xa0
async_page_fault+0x28/0x30
Mem-Info:
active_anon:363826 inactive_anon:121283 isolated_anon:32
active_file:65 inactive_file:152 isolated_file:0
unevictable:0 dirty:0 writeback:46 unstable:0
slab_reclaimable:2778 slab_unreclaimable:3070
mapped:112 shmem:0 pagetables:1822 bounce:0
free:9469 free_pcp:231 free_cma:0
Node 0 active_anon:1455304kB inactive_anon:485132kB active_file:260kB inactive_file:608kB unevictable:0kB isolated(anon):128kB isolated(file):0kB mapped:448kB dirty:0kB writeback:184kB shmem:0kB writeback_tmp:0kB unstable:0kB pages_scanned:13641 all_unreclaimable? no
DMA free:7748kB min:44kB low:56kB high:68kB active_anon:7944kB inactive_anon:104kB active_file:0kB inactive_file:0kB unevictable:0kB writepending:0kB present:15992kB managed:15908kB mlocked:0kB slab_reclaimable:0kB slab_unreclaimable:108kB kernel_stack:0kB pagetables:4kB bounce:0kB free_pcp:0kB local_pcp:0kB free_cma:0kB
lowmem_reserve[]: 0 1952 1952 1952
DMA32 free:30128kB min:5628kB low:7624kB high:9620kB active_anon:1447360kB inactive_anon:485028kB active_file:260kB inactive_file:608kB unevictable:0kB writepending:184kB present:2080640kB managed:2030132kB mlocked:0kB slab_reclaimable:11112kB slab_unreclaimable:12172kB kernel_stack:2400kB pagetables:7284kB bounce:0kB free_pcp:924kB local_pcp:72kB free_cma:0kB
lowmem_reserve[]: 0 0 0 0
DMA: 7*4kB (UE) 3*8kB (UH) 1*16kB (M) 0*32kB 2*64kB (U) 1*128kB (M) 1*256kB (U) 0*512kB 1*1024kB (U) 1*2048kB (U) 1*4096kB (H) = 7748kB
DMA32: 10*4kB (H) 3*8kB (H) 47*16kB (H) 38*32kB (H) 5*64kB (H) 1*128kB (H) 2*256kB (H) 3*512kB (H) 3*1024kB (H) 3*2048kB (H) 4*4096kB (H) = 30128kB
2775 total pagecache pages
2536 pages in swap cache
Swap cache stats: add 206786828, delete 206784292, find 7323106/106686077
Free swap = 108744kB
Total swap = 255996kB
524158 pages RAM
0 pages HighMem/MovableOnly
12648 pages reserved
0 pages cma reserved
0 pages hwpoisoned
During the investigation, I found some problems with highatomic so this
patch aims to solve the problems and the final goal is to unreserve
every highatomic free pages before the OOM kill.
This patch (of 4):
In page freeing path, migratetype is racy so that a highorderatomic page
could free into non-highorderatomic free list. If that page is
allocated, VM can change the pageblock from higorderatomic to something.
In that case, highatomic pageblock accounting is broken so it doesn't
work(e.g., VM cannot reserve highorderatomic pageblocks any more
although it doesn't reach 1% limit).
So, this patch prohibits the changing from highatomic to other type.
It's no problem because MIGRATE_HIGHATOMIC is not listed in fallback
array so stealing will only happen due to unexpected races which is
really rare. Also, such prohibiting keeps highatomic pageblock more
longer so it would be better for highorderatomic page allocation.
Link: http://lkml.kernel.org/r/1476259429-18279-2-git-send-email-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Sangseok Lee <sangseok.lee@lge.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The stack frame size could grow too large when the plugin used long long
on 32-bit architectures when the given function had too many basic blocks.
The gcc warning was:
drivers/pci/hotplug/ibmphp_ebda.c: In function 'ibmphp_access_ebda':
drivers/pci/hotplug/ibmphp_ebda.c:409:1: warning: the frame size of 1108 bytes is larger than 1024 bytes [-Wframe-larger-than=]
This switches latent_entropy from u64 to unsigned long.
Thanks to PaX Team and Emese Revfy for the patch.
Signed-off-by: Kees Cook <keescook@chromium.org>
The per-zone waitqueues exist because of a scalability issue with the
page waitqueues on some NUMA machines, but it turns out that they hurt
normal loads, and now with the vmalloced stacks they also end up
breaking gfs2 that uses a bit_wait on a stack object:
wait_on_bit(&gh->gh_iflags, HIF_WAIT, TASK_UNINTERRUPTIBLE)
where 'gh' can be a reference to the local variable 'mount_gh' on the
stack of fill_super().
The reason the per-zone hash table breaks for this case is that there is
no "zone" for virtual allocations, and trying to look up the physical
page to get at it will fail (with a BUG_ON()).
It turns out that I actually complained to the mm people about the
per-zone hash table for another reason just a month ago: the zone lookup
also hurts the regular use of "unlock_page()" a lot, because the zone
lookup ends up forcing several unnecessary cache misses and generates
horrible code.
As part of that earlier discussion, we had a much better solution for
the NUMA scalability issue - by just making the page lock have a
separate contention bit, the waitqueue doesn't even have to be looked at
for the normal case.
Peter Zijlstra already has a patch for that, but let's see if anybody
even notices. In the meantime, let's fix the actual gfs2 breakage by
simplifying the bitlock waitqueues and removing the per-zone issue.
Reported-by: Andreas Gruenbacher <agruenba@redhat.com>
Tested-by: Bob Peterson <rpeterso@redhat.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Linus suggested we try to remove some of the low-hanging fruit related
to kernel address exposure in dmesg. The only leaks I see on my local
system are:
Freeing SMP alternatives memory: 32K (ffffffff9e309000 - ffffffff9e311000)
Freeing initrd memory: 10588K (ffffa0b736b42000 - ffffa0b737599000)
Freeing unused kernel memory: 3592K (ffffffff9df87000 - ffffffff9e309000)
Freeing unused kernel memory: 1352K (ffffa0b7288ae000 - ffffa0b728a00000)
Freeing unused kernel memory: 632K (ffffa0b728d62000 - ffffa0b728e00000)
Linus says:
"I suspect we should just remove [the addresses in the 'Freeing'
messages]. I'm sure they are useful in theory, but I suspect they
were more useful back when the whole "free init memory" was
originally done.
These days, if we have a use-after-free, I suspect the init-mem
situation is the easiest situation by far. Compared to all the dynamic
allocations which are much more likely to show it anyway. So having
debug output for that case is likely not all that productive."
With this patch the freeing messages now look like this:
Freeing SMP alternatives memory: 32K
Freeing initrd memory: 10588K
Freeing unused kernel memory: 3592K
Freeing unused kernel memory: 1352K
Freeing unused kernel memory: 632K
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/6836ff90c45b71d38e5d4405aec56fa9e5d1d4b2.1477405374.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
extract as much possible uncertainty from a running system at boot time as
possible, hoping to capitalize on any possible variation in CPU operation
(due to runtime data differences, hardware differences, SMP ordering,
thermal timing variation, cache behavior, etc).
At the very least, this plugin is a much more comprehensive example for
how to manipulate kernel code using the gcc plugin internals.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
Comment: Kees Cook <kees@outflux.net>
iQIcBAABCgAGBQJX/BAFAAoJEIly9N/cbcAmzW8QALFbCs7EFFkML+M/M/9d8zEk
1QbUs/z8covJTTT1PjSdw7JUrAMulI3S00owpcQVd/PcWjRPU80QwfsXBgIB0tvC
Kub2qxn6Oaf+kTB646zwjFgjdCecw/USJP+90nfcu2+LCnE8ReclKd1aUee+Bnhm
iDEUyH2ONIoWq6ta2Z9sA7+E4y2ZgOlmW0iga3Mnf+OcPtLE70fWPoe5E4g9DpYk
B+kiPDrD9ql5zsHaEnKG1ldjiAZ1L6Grk8rGgLEXmbOWtTOFmnUhR+raK5NA/RCw
MXNuyPay5aYPpqDHFm+OuaWQAiPWfPNWM3Ett4k0d9ZWLixTcD1z68AciExwk7aW
SEA8b1Jwbg05ZNYM7NJB6t6suKC4dGPxWzKFOhmBicsh2Ni5f+Az0BQL6q8/V8/4
8UEqDLuFlPJBB50A3z5ngCVeYJKZe8Bg/Swb4zXl6mIzZ9darLzXDEV6ystfPXxJ
e1AdBb41WC+O2SAI4l64yyeswkGo3Iw2oMbXG5jmFl6wY/xGp7dWxw7gfnhC6oOh
afOT54p2OUDfSAbJaO0IHliWoIdmE5ZYdVYVU9Ek+uWyaIwcXhNmqRg+Uqmo32jf
cP5J9x2kF3RdOcbSHXmFp++fU+wkhBtEcjkNpvkjpi4xyA47IWS7lrVBBebrCq9R
pa/A7CNQwibIV6YD8+/p
=1dUK
-----END PGP SIGNATURE-----
Merge tag 'gcc-plugins-v4.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux
Pull gcc plugins update from Kees Cook:
"This adds a new gcc plugin named "latent_entropy". It is designed to
extract as much possible uncertainty from a running system at boot
time as possible, hoping to capitalize on any possible variation in
CPU operation (due to runtime data differences, hardware differences,
SMP ordering, thermal timing variation, cache behavior, etc).
At the very least, this plugin is a much more comprehensive example
for how to manipulate kernel code using the gcc plugin internals"
* tag 'gcc-plugins-v4.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux:
latent_entropy: Mark functions with __latent_entropy
gcc-plugins: Add latent_entropy plugin
The __latent_entropy gcc attribute can be used only on functions and
variables. If it is on a function then the plugin will instrument it for
gathering control-flow entropy. If the attribute is on a variable then
the plugin will initialize it with random contents. The variable must
be an integer, an integer array type or a structure with integer fields.
These specific functions have been selected because they are init
functions (to help gather boot-time entropy), are called at unpredictable
times, or they have variable loops, each of which provide some level of
latent entropy.
Signed-off-by: Emese Revfy <re.emese@gmail.com>
[kees: expanded commit message]
Signed-off-by: Kees Cook <keescook@chromium.org>
This adds a new gcc plugin named "latent_entropy". It is designed to
extract as much possible uncertainty from a running system at boot time as
possible, hoping to capitalize on any possible variation in CPU operation
(due to runtime data differences, hardware differences, SMP ordering,
thermal timing variation, cache behavior, etc).
At the very least, this plugin is a much more comprehensive example for
how to manipulate kernel code using the gcc plugin internals.
The need for very-early boot entropy tends to be very architecture or
system design specific, so this plugin is more suited for those sorts
of special cases. The existing kernel RNG already attempts to extract
entropy from reliable runtime variation, but this plugin takes the idea to
a logical extreme by permuting a global variable based on any variation
in code execution (e.g. a different value (and permutation function)
is used to permute the global based on loop count, case statement,
if/then/else branching, etc).
To do this, the plugin starts by inserting a local variable in every
marked function. The plugin then adds logic so that the value of this
variable is modified by randomly chosen operations (add, xor and rol) and
random values (gcc generates separate static values for each location at
compile time and also injects the stack pointer at runtime). The resulting
value depends on the control flow path (e.g., loops and branches taken).
Before the function returns, the plugin mixes this local variable into
the latent_entropy global variable. The value of this global variable
is added to the kernel entropy pool in do_one_initcall() and _do_fork(),
though it does not credit any bytes of entropy to the pool; the contents
of the global are just used to mix the pool.
Additionally, the plugin can pre-initialize arrays with build-time
random contents, so that two different kernel builds running on identical
hardware will not have the same starting values.
Signed-off-by: Emese Revfy <re.emese@gmail.com>
[kees: expanded commit message and code comments]
Signed-off-by: Kees Cook <keescook@chromium.org>
Currently we do warn only about allocation failures but small
allocations are basically nofail and they might loop in the page
allocator for a long time. Especially when the reclaim cannot make any
progress - e.g. GFP_NOFS cannot invoke the oom killer and rely on a
different context to make a forward progress in case there is a lot
memory used by filesystems.
Give us at least a clue when something like this happens and warn about
allocations which take more than 10s. Print the basic allocation
context information along with the cumulative time spent in the
allocation as well as the allocation stack. Repeat the warning after
every 10 seconds so that we know that the problem is permanent rather
than ephemeral.
Link: http://lkml.kernel.org/r/20160929084407.7004-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
warn_alloc_failed is currently used from the page and vmalloc
allocators. This is a good reuse of the code except that vmalloc would
appreciate a slightly different warning message. This is already
handled by the fmt parameter except that
"%s: page allocation failure: order:%u, mode:%#x(%pGg)"
is printed anyway. This might be quite misleading because it might be a
vmalloc failure which leads to the warning while the page allocator is
not the culprit here. Fix this by always using the fmt string and only
print the context that makes sense for the particular context (e.g.
order makes only very little sense for the vmalloc context).
Rename the function to not miss any user and also because a later patch
will reuse it also for !failure cases.
Link: http://lkml.kernel.org/r/20160929084407.7004-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The should_reclaim_retry() makes decisions based on no_progress_loops,
so it makes sense to also update the counter there. It will be also
consistent with should_compact_retry() and compaction_retries. No
functional change.
[hillf.zj@alibaba-inc.com: fix missing pointer dereferences]
Link: http://lkml.kernel.org/r/20160926162025.21555-3-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The new ultimate compaction priority disables some heuristics, which may
result in excessive cost. This is fine for non-costly orders where we
want to try hard before resulting for OOM, but might be disruptive for
costly orders which do not trigger OOM and should generally have some
fallback. Thus, we disable the full priority for costly orders.
Suggested-by: Michal Hocko <mhocko@kernel.org>
Link: http://lkml.kernel.org/r/20160906135258.18335-4-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
During reclaim/compaction loop, compaction priority can be increased by
the should_compact_retry() function, but the current code is not
optimal. Priority is only increased when compaction_failed() is true,
which means that compaction has scanned the whole zone. This may not
happen even after multiple attempts with a lower priority due to
parallel activity, so we might needlessly struggle on the lower
priorities and possibly run out of compaction retry attempts in the
process.
After this patch we are guaranteed at least one attempt at the highest
compaction priority even if we exhaust all retries at the lower
priorities.
Link: http://lkml.kernel.org/r/20160906135258.18335-3-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "reintroduce compaction feedback for OOM decisions".
After several people reported OOM's for order-2 allocations in 4.7 due
to Michal Hocko's OOM rework, he reverted the part that considered
compaction feedback [1] in the decisions to retry reclaim/compaction.
This was to provide a fix quickly for 4.8 rc and 4.7 stable series,
while mmotm had an almost complete solution that instead improved
compaction reliability.
This series completes the mmotm solution and reintroduces the compaction
feedback into OOM decisions. The first two patches restore the state of
mmotm before the temporary solution was merged, the last patch should be
the missing piece for reliability. The third patch restricts the
hardened compaction to non-costly orders, since costly orders don't
result in OOMs in the first place.
[1] http://marc.info/?i=20160822093249.GA14916%40dhcp22.suse.cz%3E
This patch (of 4):
Commit 6b4e3181d7 ("mm, oom: prevent premature OOM killer invocation
for high order request") was intended as a quick fix of OOM regressions
for 4.8 and stable 4.7.x kernels. For a better long-term solution, we
still want to consider compaction feedback, which should be possible
after some more improvements in the following patches.
This reverts commit 6b4e3181d7.
Link: http://lkml.kernel.org/r/20160906135258.18335-2-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently arch specific code can reserve memory blocks but
alloc_large_system_hash() may not take it into consideration when sizing
the hashes. This can lead to bigger hash than required and lead to no
available memory for other purposes. This is specifically true for
systems with CONFIG_DEFERRED_STRUCT_PAGE_INIT enabled.
One approach to solve this problem would be to walk through the memblock
regions and calculate the available memory and base the size of hash
system on the available memory.
The other approach would be to depend on the architecture to provide the
number of pages that are reserved. This change provides hooks to allow
the architecture to provide the required info.
Link: http://lkml.kernel.org/r/1472476010-4709-2-git-send-email-srikar@linux.vnet.ibm.com
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Suggested-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Cc: Hari Bathini <hbathini@linux.vnet.ibm.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use the existing enums instead of hardcoded index when looking at the
zonelist. This makes it more readable. No functionality change by this
patch.
Link: http://lkml.kernel.org/r/1472227078-24852-1-git-send-email-aneesh.kumar@linux.vnet.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Reviewed-by: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Until now, if some page_ext users want to use it's own field on
page_ext, it should be defined in struct page_ext by hard-coding. It
has a problem that wastes memory in following situation.
struct page_ext {
#ifdef CONFIG_A
int a;
#endif
#ifdef CONFIG_B
int b;
#endif
};
Assume that kernel is built with both CONFIG_A and CONFIG_B. Even if we
enable feature A and doesn't enable feature B at runtime, each entry of
struct page_ext takes two int rather than one int. It's undesirable
result so this patch tries to fix it.
To solve above problem, this patch implements to support extra space
allocation at runtime. When need() callback returns true, it's extra
memory requirement is summed to entry size of page_ext. Also, offset
for each user's extra memory space is returned. With this offset, user
can use this extra space and there is no need to define needed field on
page_ext by hard-coding.
This patch only implements an infrastructure. Following patch will use
it for page_owner which is only user having it's own fields on page_ext.
Link: http://lkml.kernel.org/r/1471315879-32294-6-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
What debug_pagealloc does is just mapping/unmapping page table.
Basically, it doesn't need additional memory space to memorize
something. But, with guard page feature, it requires additional memory
to distinguish if the page is for guard or not. Guard page is only used
when debug_guardpage_minorder is non-zero so this patch removes
additional memory allocation (page_ext) if debug_guardpage_minorder is
zero.
It saves memory if we just use debug_pagealloc and not guard page.
Link: http://lkml.kernel.org/r/1471315879-32294-3-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Reduce memory waste by page extension user".
This patchset tries to reduce memory waste by page extension user.
First case is architecture supported debug_pagealloc. It doesn't
requires additional memory if guard page isn't used. 8 bytes per page
will be saved in this case.
Second case is related to page owner feature. Until now, if page_ext
users want to use it's own fields on page_ext, fields should be defined
in struct page_ext by hard-coding. It has a following problem.
struct page_ext {
#ifdef CONFIG_A
int a;
#endif
#ifdef CONFIG_B
int b;
#endif
};
Assume that kernel is built with both CONFIG_A and CONFIG_B. Even if we
enable feature A and doesn't enable feature B at runtime, each entry of
struct page_ext takes two int rather than one int. It's undesirable
waste so this patch tries to reduce it. By this patchset, we can save
20 bytes per page dedicated for page owner feature in some
configurations.
This patch (of 6):
We can make code clean by moving decision condition for set_page_guard()
into set_page_guard() itself. It will help code readability. There is
no functional change.
Link: http://lkml.kernel.org/r/1471315879-32294-2-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
On x86_64 MAX_ORDER_NR_PAGES is usually 4M, and a pageblock is usually
2M, so we only set one pageblock's migratetype in deferred_free_range()
if pfn is aligned to MAX_ORDER_NR_PAGES. That means it causes
uninitialized migratetype blocks, you can see from "cat
/proc/pagetypeinfo", almost half blocks are Unmovable.
Also we missed freeing the last block in deferred_init_memmap(), it
causes memory leak.
Fixes: ac5d2539b2 ("mm: meminit: reduce number of times pageblocks are set during struct page init")
Link: http://lkml.kernel.org/r/57A3260F.4050709@huawei.com
Signed-off-by: Xishi Qiu <qiuxishi@huawei.com>
Cc: Taku Izumi <izumi.taku@jp.fujitsu.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The __compaction_suitable() function checks the low watermark plus a
compact_gap() gap to decide if there's enough free memory to perform
compaction. Then __isolate_free_page uses low watermark check to decide
if particular free page can be isolated. In the latter case, using low
watermark is needlessly pessimistic, as the free page isolations are
only temporary. For __compaction_suitable() the higher watermark makes
sense for high-order allocations where more freepages increase the
chance of success, and we can typically fail with some order-0 fallback
when the system is struggling to reach that watermark. But for
low-order allocation, forming the page should not be that hard. So
using low watermark here might just prevent compaction from even trying,
and eventually lead to OOM killer even if we are above min watermarks.
So after this patch, we use min watermark for non-costly orders in
__compaction_suitable(), and for all orders in __isolate_free_page().
[vbabka@suse.cz: clarify __isolate_free_page() comment]
Link: http://lkml.kernel.org/r/7ae4baec-4eca-e70b-2a69-94bea4fb19fa@suse.cz
Link: http://lkml.kernel.org/r/20160810091226.6709-11-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Lorenzo Stoakes <lstoakes@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Lorenzo Stoakes <lstoakes@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The __compaction_suitable() function checks the low watermark plus a
compact_gap() gap to decide if there's enough free memory to perform
compaction. This check uses direct compactor's alloc_flags, but that's
wrong, since these flags are not applicable for freepage isolation.
For example, alloc_flags may indicate access to memory reserves, making
compaction proceed, and then fail watermark check during the isolation.
A similar problem exists for ALLOC_CMA, which may be part of
alloc_flags, but not during freepage isolation. In this case however it
makes sense to use ALLOC_CMA both in __compaction_suitable() and
__isolate_free_page(), since there's actually nothing preventing the
freepage scanner to isolate from CMA pageblocks, with the assumption
that a page that could be migrated once by compaction can be migrated
also later by CMA allocation. Thus we should count pages in CMA
pageblocks when considering compaction suitability and when isolating
freepages.
To sum up, this patch should remove some false positives from
__compaction_suitable(), and allow compaction to proceed when free pages
required for compaction reside in the CMA pageblocks.
Link: http://lkml.kernel.org/r/20160810091226.6709-10-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Firmware Assisted Dump (FA_DUMP) on ppc64 reserves substantial amounts
of memory when booting a secondary kernel. Srikar Dronamraju reported
that multiple nodes may have no memory managed by the buddy allocator
but still return true for populated_zone().
Commit 1d82de618d ("mm, vmscan: make kswapd reclaim in terms of
nodes") was reported to cause kswapd to spin at 100% CPU usage when
fadump was enabled. The old code happened to deal with the situation of
a populated node with zero free pages by co-incidence but the current
code tries to reclaim populated zones without realising that is
impossible.
We cannot just convert populated_zone() as many existing users really
need to check for present_pages. This patch introduces a managed_zone()
helper and uses it in the few cases where it is critical that the check
is made for managed pages -- zonelist construction and page reclaim.
Link: http://lkml.kernel.org/r/20160831195104.GB8119@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reported-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Tested-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There have been several reports about pre-mature OOM killer invocation
in 4.7 kernel when order-2 allocation request (for the kernel stack)
invoked OOM killer even during basic workloads (light IO or even kernel
compile on some filesystems). In all reported cases the memory is
fragmented and there are no order-2+ pages available. There is usually
a large amount of slab memory (usually dentries/inodes) and further
debugging has shown that there are way too many unmovable blocks which
are skipped during the compaction. Multiple reporters have confirmed
that the current linux-next which includes [1] and [2] helped and OOMs
are not reproducible anymore.
A simpler fix for the late rc and stable is to simply ignore the
compaction feedback and retry as long as there is a reclaim progress and
we are not getting OOM for order-0 pages. We already do that for
CONFING_COMPACTION=n so let's reuse the same code when compaction is
enabled as well.
[1] http://lkml.kernel.org/r/20160810091226.6709-1-vbabka@suse.cz
[2] http://lkml.kernel.org/r/f7a9ea9d-bb88-bfd6-e340-3a933559305a@suse.cz
Fixes: 0a0337e0d1 ("mm, oom: rework oom detection")
Link: http://lkml.kernel.org/r/20160823074339.GB23577@dhcp22.suse.cz
Signed-off-by: Michal Hocko <mhocko@suse.com>
Tested-by: Olaf Hering <olaf@aepfle.de>
Tested-by: Ralf-Peter Rohbeck <Ralf-Peter.Rohbeck@quantum.com>
Cc: Markus Trippelsdorf <markus@trippelsdorf.de>
Cc: Arkadiusz Miskiewicz <a.miskiewicz@gmail.com>
Cc: Ralf-Peter Rohbeck <Ralf-Peter.Rohbeck@quantum.com>
Cc: Jiri Slaby <jslaby@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Cc: David Rientjes <rientjes@google.com>
Cc: <stable@vger.kernel.org> [4.7.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
meminfo_proc_show() and si_mem_available() are using the wrong helpers
for calculating the size of the LRUs. The user-visible impact is that
there appears to be an abnormally high number of unevictable pages.
Link: http://lkml.kernel.org/r/20160805105805.GR2799@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Dave Chinner <david@fromorbit.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Some of node threshold depends on number of managed pages in the node.
When memory is going on/offline, it can be changed and we need to adjust
them.
Add recalculation to appropriate places and clean-up related functions
for better maintenance.
Link: http://lkml.kernel.org/r/1470724248-26780-2-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Before resetting min_unmapped_pages, we need to initialize
min_unmapped_pages rather than min_slab_pages.
Fixes: a5f5f91da6 (mm: convert zone_reclaim to node_reclaim)
Link: http://lkml.kernel.org/r/1470724248-26780-1-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
To distinguish non-slab pages charged to kmemcg we mark them PageKmemcg,
which sets page->_mapcount to -512. Currently, we set/clear PageKmemcg
in __alloc_pages_nodemask()/free_pages_prepare() for any page allocated
with __GFP_ACCOUNT, including those that aren't actually charged to any
cgroup, i.e. allocated from the root cgroup context. To avoid overhead
in case cgroups are not used, we only do that if memcg_kmem_enabled() is
true. The latter is set iff there are kmem-enabled memory cgroups
(online or offline). The root cgroup is not considered kmem-enabled.
As a result, if a page is allocated with __GFP_ACCOUNT for the root
cgroup when there are kmem-enabled memory cgroups and is freed after all
kmem-enabled memory cgroups were removed, e.g.
# no memory cgroups has been created yet, create one
mkdir /sys/fs/cgroup/memory/test
# run something allocating pages with __GFP_ACCOUNT, e.g.
# a program using pipe
dmesg | tail
# remove the memory cgroup
rmdir /sys/fs/cgroup/memory/test
we'll get bad page state bug complaining about page->_mapcount != -1:
BUG: Bad page state in process swapper/0 pfn:1fd945c
page:ffffea007f651700 count:0 mapcount:-511 mapping: (null) index:0x0
flags: 0x1000000000000000()
To avoid that, let's mark with PageKmemcg only those pages that are
actually charged to and hence pin a non-root memory cgroup.
Fixes: 4949148ad4 ("mm: charge/uncharge kmemcg from generic page allocator paths")
Reported-and-tested-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Paul Mackerras and Reza Arbab reported that machines with memoryless
nodes fail when vmstats are refreshed. Paul reported an oops as follows
Unable to handle kernel paging request for data at address 0xff7a10000
Faulting instruction address: 0xc000000000270cd0
Oops: Kernel access of bad area, sig: 11 [#1]
SMP NR_CPUS=2048 NUMA PowerNV
Modules linked in:
CPU: 0 PID: 1 Comm: swapper/0 Not tainted 4.7.0-kvm+ #118
task: c000000ff0680010 task.stack: c000000ff0704000
NIP: c000000000270cd0 LR: c000000000270ce8 CTR: 0000000000000000
REGS: c000000ff0707900 TRAP: 0300 Not tainted (4.7.0-kvm+)
MSR: 9000000102009033 <SF,HV,VEC,EE,ME,IR,DR,RI,LE,TM[E]> CR: 846b6824 XER: 20000000
CFAR: c000000000008768 DAR: 0000000ff7a10000 DSISR: 42000000 SOFTE: 1
NIP refresh_zone_stat_thresholds+0x80/0x240
LR refresh_zone_stat_thresholds+0x98/0x240
Call Trace:
refresh_zone_stat_thresholds+0xb8/0x240 (unreliable)
Both supplied potential fixes but one potentially misses checks and
another had redundant initialisations. This version initialises
per_cpu_nodestats on a per-pgdat basis instead of on a per-zone basis.
Link: http://lkml.kernel.org/r/20160804092404.GI2799@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reported-by: Paul Mackerras <paulus@ozlabs.org>
Reported-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Tested-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There was only one use of __initdata_refok and __exit_refok
__init_refok was used 46 times against 82 for __ref.
Those definitions are obsolete since commit 312b1485fb ("Introduce new
section reference annotations tags: __ref, __refdata, __refconst")
This patch removes the following compatibility definitions and replaces
them treewide.
/* compatibility defines */
#define __init_refok __ref
#define __initdata_refok __refdata
#define __exit_refok __ref
I can also provide separate patches if necessary.
(One patch per tree and check in 1 month or 2 to remove old definitions)
[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/1466796271-3043-1-git-send-email-fabf@skynet.be
Signed-off-by: Fabian Frederick <fabf@skynet.be>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Async compaction detects contention either due to failing trylock on
zone->lock or lru_lock, or by need_resched(). Since 1f9efdef4f ("mm,
compaction: khugepaged should not give up due to need_resched()") the
code got quite complicated to distinguish these two up to the
__alloc_pages_slowpath() level, so different decisions could be taken
for khugepaged allocations.
After the recent changes, khugepaged allocations don't check for
contended compaction anymore, so we again don't need to distinguish lock
and sched contention, and simplify the current convoluted code a lot.
However, I believe it's also possible to simplify even more and
completely remove the check for contended compaction after the initial
async compaction for costly orders, which was originally aimed at THP
page fault allocations. There are several reasons why this can be done
now:
- with the new defaults, THP page faults no longer do reclaim/compaction at
all, unless the system admin has overridden the default, or application has
indicated via madvise that it can benefit from THP's. In both cases, it
means that the potential extra latency is expected and worth the benefits.
- even if reclaim/compaction proceeds after this patch where it previously
wouldn't, the second compaction attempt is still async and will detect the
contention and back off, if the contention persists
- there are still heuristics like deferred compaction and pageblock skip bits
in place that prevent excessive THP page fault latencies
Link: http://lkml.kernel.org/r/20160721073614.24395-9-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In the context of direct compaction, for some types of allocations we
would like the compaction to either succeed or definitely fail while
trying as hard as possible. Current async/sync_light migration mode is
insufficient, as there are heuristics such as caching scanner positions,
marking pageblocks as unsuitable or deferring compaction for a zone. At
least the final compaction attempt should be able to override these
heuristics.
To communicate how hard compaction should try, we replace migration mode
with a new enum compact_priority and change the relevant function
signatures. In compact_zone_order() where struct compact_control is
constructed, the priority is mapped to suitable control flags. This
patch itself has no functional change, as the current priority levels
are mapped back to the same migration modes as before. Expanding them
will be done next.
Note that !CONFIG_COMPACTION variant of try_to_compact_pages() is
removed, as the only caller exists under CONFIG_COMPACTION.
Link: http://lkml.kernel.org/r/20160721073614.24395-8-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After the previous patch, we can distinguish costly allocations that
should be really lightweight, such as THP page faults, with
__GFP_NORETRY. This means we don't need to recognize khugepaged
allocations via PF_KTHREAD anymore. We can also change THP page faults
in areas where madvise(MADV_HUGEPAGE) was used to try as hard as
khugepaged, as the process has indicated that it benefits from THP's and
is willing to pay some initial latency costs.
We can also make the flags handling less cryptic by distinguishing
GFP_TRANSHUGE_LIGHT (no reclaim at all, default mode in page fault) from
GFP_TRANSHUGE (only direct reclaim, khugepaged default). Adding
__GFP_NORETRY or __GFP_KSWAPD_RECLAIM is done where needed.
The patch effectively changes the current GFP_TRANSHUGE users as
follows:
* get_huge_zero_page() - the zero page lifetime should be relatively
long and it's shared by multiple users, so it's worth spending some
effort on it. We use GFP_TRANSHUGE, and __GFP_NORETRY is not added.
This also restores direct reclaim to this allocation, which was
unintentionally removed by commit e4a49efe4e7e ("mm: thp: set THP defrag
by default to madvise and add a stall-free defrag option")
* alloc_hugepage_khugepaged_gfpmask() - this is khugepaged, so latency
is not an issue. So if khugepaged "defrag" is enabled (the default), do
reclaim via GFP_TRANSHUGE without __GFP_NORETRY. We can remove the
PF_KTHREAD check from page alloc.
As a side-effect, khugepaged will now no longer check if the initial
compaction was deferred or contended. This is OK, as khugepaged sleep
times between collapsion attempts are long enough to prevent noticeable
disruption, so we should allow it to spend some effort.
* migrate_misplaced_transhuge_page() - already was masking out
__GFP_RECLAIM, so just convert to GFP_TRANSHUGE_LIGHT which is
equivalent.
* alloc_hugepage_direct_gfpmask() - vma's with VM_HUGEPAGE (via madvise)
are now allocating without __GFP_NORETRY. Other vma's keep using
__GFP_NORETRY if direct reclaim/compaction is at all allowed (by default
it's allowed only for madvised vma's). The rest is conversion to
GFP_TRANSHUGE(_LIGHT).
[mhocko@suse.com: suggested GFP_TRANSHUGE_LIGHT]
Link: http://lkml.kernel.org/r/20160721073614.24395-7-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since THP allocations during page faults can be costly, extra decisions
are employed for them to avoid excessive reclaim and compaction, if the
initial compaction doesn't look promising. The detection has never been
perfect as there is no gfp flag specific to THP allocations. At this
moment it checks the whole combination of flags that makes up
GFP_TRANSHUGE, and hopes that no other users of such combination exist,
or would mind being treated the same way. Extra care is also taken to
separate allocations from khugepaged, where latency doesn't matter that
much.
It is however possible to distinguish these allocations in a simpler and
more reliable way. The key observation is that after the initial
compaction followed by the first iteration of "standard"
reclaim/compaction, both __GFP_NORETRY allocations and costly
allocations without __GFP_REPEAT are declared as failures:
/* Do not loop if specifically requested */
if (gfp_mask & __GFP_NORETRY)
goto nopage;
/*
* Do not retry costly high order allocations unless they are
* __GFP_REPEAT
*/
if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
goto nopage;
This means we can further distinguish allocations that are costly order
*and* additionally include the __GFP_NORETRY flag. As it happens,
GFP_TRANSHUGE allocations do already fall into this category. This will
also allow other costly allocations with similar high-order benefit vs
latency considerations to use this semantic. Furthermore, we can
distinguish THP allocations that should try a bit harder (such as from
khugepageed) by removing __GFP_NORETRY, as will be done in the next
patch.
Link: http://lkml.kernel.org/r/20160721073614.24395-6-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The retry loop in __alloc_pages_slowpath is supposed to keep trying
reclaim and compaction (and OOM), until either the allocation succeeds,
or returns with failure. Success here is more probable when reclaim
precedes compaction, as certain watermarks have to be met for compaction
to even try, and more free pages increase the probability of compaction
success. On the other hand, starting with light async compaction (if
the watermarks allow it), can be more efficient, especially for smaller
orders, if there's enough free memory which is just fragmented.
Thus, the current code starts with compaction before reclaim, and to
make sure that the last reclaim is always followed by a final
compaction, there's another direct compaction call at the end of the
loop. This makes the code hard to follow and adds some duplicated
handling of migration_mode decisions. It's also somewhat inefficient
that even if reclaim or compaction decides not to retry, the final
compaction is still attempted. Some gfp flags combination also shortcut
these retry decisions by "goto noretry;", making it even harder to
follow.
This patch attempts to restructure the code with only minimal functional
changes. The call to the first compaction and THP-specific checks are
now placed above the retry loop, and the "noretry" direct compaction is
removed.
The initial compaction is additionally restricted only to costly orders,
as we can expect smaller orders to be held back by watermarks, and only
larger orders to suffer primarily from fragmentation. This better
matches the checks in reclaim's shrink_zones().
There are two other smaller functional changes. One is that the upgrade
from async migration to light sync migration will always occur after the
initial compaction. This is how it has been until recent patch "mm,
oom: protect !costly allocations some more", which introduced upgrading
the mode based on COMPACT_COMPLETE result, but kept the final compaction
always upgraded, which made it even more special. It's better to return
to the simpler handling for now, as migration modes will be further
modified later in the series.
The second change is that once both reclaim and compaction declare it's
not worth to retry the reclaim/compact loop, there is no final
compaction attempt. As argued above, this is intentional. If that
final compaction were to succeed, it would be due to a wrong retry
decision, or simply a race with somebody else freeing memory for us.
The main outcome of this patch should be simpler code. Logically, the
initial compaction without reclaim is the exceptional case to the
reclaim/compaction scheme, but prior to the patch, it was the last loop
iteration that was exceptional. Now the code matches the logic better.
The change also enable the following patches.
Link: http://lkml.kernel.org/r/20160721073614.24395-5-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After __alloc_pages_slowpath() sets up new alloc_flags and wakes up
kswapd, it first tries get_page_from_freelist() with the new
alloc_flags, as it may succeed e.g. due to using min watermark instead
of low watermark. It makes sense to to do this attempt before adjusting
zonelist based on alloc_flags/gfp_mask, as it's still relatively a fast
path if we just wake up kswapd and successfully allocate.
This patch therefore moves the initial attempt above the retry label and
reorganizes a bit the part below the retry label. We still have to
attempt get_page_from_freelist() on each retry, as some allocations
cannot do that as part of direct reclaim or compaction, and yet are not
allowed to fail (even though they do a WARN_ON_ONCE() and thus should
not exist). We can reuse the call meant for ALLOC_NO_WATERMARKS attempt
and just set alloc_flags to ALLOC_NO_WATERMARKS if the context allows
it. As a side-effect, the attempts from direct reclaim/compaction will
also no longer obey watermarks once this is set, but there's little harm
in that.
Kswapd wakeups are also done on each retry to be safe from potential
races resulting in kswapd going to sleep while a process (that may not
be able to reclaim by itself) is still looping.
Link: http://lkml.kernel.org/r/20160721073614.24395-4-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In __alloc_pages_slowpath(), alloc_flags doesn't change after it's
initialized, so move the initialization above the retry: label. Also
make the comment above the initialization more descriptive.
The only exception in the alloc_flags being constant is
ALLOC_NO_WATERMARKS, which may change due to TIF_MEMDIE being set on the
allocating thread. We can fix this, and make the code simpler and a bit
more effective at the same time, by moving the part that determines
ALLOC_NO_WATERMARKS from gfp_to_alloc_flags() to gfp_pfmemalloc_allowed().
This means we don't have to mask out ALLOC_NO_WATERMARKS in numerous
places in __alloc_pages_slowpath() anymore. The only two tests for the
flag can instead call gfp_pfmemalloc_allowed().
Link: http://lkml.kernel.org/r/20160721073614.24395-3-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, NR_KERNEL_STACK tracks the number of kernel stacks in a zone.
This only makes sense if each kernel stack exists entirely in one zone,
and allowing vmapped stacks could break this assumption.
Since frv has THREAD_SIZE < PAGE_SIZE, we need to track kernel stack
allocations in a unit that divides both THREAD_SIZE and PAGE_SIZE on all
architectures. Keep it simple and use KiB.
Link: http://lkml.kernel.org/r/083c71e642c5fa5f1b6898902e1b2db7b48940d4.1468523549.git.luto@kernel.org
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Reviewed-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If per-zone LRU accounting is available then there is no point
approximating whether reclaim and compaction should retry based on pgdat
statistics. This is effectively a revert of "mm, vmstat: remove zone
and node double accounting by approximating retries" with the difference
that inactive/active stats are still available. This preserves the
history of why the approximation was retried and why it had to be
reverted to handle OOM kills on 32-bit systems.
Link: http://lkml.kernel.org/r/1469110261-7365-4-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The node_pages_scanned represents the number of scanned pages of node
for reclaim so it's pointless to show it as kilobytes.
As well, node_pages_scanned is per-node value, not per-zone.
This patch changes node_pages_scanned per-zone-killobytes with
per-node-count.
[minchan@kernel.org: fix node_pages_scanned]
Link: http://lkml.kernel.org/r/20160716101431.GA10305@bbox
Link: http://lkml.kernel.org/r/1468588165-12461-5-git-send-email-mgorman@techsingularity.net
Signed-off-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The number of LRU pages, dirty pages and writeback pages must be
accounted for on both zones and nodes because of the reclaim retry
logic, compaction retry logic and highmem calculations all depending on
per-zone stats.
Many lowmem allocations are immune from OOM kill due to a check in
__alloc_pages_may_oom for (ac->high_zoneidx < ZONE_NORMAL) since commit
03668b3ceb ("oom: avoid oom killer for lowmem allocations"). The
exception is costly high-order allocations or allocations that cannot
fail. If the __alloc_pages_may_oom avoids OOM-kill for low-order lowmem
allocations then it would fall through to __alloc_pages_direct_compact.
This patch will blindly retry reclaim for zone-constrained allocations
in should_reclaim_retry up to MAX_RECLAIM_RETRIES. This is not ideal
but without per-zone stats there are not many alternatives. The impact
it that zone-constrained allocations may delay before considering the
OOM killer.
As there is no guarantee enough memory can ever be freed to satisfy
compaction, this patch avoids retrying compaction for zone-contrained
allocations.
In combination, that means that the per-node stats can be used when
deciding whether to continue reclaim using a rough approximation. While
it is possible this will make the wrong decision on occasion, it will
not infinite loop as the number of reclaim attempts is capped by
MAX_RECLAIM_RETRIES.
The final step is calculating the number of dirtyable highmem pages. As
those calculations only care about the global count of file pages in
highmem. This patch uses a global counter used instead of per-zone
stats as it is sufficient.
In combination, this allows the per-zone LRU and dirty state counters to
be removed.
[mgorman@techsingularity.net: fix acct_highmem_file_pages()]
Link: http://lkml.kernel.org/r/1468853426-12858-4-git-send-email-mgorman@techsingularity.netLink: http://lkml.kernel.org/r/1467970510-21195-35-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Suggested by: Michal Hocko <mhocko@kernel.org>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is partially a preparation patch for more vmstat work but it also
has the slight advantage that __count_zid_vm_events is cheaper to
calculate than __count_zone_vm_events().
Link: http://lkml.kernel.org/r/1467970510-21195-32-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If a page is about to be dirtied then the page allocator attempts to
limit the total number of dirty pages that exists in any given zone.
The call to node_dirty_ok is expensive so this patch records if the last
pgdat examined hit the dirty limits. In some cases, this reduces the
number of calls to node_dirty_ok().
Link: http://lkml.kernel.org/r/1467970510-21195-31-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The fair zone allocation policy interleaves allocation requests between
zones to avoid an age inversion problem whereby new pages are reclaimed
to balance a zone. Reclaim is now node-based so this should no longer
be an issue and the fair zone allocation policy is not free. This patch
removes it.
Link: http://lkml.kernel.org/r/1467970510-21195-30-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As reclaim is now per-node based, convert zone_reclaim to be
node_reclaim. It is possible that a node will be reclaimed multiple
times if it has multiple zones but this is unavoidable without caching
all nodes traversed so far. The documentation and interface to
userspace is the same from a configuration perspective and will will be
similar in behaviour unless the node-local allocation requests were also
limited to lower zones.
Link: http://lkml.kernel.org/r/1467970510-21195-24-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The ac_classzone_idx is used as the basis for waking kswapd and that is
based on the preferred zoneref. If the preferred zoneref's first zone
is lower than what is available on other nodes, it's possible that
kswapd is woken on a zone with only higher, but still eligible, zones.
As classzone_idx is strictly adhered to now, it causes a problem because
eligible pages are skipped.
For example, node 0 has only DMA32 and node 1 has only NORMAL. An
allocating context running on node 0 may wake kswapd on node 1 telling
it to skip all NORMAL pages.
Link: http://lkml.kernel.org/r/1467970510-21195-23-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
kswapd is woken when zones are below the low watermark but the wakeup
decision is not taking the classzone into account. Now that reclaim is
node-based, it is only required to wake kswapd once per node and only if
all zones are unbalanced for the requested classzone.
Note that one node might be checked multiple times if the zonelist is
ordered by node because there is no cheap way of tracking what nodes
have already been visited. For zone-ordering, each node should be
checked only once.
Link: http://lkml.kernel.org/r/1467970510-21195-22-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are now a number of accounting oddities such as mapped file pages
being accounted for on the node while the total number of file pages are
accounted on the zone. This can be coped with to some extent but it's
confusing so this patch moves the relevant file-based accounted. Due to
throttling logic in the page allocator for reliable OOM detection, it is
still necessary to track dirty and writeback pages on a per-zone basis.
[mgorman@techsingularity.net: fix NR_ZONE_WRITE_PENDING accounting]
Link: http://lkml.kernel.org/r/1468404004-5085-5-git-send-email-mgorman@techsingularity.net
Link: http://lkml.kernel.org/r/1467970510-21195-20-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Reclaim makes decisions based on the number of pages that are mapped but
it's mixing node and zone information. Account NR_FILE_MAPPED and
NR_ANON_PAGES pages on the node.
Link: http://lkml.kernel.org/r/1467970510-21195-18-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Historically dirty pages were spread among zones but now that LRUs are
per-node it is more appropriate to consider dirty pages in a node.
Link: http://lkml.kernel.org/r/1467970510-21195-17-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Earlier patches focused on having direct reclaim and kswapd use data
that is node-centric for reclaiming but shrink_node() itself still uses
too much zone information. This patch removes unnecessary zone-based
information with the most important decision being whether to continue
reclaim or not. Some memcg APIs are adjusted as a result even though
memcg itself still uses some zone information.
[mgorman@techsingularity.net: optimization]
Link: http://lkml.kernel.org/r/1468588165-12461-2-git-send-email-mgorman@techsingularity.net
Link: http://lkml.kernel.org/r/1467970510-21195-14-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
kswapd goes through some complex steps trying to figure out if it should
stay awake based on the classzone_idx and the requested order. It is
unnecessarily complex and passes in an invalid classzone_idx to
balance_pgdat(). What matters most of all is whether a larger order has
been requsted and whether kswapd successfully reclaimed at the previous
order. This patch irons out the logic to check just that and the end
result is less headache inducing.
Link: http://lkml.kernel.org/r/1467970510-21195-10-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This moves the LRU lists from the zone to the node and related data such
as counters, tracing, congestion tracking and writeback tracking.
Unfortunately, due to reclaim and compaction retry logic, it is
necessary to account for the number of LRU pages on both zone and node
logic. Most reclaim logic is based on the node counters but the retry
logic uses the zone counters which do not distinguish inactive and
active sizes. It would be possible to leave the LRU counters on a
per-zone basis but it's a heavier calculation across multiple cache
lines that is much more frequent than the retry checks.
Other than the LRU counters, this is mostly a mechanical patch but note
that it introduces a number of anomalies. For example, the scans are
per-zone but using per-node counters. We also mark a node as congested
when a zone is congested. This causes weird problems that are fixed
later but is easier to review.
In the event that there is excessive overhead on 32-bit systems due to
the nodes being on LRU then there are two potential solutions
1. Long-term isolation of highmem pages when reclaim is lowmem
When pages are skipped, they are immediately added back onto the LRU
list. If lowmem reclaim persisted for long periods of time, the same
highmem pages get continually scanned. The idea would be that lowmem
keeps those pages on a separate list until a reclaim for highmem pages
arrives that splices the highmem pages back onto the LRU. It potentially
could be implemented similar to the UNEVICTABLE list.
That would reduce the skip rate with the potential corner case is that
highmem pages have to be scanned and reclaimed to free lowmem slab pages.
2. Linear scan lowmem pages if the initial LRU shrink fails
This will break LRU ordering but may be preferable and faster during
memory pressure than skipping LRU pages.
Link: http://lkml.kernel.org/r/1467970510-21195-4-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Node-based reclaim requires node-based LRUs and locking. This is a
preparation patch that just moves the lru_lock to the node so later
patches are easier to review. It is a mechanical change but note this
patch makes contention worse because the LRU lock is hotter and direct
reclaim and kswapd can contend on the same lock even when reclaiming
from different zones.
Link: http://lkml.kernel.org/r/1467970510-21195-3-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reviewed-by: Minchan Kim <minchan@kernel.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patchset: "Move LRU page reclaim from zones to nodes v9"
This series moves LRUs from the zones to the node. While this is a
current rebase, the test results were based on mmotm as of June 23rd.
Conceptually, this series is simple but there are a lot of details.
Some of the broad motivations for this are;
1. The residency of a page partially depends on what zone the page was
allocated from. This is partially combatted by the fair zone allocation
policy but that is a partial solution that introduces overhead in the
page allocator paths.
2. Currently, reclaim on node 0 behaves slightly different to node 1. For
example, direct reclaim scans in zonelist order and reclaims even if
the zone is over the high watermark regardless of the age of pages
in that LRU. Kswapd on the other hand starts reclaim on the highest
unbalanced zone. A difference in distribution of file/anon pages due
to when they were allocated results can result in a difference in
again. While the fair zone allocation policy mitigates some of the
problems here, the page reclaim results on a multi-zone node will
always be different to a single-zone node.
it was scheduled on as a result.
3. kswapd and the page allocator scan zones in the opposite order to
avoid interfering with each other but it's sensitive to timing. This
mitigates the page allocator using pages that were allocated very recently
in the ideal case but it's sensitive to timing. When kswapd is allocating
from lower zones then it's great but during the rebalancing of the highest
zone, the page allocator and kswapd interfere with each other. It's worse
if the highest zone is small and difficult to balance.
4. slab shrinkers are node-based which makes it harder to identify the exact
relationship between slab reclaim and LRU reclaim.
The reason we have zone-based reclaim is that we used to have
large highmem zones in common configurations and it was necessary
to quickly find ZONE_NORMAL pages for reclaim. Today, this is much
less of a concern as machines with lots of memory will (or should) use
64-bit kernels. Combinations of 32-bit hardware and 64-bit hardware are
rare. Machines that do use highmem should have relatively low highmem:lowmem
ratios than we worried about in the past.
Conceptually, moving to node LRUs should be easier to understand. The
page allocator plays fewer tricks to game reclaim and reclaim behaves
similarly on all nodes.
The series has been tested on a 16 core UMA machine and a 2-socket 48
core NUMA machine. The UMA results are presented in most cases as the NUMA
machine behaved similarly.
pagealloc
---------
This is a microbenchmark that shows the benefit of removing the fair zone
allocation policy. It was tested uip to order-4 but only orders 0 and 1 are
shown as the other orders were comparable.
4.7.0-rc4 4.7.0-rc4
mmotm-20160623 nodelru-v9
Min total-odr0-1 490.00 ( 0.00%) 457.00 ( 6.73%)
Min total-odr0-2 347.00 ( 0.00%) 329.00 ( 5.19%)
Min total-odr0-4 288.00 ( 0.00%) 273.00 ( 5.21%)
Min total-odr0-8 251.00 ( 0.00%) 239.00 ( 4.78%)
Min total-odr0-16 234.00 ( 0.00%) 222.00 ( 5.13%)
Min total-odr0-32 223.00 ( 0.00%) 211.00 ( 5.38%)
Min total-odr0-64 217.00 ( 0.00%) 208.00 ( 4.15%)
Min total-odr0-128 214.00 ( 0.00%) 204.00 ( 4.67%)
Min total-odr0-256 250.00 ( 0.00%) 230.00 ( 8.00%)
Min total-odr0-512 271.00 ( 0.00%) 269.00 ( 0.74%)
Min total-odr0-1024 291.00 ( 0.00%) 282.00 ( 3.09%)
Min total-odr0-2048 303.00 ( 0.00%) 296.00 ( 2.31%)
Min total-odr0-4096 311.00 ( 0.00%) 309.00 ( 0.64%)
Min total-odr0-8192 316.00 ( 0.00%) 314.00 ( 0.63%)
Min total-odr0-16384 317.00 ( 0.00%) 315.00 ( 0.63%)
Min total-odr1-1 742.00 ( 0.00%) 712.00 ( 4.04%)
Min total-odr1-2 562.00 ( 0.00%) 530.00 ( 5.69%)
Min total-odr1-4 457.00 ( 0.00%) 433.00 ( 5.25%)
Min total-odr1-8 411.00 ( 0.00%) 381.00 ( 7.30%)
Min total-odr1-16 381.00 ( 0.00%) 356.00 ( 6.56%)
Min total-odr1-32 372.00 ( 0.00%) 346.00 ( 6.99%)
Min total-odr1-64 372.00 ( 0.00%) 343.00 ( 7.80%)
Min total-odr1-128 375.00 ( 0.00%) 351.00 ( 6.40%)
Min total-odr1-256 379.00 ( 0.00%) 351.00 ( 7.39%)
Min total-odr1-512 385.00 ( 0.00%) 355.00 ( 7.79%)
Min total-odr1-1024 386.00 ( 0.00%) 358.00 ( 7.25%)
Min total-odr1-2048 390.00 ( 0.00%) 362.00 ( 7.18%)
Min total-odr1-4096 390.00 ( 0.00%) 362.00 ( 7.18%)
Min total-odr1-8192 388.00 ( 0.00%) 363.00 ( 6.44%)
This shows a steady improvement throughout. The primary benefit is from
reduced system CPU usage which is obvious from the overall times;
4.7.0-rc4 4.7.0-rc4
mmotm-20160623nodelru-v8
User 189.19 191.80
System 2604.45 2533.56
Elapsed 2855.30 2786.39
The vmstats also showed that the fair zone allocation policy was definitely
removed as can be seen here;
4.7.0-rc3 4.7.0-rc3
mmotm-20160623 nodelru-v8
DMA32 allocs 28794729769 0
Normal allocs 48432501431 77227309877
Movable allocs 0 0
tiobench on ext4
----------------
tiobench is a benchmark that artifically benefits if old pages remain resident
while new pages get reclaimed. The fair zone allocation policy mitigates this
problem so pages age fairly. While the benchmark has problems, it is important
that tiobench performance remains constant as it implies that page aging
problems that the fair zone allocation policy fixes are not re-introduced.
4.7.0-rc4 4.7.0-rc4
mmotm-20160623 nodelru-v9
Min PotentialReadSpeed 89.65 ( 0.00%) 90.21 ( 0.62%)
Min SeqRead-MB/sec-1 82.68 ( 0.00%) 82.01 ( -0.81%)
Min SeqRead-MB/sec-2 72.76 ( 0.00%) 72.07 ( -0.95%)
Min SeqRead-MB/sec-4 75.13 ( 0.00%) 74.92 ( -0.28%)
Min SeqRead-MB/sec-8 64.91 ( 0.00%) 65.19 ( 0.43%)
Min SeqRead-MB/sec-16 62.24 ( 0.00%) 62.22 ( -0.03%)
Min RandRead-MB/sec-1 0.88 ( 0.00%) 0.88 ( 0.00%)
Min RandRead-MB/sec-2 0.95 ( 0.00%) 0.92 ( -3.16%)
Min RandRead-MB/sec-4 1.43 ( 0.00%) 1.34 ( -6.29%)
Min RandRead-MB/sec-8 1.61 ( 0.00%) 1.60 ( -0.62%)
Min RandRead-MB/sec-16 1.80 ( 0.00%) 1.90 ( 5.56%)
Min SeqWrite-MB/sec-1 76.41 ( 0.00%) 76.85 ( 0.58%)
Min SeqWrite-MB/sec-2 74.11 ( 0.00%) 73.54 ( -0.77%)
Min SeqWrite-MB/sec-4 80.05 ( 0.00%) 80.13 ( 0.10%)
Min SeqWrite-MB/sec-8 72.88 ( 0.00%) 73.20 ( 0.44%)
Min SeqWrite-MB/sec-16 75.91 ( 0.00%) 76.44 ( 0.70%)
Min RandWrite-MB/sec-1 1.18 ( 0.00%) 1.14 ( -3.39%)
Min RandWrite-MB/sec-2 1.02 ( 0.00%) 1.03 ( 0.98%)
Min RandWrite-MB/sec-4 1.05 ( 0.00%) 0.98 ( -6.67%)
Min RandWrite-MB/sec-8 0.89 ( 0.00%) 0.92 ( 3.37%)
Min RandWrite-MB/sec-16 0.92 ( 0.00%) 0.93 ( 1.09%)
4.7.0-rc4 4.7.0-rc4
mmotm-20160623 approx-v9
User 645.72 525.90
System 403.85 331.75
Elapsed 6795.36 6783.67
This shows that the series has little or not impact on tiobench which is
desirable and a reduction in system CPU usage. It indicates that the fair
zone allocation policy was removed in a manner that didn't reintroduce
one class of page aging bug. There were only minor differences in overall
reclaim activity
4.7.0-rc4 4.7.0-rc4
mmotm-20160623nodelru-v8
Minor Faults 645838 647465
Major Faults 573 640
Swap Ins 0 0
Swap Outs 0 0
DMA allocs 0 0
DMA32 allocs 46041453 44190646
Normal allocs 78053072 79887245
Movable allocs 0 0
Allocation stalls 24 67
Stall zone DMA 0 0
Stall zone DMA32 0 0
Stall zone Normal 0 2
Stall zone HighMem 0 0
Stall zone Movable 0 65
Direct pages scanned 10969 30609
Kswapd pages scanned 93375144 93492094
Kswapd pages reclaimed 93372243 93489370
Direct pages reclaimed 10969 30609
Kswapd efficiency 99% 99%
Kswapd velocity 13741.015 13781.934
Direct efficiency 100% 100%
Direct velocity 1.614 4.512
Percentage direct scans 0% 0%
kswapd activity was roughly comparable. There were differences in direct
reclaim activity but negligible in the context of the overall workload
(velocity of 4 pages per second with the patches applied, 1.6 pages per
second in the baseline kernel).
pgbench read-only large configuration on ext4
---------------------------------------------
pgbench is a database benchmark that can be sensitive to page reclaim
decisions. This also checks if removing the fair zone allocation policy
is safe
pgbench Transactions
4.7.0-rc4 4.7.0-rc4
mmotm-20160623 nodelru-v8
Hmean 1 188.26 ( 0.00%) 189.78 ( 0.81%)
Hmean 5 330.66 ( 0.00%) 328.69 ( -0.59%)
Hmean 12 370.32 ( 0.00%) 380.72 ( 2.81%)
Hmean 21 368.89 ( 0.00%) 369.00 ( 0.03%)
Hmean 30 382.14 ( 0.00%) 360.89 ( -5.56%)
Hmean 32 428.87 ( 0.00%) 432.96 ( 0.95%)
Negligible differences again. As with tiobench, overall reclaim activity
was comparable.
bonnie++ on ext4
----------------
No interesting performance difference, negligible differences on reclaim
stats.
paralleldd on ext4
------------------
This workload uses varying numbers of dd instances to read large amounts of
data from disk.
4.7.0-rc3 4.7.0-rc3
mmotm-20160623 nodelru-v9
Amean Elapsd-1 186.04 ( 0.00%) 189.41 ( -1.82%)
Amean Elapsd-3 192.27 ( 0.00%) 191.38 ( 0.46%)
Amean Elapsd-5 185.21 ( 0.00%) 182.75 ( 1.33%)
Amean Elapsd-7 183.71 ( 0.00%) 182.11 ( 0.87%)
Amean Elapsd-12 180.96 ( 0.00%) 181.58 ( -0.35%)
Amean Elapsd-16 181.36 ( 0.00%) 183.72 ( -1.30%)
4.7.0-rc4 4.7.0-rc4
mmotm-20160623 nodelru-v9
User 1548.01 1552.44
System 8609.71 8515.08
Elapsed 3587.10 3594.54
There is little or no change in performance but some drop in system CPU usage.
4.7.0-rc3 4.7.0-rc3
mmotm-20160623 nodelru-v9
Minor Faults 362662 367360
Major Faults 1204 1143
Swap Ins 22 0
Swap Outs 2855 1029
DMA allocs 0 0
DMA32 allocs 31409797 28837521
Normal allocs 46611853 49231282
Movable allocs 0 0
Direct pages scanned 0 0
Kswapd pages scanned 40845270 40869088
Kswapd pages reclaimed 40830976 40855294
Direct pages reclaimed 0 0
Kswapd efficiency 99% 99%
Kswapd velocity 11386.711 11369.769
Direct efficiency 100% 100%
Direct velocity 0.000 0.000
Percentage direct scans 0% 0%
Page writes by reclaim 2855 1029
Page writes file 0 0
Page writes anon 2855 1029
Page reclaim immediate 771 1628
Sector Reads 293312636 293536360
Sector Writes 18213568 18186480
Page rescued immediate 0 0
Slabs scanned 128257 132747
Direct inode steals 181 56
Kswapd inode steals 59 1131
It basically shows that kswapd was active at roughly the same rate in
both kernels. There was also comparable slab scanning activity and direct
reclaim was avoided in both cases. There appears to be a large difference
in numbers of inodes reclaimed but the workload has few active inodes and
is likely a timing artifact.
stutter
-------
stutter simulates a simple workload. One part uses a lot of anonymous
memory, a second measures mmap latency and a third copies a large file.
The primary metric is checking for mmap latency.
stutter
4.7.0-rc4 4.7.0-rc4
mmotm-20160623 nodelru-v8
Min mmap 16.6283 ( 0.00%) 13.4258 ( 19.26%)
1st-qrtle mmap 54.7570 ( 0.00%) 34.9121 ( 36.24%)
2nd-qrtle mmap 57.3163 ( 0.00%) 46.1147 ( 19.54%)
3rd-qrtle mmap 58.9976 ( 0.00%) 47.1882 ( 20.02%)
Max-90% mmap 59.7433 ( 0.00%) 47.4453 ( 20.58%)
Max-93% mmap 60.1298 ( 0.00%) 47.6037 ( 20.83%)
Max-95% mmap 73.4112 ( 0.00%) 82.8719 (-12.89%)
Max-99% mmap 92.8542 ( 0.00%) 88.8870 ( 4.27%)
Max mmap 1440.6569 ( 0.00%) 121.4201 ( 91.57%)
Mean mmap 59.3493 ( 0.00%) 42.2991 ( 28.73%)
Best99%Mean mmap 57.2121 ( 0.00%) 41.8207 ( 26.90%)
Best95%Mean mmap 55.9113 ( 0.00%) 39.9620 ( 28.53%)
Best90%Mean mmap 55.6199 ( 0.00%) 39.3124 ( 29.32%)
Best50%Mean mmap 53.2183 ( 0.00%) 33.1307 ( 37.75%)
Best10%Mean mmap 45.9842 ( 0.00%) 20.4040 ( 55.63%)
Best5%Mean mmap 43.2256 ( 0.00%) 17.9654 ( 58.44%)
Best1%Mean mmap 32.9388 ( 0.00%) 16.6875 ( 49.34%)
This shows a number of improvements with the worst-case outlier greatly
improved.
Some of the vmstats are interesting
4.7.0-rc4 4.7.0-rc4
mmotm-20160623nodelru-v8
Swap Ins 163 502
Swap Outs 0 0
DMA allocs 0 0
DMA32 allocs 618719206 1381662383
Normal allocs 891235743 564138421
Movable allocs 0 0
Allocation stalls 2603 1
Direct pages scanned 216787 2
Kswapd pages scanned 50719775 41778378
Kswapd pages reclaimed 41541765 41777639
Direct pages reclaimed 209159 0
Kswapd efficiency 81% 99%
Kswapd velocity 16859.554 14329.059
Direct efficiency 96% 0%
Direct velocity 72.061 0.001
Percentage direct scans 0% 0%
Page writes by reclaim 6215049 0
Page writes file 6215049 0
Page writes anon 0 0
Page reclaim immediate 70673 90
Sector Reads 81940800 81680456
Sector Writes 100158984 98816036
Page rescued immediate 0 0
Slabs scanned 1366954 22683
While this is not guaranteed in all cases, this particular test showed
a large reduction in direct reclaim activity. It's also worth noting
that no page writes were issued from reclaim context.
This series is not without its hazards. There are at least three areas
that I'm concerned with even though I could not reproduce any problems in
that area.
1. Reclaim/compaction is going to be affected because the amount of reclaim is
no longer targetted at a specific zone. Compaction works on a per-zone basis
so there is no guarantee that reclaiming a few THP's worth page pages will
have a positive impact on compaction success rates.
2. The Slab/LRU reclaim ratio is affected because the frequency the shrinkers
are called is now different. This may or may not be a problem but if it
is, it'll be because shrinkers are not called enough and some balancing
is required.
3. The anon/file reclaim ratio may be affected. Pages about to be dirtied are
distributed between zones and the fair zone allocation policy used to do
something very similar for anon. The distribution is now different but not
necessarily in any way that matters but it's still worth bearing in mind.
VM statistic counters for reclaim decisions are zone-based. If the kernel
is to reclaim on a per-node basis then we need to track per-node
statistics but there is no infrastructure for that. The most notable
change is that the old node_page_state is renamed to
sum_zone_node_page_state. The new node_page_state takes a pglist_data and
uses per-node stats but none exist yet. There is some renaming such as
vm_stat to vm_zone_stat and the addition of vm_node_stat and the renaming
of mod_state to mod_zone_state. Otherwise, this is mostly a mechanical
patch with no functional change. There is a lot of similarity between the
node and zone helpers which is unfortunate but there was no obvious way of
reusing the code and maintaining type safety.
Link: http://lkml.kernel.org/r/1467970510-21195-2-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Rik van Riel <riel@surriel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The helper early_page_nid_uninitialised() has been dead since commit
974a786e63 ("mm, page_alloc: remove MIGRATE_RESERVE") so remove the
dead code.
Link: http://lkml.kernel.org/r/1468008031-3848-2-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We need to assure the comment is consistent with the code.
[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/1466171914-21027-1-git-send-email-zhongjiang@huawei.com
Signed-off-by: zhong jiang <zhongjiang@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Let's add ShmemHugePages and ShmemPmdMapped fields into meminfo and
smaps. It indicates how many times we allocate and map shmem THP.
NR_ANON_TRANSPARENT_HUGEPAGES is renamed to NR_ANON_THPS.
Link: http://lkml.kernel.org/r/1466021202-61880-27-git-send-email-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As with anon THP, we only mlock file huge pages if we can prove that the
page is not mapped with PTE. This way we can avoid mlock leak into
non-mlocked vma on split.
We rely on PageDoubleMap() under lock_page() to check if the the page
may be PTE mapped. PG_double_map is set by page_add_file_rmap() when
the page mapped with PTEs.
Link: http://lkml.kernel.org/r/1466021202-61880-21-git-send-email-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, to charge a non-slab allocation to kmemcg one has to use
alloc_kmem_pages helper with __GFP_ACCOUNT flag. A page allocated with
this helper should finally be freed using free_kmem_pages, otherwise it
won't be uncharged.
This API suits its current users fine, but it turns out to be impossible
to use along with page reference counting, i.e. when an allocation is
supposed to be freed with put_page, as it is the case with pipe or unix
socket buffers.
To overcome this limitation, this patch moves charging/uncharging to
generic page allocator paths, i.e. to __alloc_pages_nodemask and
free_pages_prepare, and zaps alloc/free_kmem_pages helpers. This way,
one can use any of the available page allocation functions to get the
allocated page charged to kmemcg - it's enough to pass __GFP_ACCOUNT,
just like in case of kmalloc and friends. A charged page will be
automatically uncharged on free.
To make it possible, we need to mark pages charged to kmemcg somehow.
To avoid introducing a new page flag, we make use of page->_mapcount for
marking such pages. Since pages charged to kmemcg are not supposed to
be mapped to userspace, it should work just fine. There are other
(ab)users of page->_mapcount - buddy and balloon pages - but we don't
conflict with them.
In case kmemcg is compiled out or not used at runtime, this patch
introduces no overhead to generic page allocator paths. If kmemcg is
used, it will be plus one gfp flags check on alloc and plus one
page->_mapcount check on free, which shouldn't hurt performance, because
the data accessed are hot.
Link: http://lkml.kernel.org/r/a9736d856f895bcb465d9f257b54efe32eda6f99.1464079538.git.vdavydov@virtuozzo.com
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- Handle memcg_kmem_enabled check out to the caller. This reduces the
number of function definitions making the code easier to follow. At
the same time it doesn't result in code bloat, because all of these
functions are used only in one or two places.
- Move __GFP_ACCOUNT check to the caller as well so that one wouldn't
have to dive deep into memcg implementation to see which allocations
are charged and which are not.
- Refresh comments.
Link: http://lkml.kernel.org/r/52882a28b542c1979fd9a033b4dc8637fc347399.1464079537.git.vdavydov@virtuozzo.com
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch is motivated from Hugh and Vlastimil's concern [1].
There are two ways to get freepage from the allocator. One is using
normal memory allocation API and the other is __isolate_free_page()
which is internally used for compaction and pageblock isolation. Later
usage is rather tricky since it doesn't do whole post allocation
processing done by normal API.
One problematic thing I already know is that poisoned page would not be
checked if it is allocated by __isolate_free_page(). Perhaps, there
would be more.
We could add more debug logic for allocated page in the future and this
separation would cause more problem. I'd like to fix this situation at
this time. Solution is simple. This patch commonize some logic for
newly allocated page and uses it on all sites. This will solve the
problem.
[1] http://marc.info/?i=alpine.LSU.2.11.1604270029350.7066%40eggly.anvils%3E
[iamjoonsoo.kim@lge.com: mm-page_alloc-introduce-post-allocation-processing-on-page-allocator-v3]
Link: http://lkml.kernel.org/r/1464230275-25791-7-git-send-email-iamjoonsoo.kim@lge.com
Link: http://lkml.kernel.org/r/1466150259-27727-9-git-send-email-iamjoonsoo.kim@lge.com
Link: http://lkml.kernel.org/r/1464230275-25791-7-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Alexander Potapenko <glider@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
split_page() calls set_page_owner() to set up page_owner to each pages.
But, it has a drawback that head page and the others have different
stacktrace because callsite of set_page_owner() is slightly differnt.
To avoid this problem, this patch copies head page's page_owner to the
others. It needs to introduce new function, split_page_owner() but it
also remove the other function, get_page_owner_gfp() so looks good to
do.
Link: http://lkml.kernel.org/r/1464230275-25791-4-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Alexander Potapenko <glider@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It's not necessary to initialized page_owner with holding the zone lock.
It would cause more contention on the zone lock although it's not a big
problem since it is just debug feature. But, it is better than before
so do it. This is also preparation step to use stackdepot in page owner
feature. Stackdepot allocates new pages when there is no reserved space
and holding the zone lock in this case will cause deadlock.
Link: http://lkml.kernel.org/r/1464230275-25791-2-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Alexander Potapenko <glider@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We don't need to split freepages with holding the zone lock. It will
cause more contention on zone lock so not desirable.
[rientjes@google.com: if __isolate_free_page() fails, avoid adding to freelist so we don't call map_pages() with it]
Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1606211447001.43430@chino.kir.corp.google.com
Link: http://lkml.kernel.org/r/1464230275-25791-1-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Alexander Potapenko <glider@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We have allowed migration for only LRU pages until now and it was enough
to make high-order pages. But recently, embedded system(e.g., webOS,
android) uses lots of non-movable pages(e.g., zram, GPU memory) so we
have seen several reports about troubles of small high-order allocation.
For fixing the problem, there were several efforts (e,g,. enhance
compaction algorithm, SLUB fallback to 0-order page, reserved memory,
vmalloc and so on) but if there are lots of non-movable pages in system,
their solutions are void in the long run.
So, this patch is to support facility to change non-movable pages with
movable. For the feature, this patch introduces functions related to
migration to address_space_operations as well as some page flags.
If a driver want to make own pages movable, it should define three
functions which are function pointers of struct
address_space_operations.
1. bool (*isolate_page) (struct page *page, isolate_mode_t mode);
What VM expects on isolate_page function of driver is to return *true*
if driver isolates page successfully. On returing true, VM marks the
page as PG_isolated so concurrent isolation in several CPUs skip the
page for isolation. If a driver cannot isolate the page, it should
return *false*.
Once page is successfully isolated, VM uses page.lru fields so driver
shouldn't expect to preserve values in that fields.
2. int (*migratepage) (struct address_space *mapping,
struct page *newpage, struct page *oldpage, enum migrate_mode);
After isolation, VM calls migratepage of driver with isolated page. The
function of migratepage is to move content of the old page to new page
and set up fields of struct page newpage. Keep in mind that you should
indicate to the VM the oldpage is no longer movable via
__ClearPageMovable() under page_lock if you migrated the oldpage
successfully and returns 0. If driver cannot migrate the page at the
moment, driver can return -EAGAIN. On -EAGAIN, VM will retry page
migration in a short time because VM interprets -EAGAIN as "temporal
migration failure". On returning any error except -EAGAIN, VM will give
up the page migration without retrying in this time.
Driver shouldn't touch page.lru field VM using in the functions.
3. void (*putback_page)(struct page *);
If migration fails on isolated page, VM should return the isolated page
to the driver so VM calls driver's putback_page with migration failed
page. In this function, driver should put the isolated page back to the
own data structure.
4. non-lru movable page flags
There are two page flags for supporting non-lru movable page.
* PG_movable
Driver should use the below function to make page movable under
page_lock.
void __SetPageMovable(struct page *page, struct address_space *mapping)
It needs argument of address_space for registering migration family
functions which will be called by VM. Exactly speaking, PG_movable is
not a real flag of struct page. Rather than, VM reuses page->mapping's
lower bits to represent it.
#define PAGE_MAPPING_MOVABLE 0x2
page->mapping = page->mapping | PAGE_MAPPING_MOVABLE;
so driver shouldn't access page->mapping directly. Instead, driver
should use page_mapping which mask off the low two bits of page->mapping
so it can get right struct address_space.
For testing of non-lru movable page, VM supports __PageMovable function.
However, it doesn't guarantee to identify non-lru movable page because
page->mapping field is unified with other variables in struct page. As
well, if driver releases the page after isolation by VM, page->mapping
doesn't have stable value although it has PAGE_MAPPING_MOVABLE (Look at
__ClearPageMovable). But __PageMovable is cheap to catch whether page
is LRU or non-lru movable once the page has been isolated. Because LRU
pages never can have PAGE_MAPPING_MOVABLE in page->mapping. It is also
good for just peeking to test non-lru movable pages before more
expensive checking with lock_page in pfn scanning to select victim.
For guaranteeing non-lru movable page, VM provides PageMovable function.
Unlike __PageMovable, PageMovable functions validates page->mapping and
mapping->a_ops->isolate_page under lock_page. The lock_page prevents
sudden destroying of page->mapping.
Driver using __SetPageMovable should clear the flag via
__ClearMovablePage under page_lock before the releasing the page.
* PG_isolated
To prevent concurrent isolation among several CPUs, VM marks isolated
page as PG_isolated under lock_page. So if a CPU encounters PG_isolated
non-lru movable page, it can skip it. Driver doesn't need to manipulate
the flag because VM will set/clear it automatically. Keep in mind that
if driver sees PG_isolated page, it means the page have been isolated by
VM so it shouldn't touch page.lru field. PG_isolated is alias with
PG_reclaim flag so driver shouldn't use the flag for own purpose.
[opensource.ganesh@gmail.com: mm/compaction: remove local variable is_lru]
Link: http://lkml.kernel.org/r/20160618014841.GA7422@leo-test
Link: http://lkml.kernel.org/r/1464736881-24886-3-git-send-email-minchan@kernel.org
Signed-off-by: Gioh Kim <gi-oh.kim@profitbricks.com>
Signed-off-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Ganesh Mahendran <opensource.ganesh@gmail.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rafael Aquini <aquini@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: John Einar Reitan <john.reitan@foss.arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It's a part of oom context just like allocation order and nodemask, so
let's move it to oom_control instead of passing it in the argument list.
Link: http://lkml.kernel.org/r/40e03fd7aaf1f55c75d787128d6d17c5a71226c2.1464358556.git.vdavydov@virtuozzo.com
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As a part of memory initialisation the architecture passes an array to
free_area_init_nodes() which specifies the max PFN of each memory zone.
This array is not necessarily monotonic (due to unused zones) so this
array is parsed to build monotonic lists of the min and max PFN for each
zone. ZONE_MOVABLE is special cased here as its limits are managed by
the mm subsystem rather than the architecture. Unfortunately, this
special casing is broken when ZONE_MOVABLE is the not the last zone in
the zone list. The core of the issue is:
if (i == ZONE_MOVABLE)
continue;
arch_zone_lowest_possible_pfn[i] =
arch_zone_highest_possible_pfn[i-1];
As ZONE_MOVABLE is skipped the lowest_possible_pfn of the next zone will
be set to zero. This patch fixes this bug by adding explicitly tracking
where the next zone should start rather than relying on the contents
arch_zone_highest_possible_pfn[].
Thie is low priority. To get bitten by this you need to enable a zone
that appears after ZONE_MOVABLE in the zone_type enum. As far as I can
tell this means running a kernel with ZONE_DEVICE or ZONE_CMA enabled,
so I can't see this affecting too many people.
I only noticed this because I've been fiddling with ZONE_DEVICE on
powerpc and 4.6 broke my test kernel. This bug, in conjunction with the
changes in Taku Izumi's kernelcore=mirror patch (d91749c1dd) and
powerpc being the odd architecture which initialises max_zone_pfn[] to
~0ul instead of 0 caused all of system memory to be placed into
ZONE_DEVICE at boot, followed a panic since device memory cannot be used
for kernel allocations. I've already submitted a patch to fix the
powerpc specific bits, but I figured this should be fixed too.
Link: http://lkml.kernel.org/r/1462435033-15601-1-git-send-email-oohall@gmail.com
Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
Cc: Anton Blanchard <anton@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
early_page_uninitialised looks up an arbitrary PFN. While a machine
without node 0 will boot with "mm, page_alloc: Always return a valid
node from early_pfn_to_nid", it works because it assumes that nodes are
always in PFN order. This is not guaranteed so this patch adds
robustness by always checking if the node being checked is online.
Link: http://lkml.kernel.org/r/1468008031-3848-4-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: David Rientjes <rientjes@google.com>
Cc: <stable@vger.kernel.org> [4.2+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
early_pfn_to_nid can return node 0 if a PFN is invalid on machines that
has no node 0. A machine with only node 1 was observed to crash with
the following message:
BUG: unable to handle kernel paging request at 000000000002a3c8
PGD 0
Modules linked in:
Hardware name: Supermicro H8DSP-8/H8DSP-8, BIOS 080011 06/30/2006
task: ffffffff81c0d500 ti: ffffffff81c00000 task.ti: ffffffff81c00000
RIP: reserve_bootmem_region+0x6a/0xef
CR2: 000000000002a3c8 CR3: 0000000001c06000 CR4: 00000000000006b0
Call Trace:
free_all_bootmem+0x4b/0x12a
mem_init+0x70/0xa3
start_kernel+0x25b/0x49b
The problem is that early_page_uninitialised uses the early_pfn_to_nid
helper which returns node 0 for invalid PFNs. No caller of
early_pfn_to_nid cares except early_page_uninitialised. This patch has
early_pfn_to_nid always return a valid node.
Link: http://lkml.kernel.org/r/1468008031-3848-3-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: David Rientjes <rientjes@google.com>
Cc: <stable@vger.kernel.org> [4.2+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The optimistic fast path may use cpuset_current_mems_allowed instead of
of a NULL nodemask supplied by the caller for cpuset allocations. The
preferred zone is calculated on this basis for statistic purposes and as
a starting point in the zonelist iterator.
However, if the context can ignore memory policies due to being atomic
or being able to ignore watermarks then the starting point in the
zonelist iterator is no longer correct. This patch resets the zonelist
iterator in the allocator slowpath if the context can ignore memory
policies. This will alter the zone used for statistics but only after
it is known that it makes sense for that context. Resetting it before
entering the slowpath would potentially allow an ALLOC_CPUSET allocation
to be accounted for against the wrong zone. Note that while nodemask is
not explicitly set to the original nodemask, it would only have been
overwritten if cpuset_enabled() and it was reset before the slowpath was
entered.
Link: http://lkml.kernel.org/r/20160602103936.GU2527@techsingularity.net
Fixes: c33d6c06f6 ("mm, page_alloc: avoid looking up the first zone in a zonelist twice")
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reported-by: Geert Uytterhoeven <geert@linux-m68k.org>
Tested-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Geert Uytterhoeven reported the following problem that bisected to
commit c33d6c06f6 ("mm, page_alloc: avoid looking up the first zone
in a zonelist twice") on m68k/ARAnyM
BUG: scheduling while atomic: cron/668/0x10c9a0c0
Modules linked in:
CPU: 0 PID: 668 Comm: cron Not tainted 4.6.0-atari-05133-gc33d6c06f60f710f #364
Call Trace: [<0003d7d0>] __schedule_bug+0x40/0x54
__schedule+0x312/0x388
__schedule+0x0/0x388
prepare_to_wait+0x0/0x52
schedule+0x64/0x82
schedule_timeout+0xda/0x104
set_next_entity+0x18/0x40
pick_next_task_fair+0x78/0xda
io_schedule_timeout+0x36/0x4a
bit_wait_io+0x0/0x40
bit_wait_io+0x12/0x40
__wait_on_bit+0x46/0x76
wait_on_page_bit_killable+0x64/0x6c
bit_wait_io+0x0/0x40
wake_bit_function+0x0/0x4e
__lock_page_or_retry+0xde/0x124
do_scan_async+0x114/0x17c
lookup_swap_cache+0x24/0x4e
handle_mm_fault+0x626/0x7de
find_vma+0x0/0x66
down_read+0x0/0xe
wait_on_page_bit_killable_timeout+0x77/0x7c
find_vma+0x16/0x66
do_page_fault+0xe6/0x23a
res_func+0xa3c/0x141a
buserr_c+0x190/0x6d4
res_func+0xa3c/0x141a
buserr+0x20/0x28
res_func+0xa3c/0x141a
buserr+0x20/0x28
The relationship is not obvious but it's due to a failure to rescan the
full zonelist after the fair zone allocation policy exhausts the batch
count. While this is a functional problem, it's also a performance
issue. A page allocator microbenchmark showed the following
4.7.0-rc1 4.7.0-rc1
vanilla reset-v1r2
Min alloc-odr0-1 327.00 ( 0.00%) 326.00 ( 0.31%)
Min alloc-odr0-2 235.00 ( 0.00%) 235.00 ( 0.00%)
Min alloc-odr0-4 198.00 ( 0.00%) 198.00 ( 0.00%)
Min alloc-odr0-8 170.00 ( 0.00%) 170.00 ( 0.00%)
Min alloc-odr0-16 156.00 ( 0.00%) 156.00 ( 0.00%)
Min alloc-odr0-32 150.00 ( 0.00%) 150.00 ( 0.00%)
Min alloc-odr0-64 146.00 ( 0.00%) 146.00 ( 0.00%)
Min alloc-odr0-128 145.00 ( 0.00%) 145.00 ( 0.00%)
Min alloc-odr0-256 155.00 ( 0.00%) 155.00 ( 0.00%)
Min alloc-odr0-512 168.00 ( 0.00%) 165.00 ( 1.79%)
Min alloc-odr0-1024 175.00 ( 0.00%) 174.00 ( 0.57%)
Min alloc-odr0-2048 180.00 ( 0.00%) 180.00 ( 0.00%)
Min alloc-odr0-4096 187.00 ( 0.00%) 186.00 ( 0.53%)
Min alloc-odr0-8192 190.00 ( 0.00%) 190.00 ( 0.00%)
Min alloc-odr0-16384 191.00 ( 0.00%) 191.00 ( 0.00%)
Min alloc-odr1-1 736.00 ( 0.00%) 445.00 ( 39.54%)
Min alloc-odr1-2 343.00 ( 0.00%) 335.00 ( 2.33%)
Min alloc-odr1-4 277.00 ( 0.00%) 270.00 ( 2.53%)
Min alloc-odr1-8 238.00 ( 0.00%) 233.00 ( 2.10%)
Min alloc-odr1-16 224.00 ( 0.00%) 218.00 ( 2.68%)
Min alloc-odr1-32 210.00 ( 0.00%) 208.00 ( 0.95%)
Min alloc-odr1-64 207.00 ( 0.00%) 203.00 ( 1.93%)
Min alloc-odr1-128 276.00 ( 0.00%) 202.00 ( 26.81%)
Min alloc-odr1-256 206.00 ( 0.00%) 202.00 ( 1.94%)
Min alloc-odr1-512 207.00 ( 0.00%) 202.00 ( 2.42%)
Min alloc-odr1-1024 208.00 ( 0.00%) 205.00 ( 1.44%)
Min alloc-odr1-2048 213.00 ( 0.00%) 212.00 ( 0.47%)
Min alloc-odr1-4096 218.00 ( 0.00%) 216.00 ( 0.92%)
Min alloc-odr1-8192 341.00 ( 0.00%) 219.00 ( 35.78%)
Note that order-0 allocations are unaffected but higher orders get a
small boost from this patch and a large reduction in system CPU usage
overall as can be seen here:
4.7.0-rc1 4.7.0-rc1
vanilla reset-v1r2
User 85.32 86.31
System 2221.39 2053.36
Elapsed 2368.89 2202.47
Fixes: c33d6c06f6 ("mm, page_alloc: avoid looking up the first zone in a zonelist twice")
Link: http://lkml.kernel.org/r/20160531100848.GR2527@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reported-by: Geert Uytterhoeven <geert@linux-m68k.org>
Tested-by: Geert Uytterhoeven <geert@linux-m68k.org>
Tested-by: Mikulas Patocka <mpatocka@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In DEBUG_VM kernel, we can hit infinite loop for order == 0 in
buffered_rmqueue() when check_new_pcp() returns 1, because the bad page
is never removed from the pcp list. Fix this by removing the page
before retrying. Also we don't need to check if page is non-NULL,
because we simply grab it from the list which was just tested for being
non-empty.
Fixes: 479f854a20 ("mm, page_alloc: defer debugging checks of pages allocated from the PCP")
Link: http://lkml.kernel.org/r/20160530090154.GM2527@techsingularity.net
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reported-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Per the discussion with Joonsoo Kim [1], we need check the return value
of lookup_page_ext() for all call sites since it might return NULL in
some cases, although it is unlikely, i.e. memory hotplug.
Tested with ltp with "page_owner=0".
[1] http://lkml.kernel.org/r/20160519002809.GA10245@js1304-P5Q-DELUXE
[akpm@linux-foundation.org: fix build-breaking typos]
[arnd@arndb.de: fix build problems from lookup_page_ext]
Link: http://lkml.kernel.org/r/6285269.2CksypHdYp@wuerfel
[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/1464023768-31025-1-git-send-email-yang.shi@linaro.org
Signed-off-by: Yang Shi <yang.shi@linaro.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently we check page->flags twice for "HWPoisoned" case of
check_new_page_bad(), which can cause a race with unpoisoning.
This race unnecessarily taints kernel with "BUG: Bad page state".
check_new_page_bad() is the only caller of bad_page() which is
interested in __PG_HWPOISON, so let's move the hwpoison related code in
bad_page() to it.
Link: http://lkml.kernel.org/r/20160518100949.GA17299@hori1.linux.bs1.fc.nec.co.jp
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When CONFIG_PAGE_POISONING and CONFIG_KASAN is enabled,
free_pages_prepare()'s codeflow is below.
1)kmemcheck_free_shadow()
2)kasan_free_pages()
- set shadow byte of page is freed
3)kernel_poison_pages()
3.1) check access to page is valid or not using kasan
---> error occur, kasan think it is invalid access
3.2) poison page
4)kernel_map_pages()
So kasan_free_pages() should be called after poisoning the page.
Link: http://lkml.kernel.org/r/1463220405-7455-1-git-send-email-iamyooon@gmail.com
Signed-off-by: seokhoon.yoon <iamyooon@gmail.com>
Cc: Andrey Ryabinin <a.ryabinin@samsung.com>
Cc: Laura Abbott <labbott@fedoraproject.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit 92923ca3aa ("mm: meminit: only set page reserved in the
memblock region") the reserved bit is set on reserved memblock regions.
However start and end address are passed as unsigned long. This is only
32bit on i386, so it can end up marking the wrong pages reserved for
ranges at 4GB and above.
This was observed on a 32bit Xen dom0 which was booted with initial
memory set to a value below 4G but allowing to balloon in memory
(dom0_mem=1024M for example). This would define a reserved bootmem
region for the additional memory (for example on a 8GB system there was
a reverved region covering the 4GB-8GB range). But since the addresses
were passed on as unsigned long, this was actually marking all pages
from 0 to 4GB as reserved.
Fixes: 92923ca3aa ("mm: meminit: only set page reserved in the memblock region")
Link: http://lkml.kernel.org/r/1463491221-10573-1-git-send-email-stefan.bader@canonical.com
Signed-off-by: Stefan Bader <stefan.bader@canonical.com>
Cc: <stable@vger.kernel.org> [4.2+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It's more convenient to use existing function helper to convert string
"on/off" to boolean.
Link: http://lkml.kernel.org/r/1461908824-16129-1-git-send-email-mnghuan@gmail.com
Signed-off-by: Minfei Huang <mnghuan@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Joonsoo has reported that he is able to trigger OOM for !costly high
order requests (heavy fork() workload close the OOM) with the new oom
detection rework. This is because we rely only on should_reclaim_retry
when the compaction is disabled and it only checks watermarks for the
requested order and so we might trigger OOM when there is a lot of free
memory.
It is not very clear what are the usual workloads when the compaction is
disabled. Relying on high order allocations heavily without any
mechanism to create those orders except for unbound amount of reclaim is
certainly not a good idea.
To prevent from potential regressions let's help this configuration
some. We have to sacrifice the determinsm though because there simply
is none here possible. should_compact_retry implementation for
!CONFIG_COMPACTION, which was empty so far, will do watermark check for
order-0 on all eligible zones. This will cause retrying until either
the reclaim cannot make any further progress or all the zones are
depleted even for order-0 pages. This means that the number of retries
is basically unbounded for !costly orders but that was the case before
the rework as well so this shouldn't regress.
[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/1463051677-29418-3-git-send-email-mhocko@kernel.org
Reported-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
"mm: consider compaction feedback also for costly allocation" has
removed the upper bound for the reclaim/compaction retries based on the
number of reclaimed pages for costly orders. While this is desirable
the patch did miss a mis interaction between reclaim, compaction and the
retry logic. The direct reclaim tries to get zones over min watermark
while compaction backs off and returns COMPACT_SKIPPED when all zones
are below low watermark + 1<<order gap. If we are getting really close
to OOM then __compaction_suitable can keep returning COMPACT_SKIPPED a
high order request (e.g. hugetlb order-9) while the reclaim is not able
to release enough pages to get us over low watermark. The reclaim is
still able to make some progress (usually trashing over few remaining
pages) so we are not able to break out from the loop.
I have seen this happening with the same test described in "mm: consider
compaction feedback also for costly allocation" on a swapless system.
The original problem got resolved by "vmscan: consider classzone_idx in
compaction_ready" but it shows how things might go wrong when we
approach the oom event horizont.
The reason why compaction requires being over low rather than min
watermark is not clear to me. This check was there essentially since
56de7263fc ("mm: compaction: direct compact when a high-order
allocation fails"). It is clearly an implementation detail though and
we shouldn't pull it into the generic retry logic while we should be
able to cope with such eventuality. The only place in
should_compact_retry where we retry without any upper bound is for
compaction_withdrawn() case.
Introduce compaction_zonelist_suitable function which checks the given
zonelist and returns true only if there is at least one zone which would
would unblock __compaction_suitable if more memory got reclaimed. In
this implementation it checks __compaction_suitable with NR_FREE_PAGES
plus part of the reclaimable memory as the target for the watermark
check. The reclaimable memory is reduced linearly by the allocation
order. The idea is that we do not want to reclaim all the remaining
memory for a single allocation request just unblock
__compaction_suitable which doesn't guarantee we will make a further
progress.
The new helper is then used if compaction_withdrawn() feedback was
provided so we do not retry if there is no outlook for a further
progress. !costly requests shouldn't be affected much - e.g. order-2
pages would require to have at least 64kB on the reclaimable LRUs while
order-9 would need at least 32M which should be enough to not lock up.
[vbabka@suse.cz: fix classzone_idx vs. high_zoneidx usage in compaction_zonelist_suitable]
[akpm@linux-foundation.org: fix it for Mel's mm-page_alloc-remove-field-from-alloc_context.patch]
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
PAGE_ALLOC_COSTLY_ORDER retry logic is mostly handled inside
should_reclaim_retry currently where we decide to not retry after at
least order worth of pages were reclaimed or the watermark check for at
least one zone would succeed after reclaiming all pages if the reclaim
hasn't made any progress. Compaction feedback is mostly ignored and we
just try to make sure that the compaction did at least something before
giving up.
The first condition was added by a41f24ea9f ("page allocator: smarter
retry of costly-order allocations) and it assumed that lumpy reclaim
could have created a page of the sufficient order. Lumpy reclaim, has
been removed quite some time ago so the assumption doesn't hold anymore.
Remove the check for the number of reclaimed pages and rely on the
compaction feedback solely. should_reclaim_retry now only makes sure
that we keep retrying reclaim for high order pages only if they are
hidden by watermaks so order-0 reclaim makes really sense.
should_compact_retry now keeps retrying even for the costly allocations.
The number of retries is reduced wrt. !costly requests because they are
less important and harder to grant and so their pressure shouldn't cause
contention for other requests or cause an over reclaim. We also do not
reset no_progress_loops for costly request to make sure we do not keep
reclaiming too agressively.
This has been tested by running a process which fragments memory:
- compact memory
- mmap large portion of the memory (1920M on 2GRAM machine with 2G
of swapspace)
- MADV_DONTNEED single page in PAGE_SIZE*((1UL<<MAX_ORDER)-1)
steps until certain amount of memory is freed (250M in my test)
and reduce the step to (step / 2) + 1 after reaching the end of
the mapping
- then run a script which populates the page cache 2G (MemTotal)
from /dev/zero to a new file
And then tries to allocate
nr_hugepages=$(awk '/MemAvailable/{printf "%d\n", $2/(2*1024)}' /proc/meminfo)
huge pages.
root@test1:~# echo 1 > /proc/sys/vm/overcommit_memory;echo 1 > /proc/sys/vm/compact_memory; ./fragment-mem-and-run /root/alloc_hugepages.sh 1920M 250M
Node 0, zone DMA 31 28 31 10 2 0 2 1 2 3 1
Node 0, zone DMA32 437 319 171 50 28 25 20 16 16 14 437
* This is the /proc/buddyinfo after the compaction
Done fragmenting. size=2013265920 freed=262144000
Node 0, zone DMA 165 48 3 1 2 0 2 2 2 2 0
Node 0, zone DMA32 35109 14575 185 51 41 12 6 0 0 0 0
* /proc/buddyinfo after memory got fragmented
Executing "/root/alloc_hugepages.sh"
Eating some pagecache
508623+0 records in
508623+0 records out
2083319808 bytes (2.1 GB) copied, 11.7292 s, 178 MB/s
Node 0, zone DMA 3 5 3 1 2 0 2 2 2 2 0
Node 0, zone DMA32 111 344 153 20 24 10 3 0 0 0 0
* /proc/buddyinfo after page cache got eaten
Trying to allocate 129
129
* 129 hugepages requested and all of them granted.
Node 0, zone DMA 3 5 3 1 2 0 2 2 2 2 0
Node 0, zone DMA32 127 97 30 99 11 6 2 1 4 0 0
* /proc/buddyinfo after hugetlb allocation.
10 runs will behave as follows:
Trying to allocate 130
130
--
Trying to allocate 129
129
--
Trying to allocate 128
128
--
Trying to allocate 129
129
--
Trying to allocate 128
128
--
Trying to allocate 129
129
--
Trying to allocate 132
132
--
Trying to allocate 129
129
--
Trying to allocate 128
128
--
Trying to allocate 129
129
So basically 100% success for all 10 attempts.
Without the patch numbers looked much worse:
Trying to allocate 128
12
--
Trying to allocate 129
14
--
Trying to allocate 129
7
--
Trying to allocate 129
16
--
Trying to allocate 129
30
--
Trying to allocate 129
38
--
Trying to allocate 129
19
--
Trying to allocate 129
37
--
Trying to allocate 129
28
--
Trying to allocate 129
37
Just for completness the base kernel without oom detection rework looks
as follows:
Trying to allocate 127
30
--
Trying to allocate 129
12
--
Trying to allocate 129
52
--
Trying to allocate 128
32
--
Trying to allocate 129
12
--
Trying to allocate 129
10
--
Trying to allocate 129
32
--
Trying to allocate 128
14
--
Trying to allocate 128
16
--
Trying to allocate 129
8
As we can see the success rate is much more volatile and smaller without
this patch. So the patch not only makes the retry logic for costly
requests more sensible the success rate is even higher.
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
should_reclaim_retry will give up retries for higher order allocations
if none of the eligible zones has any requested or higher order pages
available even if we pass the watermak check for order-0. This is done
because there is no guarantee that the reclaimable and currently free
pages will form the required order.
This can, however, lead to situations where the high-order request (e.g.
order-2 required for the stack allocation during fork) will trigger OOM
too early - e.g. after the first reclaim/compaction round. Such a
system would have to be highly fragmented and there is no guarantee
further reclaim/compaction attempts would help but at least make sure
that the compaction was active before we go OOM and keep retrying even
if should_reclaim_retry tells us to oom if
- the last compaction round backed off or
- we haven't completed at least MAX_COMPACT_RETRIES active
compaction rounds.
The first rule ensures that the very last attempt for compaction was not
ignored while the second guarantees that the compaction has done some
work. Multiple retries might be needed to prevent occasional pigggy
backing of other contexts to steal the compacted pages before the
current context manages to retry to allocate them.
compaction_failed() is taken as a final word from the compaction that
the retry doesn't make much sense. We have to be careful though because
the first compaction round is MIGRATE_ASYNC which is rather weak as it
ignores pages under writeback and gives up too easily in other
situations. We therefore have to make sure that MIGRATE_SYNC_LIGHT mode
has been used before we give up. With this logic in place we do not
have to increase the migration mode unconditionally and rather do it
only if the compaction failed for the weaker mode. A nice side effect
is that the stronger migration mode is used only when really needed so
this has a potential of smaller latencies in some cases.
Please note that the compaction doesn't tell us much about how
successful it was when returning compaction_made_progress so we just
have to blindly trust that another retry is worthwhile and cap the
number to something reasonable to guarantee a convergence.
If the given number of successful retries is not sufficient for a
reasonable workloads we should focus on the collected compaction
tracepoints data and try to address the issue in the compaction code.
If this is not feasible we can increase the retries limit.
[mhocko@suse.com: fix warning]
Link: http://lkml.kernel.org/r/20160512061636.GA4200@dhcp22.suse.cz
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
wait_iff_congested has been used to throttle allocator before it retried
another round of direct reclaim to allow the writeback to make some
progress and prevent reclaim from looping over dirty/writeback pages
without making any progress.
We used to do congestion_wait before commit 0e093d9976 ("writeback: do
not sleep on the congestion queue if there are no congested BDIs or if
significant congestion is not being encountered in the current zone")
but that led to undesirable stalls and sleeping for the full timeout
even when the BDI wasn't congested. Hence wait_iff_congested was used
instead.
But it seems that even wait_iff_congested doesn't work as expected. We
might have a small file LRU list with all pages dirty/writeback and yet
the bdi is not congested so this is just a cond_resched in the end and
can end up triggering pre mature OOM.
This patch replaces the unconditional wait_iff_congested by
congestion_wait which is executed only if we _know_ that the last round
of direct reclaim didn't make any progress and dirty+writeback pages are
more than a half of the reclaimable pages on the zone which might be
usable for our target allocation. This shouldn't reintroduce stalls
fixed by 0e093d9976 because congestion_wait is called only when we are
getting hopeless when sleeping is a better choice than OOM with many
pages under IO.
We have to preserve logic introduced by commit 373ccbe592 ("mm,
vmstat: allow WQ concurrency to discover memory reclaim doesn't make any
progress") into the __alloc_pages_slowpath now that wait_iff_congested
is not used anymore. As the only remaining user of wait_iff_congested
is shrink_inactive_list we can remove the WQ specific short sleep from
wait_iff_congested because the sleep is needed to be done only once in
the allocation retry cycle.
[mhocko@suse.com: high_zoneidx->ac_classzone_idx to evaluate memory reserves properly]
Link: http://lkml.kernel.org/r/1463051677-29418-2-git-send-email-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__alloc_pages_slowpath has traditionally relied on the direct reclaim
and did_some_progress as an indicator that it makes sense to retry
allocation rather than declaring OOM. shrink_zones had to rely on
zone_reclaimable if shrink_zone didn't make any progress to prevent from
a premature OOM killer invocation - the LRU might be full of dirty or
writeback pages and direct reclaim cannot clean those up.
zone_reclaimable allows to rescan the reclaimable lists several times
and restart if a page is freed. This is really subtle behavior and it
might lead to a livelock when a single freed page keeps allocator
looping but the current task will not be able to allocate that single
page. OOM killer would be more appropriate than looping without any
progress for unbounded amount of time.
This patch changes OOM detection logic and pulls it out from shrink_zone
which is too low to be appropriate for any high level decisions such as
OOM which is per zonelist property. It is __alloc_pages_slowpath which
knows how many attempts have been done and what was the progress so far
therefore it is more appropriate to implement this logic.
The new heuristic is implemented in should_reclaim_retry helper called
from __alloc_pages_slowpath. It tries to be more deterministic and
easier to follow. It builds on an assumption that retrying makes sense
only if the currently reclaimable memory + free pages would allow the
current allocation request to succeed (as per __zone_watermark_ok) at
least for one zone in the usable zonelist.
This alone wouldn't be sufficient, though, because the writeback might
get stuck and reclaimable pages might be pinned for a really long time
or even depend on the current allocation context. Therefore there is a
backoff mechanism implemented which reduces the reclaim target after
each reclaim round without any progress. This means that we should
eventually converge to only NR_FREE_PAGES as the target and fail on the
wmark check and proceed to OOM. The backoff is simple and linear with
1/16 of the reclaimable pages for each round without any progress. We
are optimistic and reset counter for successful reclaim rounds.
Costly high order pages mostly preserve their semantic and those without
__GFP_REPEAT fail right away while those which have the flag set will
back off after the amount of reclaimable pages reaches equivalent of the
requested order. The only difference is that if there was no progress
during the reclaim we rely on zone watermark check. This is more
logical thing to do than previous 1<<order attempts which were a result
of zone_reclaimable faking the progress.
[vdavydov@virtuozzo.com: check classzone_idx for shrink_zone]
[hannes@cmpxchg.org: separate the heuristic into should_reclaim_retry]
[rientjes@google.com: use zone_page_state_snapshot for NR_FREE_PAGES]
[rientjes@google.com: shrink_zones doesn't need to return anything]
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__alloc_pages_direct_compact communicates potential back off by two
variables:
- deferred_compaction tells that the compaction returned
COMPACT_DEFERRED
- contended_compaction is set when there is a contention on
zone->lock resp. zone->lru_lock locks
__alloc_pages_slowpath then backs of for THP allocation requests to
prevent from long stalls. This is rather messy and it would be much
cleaner to return a single compact result value and hide all the nasty
details into __alloc_pages_direct_compact.
This patch shouldn't introduce any functional changes.
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Compaction code is doing weird dances between COMPACT_FOO -> int ->
unsigned long
But there doesn't seem to be any reason for that. All functions which
return/use one of those constants are not expecting any other value so it
really makes sense to define an enum for them and make it clear that no
other values are expected.
This is a pure cleanup and shouldn't introduce any functional changes.
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The inactive file list should still be large enough to contain readahead
windows and freshly written file data, but it no longer is the only
source for detecting multiple accesses to file pages. The workingset
refault measurement code causes recently evicted file pages that get
accessed again after a shorter interval to be promoted directly to the
active list.
With that mechanism in place, we can afford to (on a larger system)
dedicate more memory to the active file list, so we can actually cache
more of the frequently used file pages in memory, and not have them
pushed out by streaming writes, once-used streaming file reads, etc.
This can help things like database workloads, where only half the page
cache can currently be used to cache the database working set. This
patch automatically increases that fraction on larger systems, using the
same ratio that has already been used for anonymous memory.
[hannes@cmpxchg.org: cgroup-awareness]
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: Andres Freund <andres@anarazel.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The page allocator fast path uses either the requested nodemask or
cpuset_current_mems_allowed if cpusets are enabled. If the allocation
context allows watermarks to be ignored then it can also ignore memory
policies. However, on entering the allocator slowpath the nodemask may
still be cpuset_current_mems_allowed and the policies are enforced.
This patch resets the nodemask appropriately before entering the
slowpath.
Link: http://lkml.kernel.org/r/20160504143628.GU2858@techsingularity.net
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Bad pages should be rare so the code handling them doesn't need to be
inline for performance reasons. Put it to separate function which
returns void. This also assumes that the initial page_expected_state()
result will match the result of the thorough check, i.e. the page
doesn't become "good" in the meanwhile. This matches the same
expectations already in place in free_pages_check().
!DEBUG_VM bloat-o-meter:
add/remove: 1/0 grow/shrink: 0/1 up/down: 134/-274 (-140)
function old new delta
check_new_page_bad - 134 +134
get_page_from_freelist 3468 3194 -274
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The new free_pcp_prepare() function shares a lot of code with
free_pages_prepare(), which makes this a maintenance risk when some
future patch modifies only one of them. We should be able to achieve
the same effect (skipping free_pages_check() from !DEBUG_VM configs) by
adding a parameter to free_pages_prepare() and making it inline, so the
checks (and the order != 0 parts) are eliminated from the call from
free_pcp_prepare().
!DEBUG_VM: bloat-o-meter reports no difference, as my gcc was already
inlining free_pages_prepare() and the elimination seems to work as
expected
DEBUG_VM bloat-o-meter:
add/remove: 0/1 grow/shrink: 2/0 up/down: 1035/-778 (257)
function old new delta
__free_pages_ok 297 1060 +763
free_hot_cold_page 480 752 +272
free_pages_prepare 778 - -778
Here inlining didn't occur before, and added some code, but it's ok for
a debug option.
[akpm@linux-foundation.org: fix build]
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Every page allocated checks a number of page fields for validity. This
catches corruption bugs of pages that are already freed but it is
expensive. This patch weakens the debugging check by checking PCP pages
only when the PCP lists are being refilled. All compound pages are
checked. This potentially avoids debugging checks entirely if the PCP
lists are never emptied and refilled so some corruption issues may be
missed. Full checking requires DEBUG_VM.
With the two deferred debugging patches applied, the impact to a page
allocator microbenchmark is
4.6.0-rc3 4.6.0-rc3
inline-v3r6 deferalloc-v3r7
Min alloc-odr0-1 344.00 ( 0.00%) 317.00 ( 7.85%)
Min alloc-odr0-2 248.00 ( 0.00%) 231.00 ( 6.85%)
Min alloc-odr0-4 209.00 ( 0.00%) 192.00 ( 8.13%)
Min alloc-odr0-8 181.00 ( 0.00%) 166.00 ( 8.29%)
Min alloc-odr0-16 168.00 ( 0.00%) 154.00 ( 8.33%)
Min alloc-odr0-32 161.00 ( 0.00%) 148.00 ( 8.07%)
Min alloc-odr0-64 158.00 ( 0.00%) 145.00 ( 8.23%)
Min alloc-odr0-128 156.00 ( 0.00%) 143.00 ( 8.33%)
Min alloc-odr0-256 168.00 ( 0.00%) 154.00 ( 8.33%)
Min alloc-odr0-512 178.00 ( 0.00%) 167.00 ( 6.18%)
Min alloc-odr0-1024 186.00 ( 0.00%) 174.00 ( 6.45%)
Min alloc-odr0-2048 192.00 ( 0.00%) 180.00 ( 6.25%)
Min alloc-odr0-4096 198.00 ( 0.00%) 184.00 ( 7.07%)
Min alloc-odr0-8192 200.00 ( 0.00%) 188.00 ( 6.00%)
Min alloc-odr0-16384 201.00 ( 0.00%) 188.00 ( 6.47%)
Min free-odr0-1 189.00 ( 0.00%) 180.00 ( 4.76%)
Min free-odr0-2 132.00 ( 0.00%) 126.00 ( 4.55%)
Min free-odr0-4 104.00 ( 0.00%) 99.00 ( 4.81%)
Min free-odr0-8 90.00 ( 0.00%) 85.00 ( 5.56%)
Min free-odr0-16 84.00 ( 0.00%) 80.00 ( 4.76%)
Min free-odr0-32 80.00 ( 0.00%) 76.00 ( 5.00%)
Min free-odr0-64 78.00 ( 0.00%) 74.00 ( 5.13%)
Min free-odr0-128 77.00 ( 0.00%) 73.00 ( 5.19%)
Min free-odr0-256 94.00 ( 0.00%) 91.00 ( 3.19%)
Min free-odr0-512 108.00 ( 0.00%) 112.00 ( -3.70%)
Min free-odr0-1024 115.00 ( 0.00%) 118.00 ( -2.61%)
Min free-odr0-2048 120.00 ( 0.00%) 125.00 ( -4.17%)
Min free-odr0-4096 123.00 ( 0.00%) 129.00 ( -4.88%)
Min free-odr0-8192 126.00 ( 0.00%) 130.00 ( -3.17%)
Min free-odr0-16384 126.00 ( 0.00%) 131.00 ( -3.97%)
Note that the free paths for large numbers of pages is impacted as the
debugging cost gets shifted into that path when the page data is no
longer necessarily cache-hot.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Every page free checks a number of page fields for validity. This
catches premature frees and corruptions but it is also expensive. This
patch weakens the debugging check by checking PCP pages at the time they
are drained from the PCP list. This will trigger the bug but the site
that freed the corrupt page will be lost. To get the full context, a
kernel rebuild with DEBUG_VM is necessary.
[akpm@linux-foundation.org: fix build]
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
An important function for cpusets is cpuset_node_allowed(), which
optimizes on the fact if there's a single root CPU set, it must be
trivially allowed. But the check "nr_cpusets() <= 1" doesn't use the
cpusets_enabled_key static key the right way where static keys eliminate
branching overhead with jump labels.
This patch converts it so that static key is used properly. It's also
switched to the new static key API and the checking functions are
converted to return bool instead of int. We also provide a new variant
__cpuset_zone_allowed() which expects that the static key check was
already done and they key was enabled. This is needed for
get_page_from_freelist() where we want to also avoid the relatively
slower check when ALLOC_CPUSET is not set in alloc_flags.
The impact on the page allocator microbenchmark is less than expected
but the cleanup in itself is worthwhile.
4.6.0-rc2 4.6.0-rc2
multcheck-v1r20 cpuset-v1r20
Min alloc-odr0-1 348.00 ( 0.00%) 348.00 ( 0.00%)
Min alloc-odr0-2 254.00 ( 0.00%) 254.00 ( 0.00%)
Min alloc-odr0-4 213.00 ( 0.00%) 213.00 ( 0.00%)
Min alloc-odr0-8 186.00 ( 0.00%) 183.00 ( 1.61%)
Min alloc-odr0-16 173.00 ( 0.00%) 171.00 ( 1.16%)
Min alloc-odr0-32 166.00 ( 0.00%) 163.00 ( 1.81%)
Min alloc-odr0-64 162.00 ( 0.00%) 159.00 ( 1.85%)
Min alloc-odr0-128 160.00 ( 0.00%) 157.00 ( 1.88%)
Min alloc-odr0-256 169.00 ( 0.00%) 166.00 ( 1.78%)
Min alloc-odr0-512 180.00 ( 0.00%) 180.00 ( 0.00%)
Min alloc-odr0-1024 188.00 ( 0.00%) 187.00 ( 0.53%)
Min alloc-odr0-2048 194.00 ( 0.00%) 193.00 ( 0.52%)
Min alloc-odr0-4096 199.00 ( 0.00%) 198.00 ( 0.50%)
Min alloc-odr0-8192 202.00 ( 0.00%) 201.00 ( 0.50%)
Min alloc-odr0-16384 203.00 ( 0.00%) 202.00 ( 0.49%)
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Zefan Li <lizefan@huawei.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The function call overhead of get_pfnblock_flags_mask() is measurable in
the page free paths. This patch uses an inlined version that is faster.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The original count is never reused so it can be removed.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Check without side-effects should be easier to maintain. It also
removes the duplicated cpupid and flags reset done in !DEBUG_VM variant
of both free_pcp_prepare() and then bulkfree_pcp_prepare(). Finally, it
enables the next patch.
It shouldn't result in new branches, thanks to inlining of the check.
!DEBUG_VM bloat-o-meter:
add/remove: 0/0 grow/shrink: 0/2 up/down: 0/-27 (-27)
function old new delta
__free_pages_ok 748 739 -9
free_pcppages_bulk 1403 1385 -18
DEBUG_VM:
add/remove: 0/0 grow/shrink: 0/1 up/down: 0/-28 (-28)
function old new delta
free_pages_prepare 806 778 -28
This is also slightly faster because cpupid information is not set on
tail pages so we can avoid resets there.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Every page allocated or freed is checked for sanity to avoid corruptions
that are difficult to detect later. A bad page could be due to a number
of fields. Instead of using multiple branches, this patch combines
multiple fields into a single branch. A detailed check is only
necessary if that check fails.
4.6.0-rc2 4.6.0-rc2
initonce-v1r20 multcheck-v1r20
Min alloc-odr0-1 359.00 ( 0.00%) 348.00 ( 3.06%)
Min alloc-odr0-2 260.00 ( 0.00%) 254.00 ( 2.31%)
Min alloc-odr0-4 214.00 ( 0.00%) 213.00 ( 0.47%)
Min alloc-odr0-8 186.00 ( 0.00%) 186.00 ( 0.00%)
Min alloc-odr0-16 173.00 ( 0.00%) 173.00 ( 0.00%)
Min alloc-odr0-32 165.00 ( 0.00%) 166.00 ( -0.61%)
Min alloc-odr0-64 162.00 ( 0.00%) 162.00 ( 0.00%)
Min alloc-odr0-128 161.00 ( 0.00%) 160.00 ( 0.62%)
Min alloc-odr0-256 170.00 ( 0.00%) 169.00 ( 0.59%)
Min alloc-odr0-512 181.00 ( 0.00%) 180.00 ( 0.55%)
Min alloc-odr0-1024 190.00 ( 0.00%) 188.00 ( 1.05%)
Min alloc-odr0-2048 196.00 ( 0.00%) 194.00 ( 1.02%)
Min alloc-odr0-4096 202.00 ( 0.00%) 199.00 ( 1.49%)
Min alloc-odr0-8192 205.00 ( 0.00%) 202.00 ( 1.46%)
Min alloc-odr0-16384 205.00 ( 0.00%) 203.00 ( 0.98%)
Again, the benefit is marginal but avoiding excessive branches is
important. Ideally the paths would not have to check these conditions
at all but regrettably abandoning the tests would make use-after-free
bugs much harder to detect.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The classzone_idx can be inferred from preferred_zoneref so remove the
unnecessary field and save stack space.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The allocator fast path looks up the first usable zone in a zonelist and
then get_page_from_freelist does the same job in the zonelist iterator.
This patch preserves the necessary information.
4.6.0-rc2 4.6.0-rc2
fastmark-v1r20 initonce-v1r20
Min alloc-odr0-1 364.00 ( 0.00%) 359.00 ( 1.37%)
Min alloc-odr0-2 262.00 ( 0.00%) 260.00 ( 0.76%)
Min alloc-odr0-4 214.00 ( 0.00%) 214.00 ( 0.00%)
Min alloc-odr0-8 186.00 ( 0.00%) 186.00 ( 0.00%)
Min alloc-odr0-16 173.00 ( 0.00%) 173.00 ( 0.00%)
Min alloc-odr0-32 165.00 ( 0.00%) 165.00 ( 0.00%)
Min alloc-odr0-64 161.00 ( 0.00%) 162.00 ( -0.62%)
Min alloc-odr0-128 159.00 ( 0.00%) 161.00 ( -1.26%)
Min alloc-odr0-256 168.00 ( 0.00%) 170.00 ( -1.19%)
Min alloc-odr0-512 180.00 ( 0.00%) 181.00 ( -0.56%)
Min alloc-odr0-1024 190.00 ( 0.00%) 190.00 ( 0.00%)
Min alloc-odr0-2048 196.00 ( 0.00%) 196.00 ( 0.00%)
Min alloc-odr0-4096 202.00 ( 0.00%) 202.00 ( 0.00%)
Min alloc-odr0-8192 206.00 ( 0.00%) 205.00 ( 0.49%)
Min alloc-odr0-16384 206.00 ( 0.00%) 205.00 ( 0.49%)
The benefit is negligible and the results are within the noise but each
cycle counts.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Watermarks have to be checked on every allocation including the number
of pages being allocated and whether reserves can be accessed. The
reserves only matter if memory is limited and the free_pages adjustment
only applies to high-order pages. This patch adds a shortcut for
order-0 pages that avoids numerous calculations if there is plenty of
free memory yielding the following performance difference in a page
allocator microbenchmark;
4.6.0-rc2 4.6.0-rc2
optfair-v1r20 fastmark-v1r20
Min alloc-odr0-1 380.00 ( 0.00%) 364.00 ( 4.21%)
Min alloc-odr0-2 273.00 ( 0.00%) 262.00 ( 4.03%)
Min alloc-odr0-4 227.00 ( 0.00%) 214.00 ( 5.73%)
Min alloc-odr0-8 196.00 ( 0.00%) 186.00 ( 5.10%)
Min alloc-odr0-16 183.00 ( 0.00%) 173.00 ( 5.46%)
Min alloc-odr0-32 173.00 ( 0.00%) 165.00 ( 4.62%)
Min alloc-odr0-64 169.00 ( 0.00%) 161.00 ( 4.73%)
Min alloc-odr0-128 169.00 ( 0.00%) 159.00 ( 5.92%)
Min alloc-odr0-256 180.00 ( 0.00%) 168.00 ( 6.67%)
Min alloc-odr0-512 190.00 ( 0.00%) 180.00 ( 5.26%)
Min alloc-odr0-1024 198.00 ( 0.00%) 190.00 ( 4.04%)
Min alloc-odr0-2048 204.00 ( 0.00%) 196.00 ( 3.92%)
Min alloc-odr0-4096 209.00 ( 0.00%) 202.00 ( 3.35%)
Min alloc-odr0-8192 213.00 ( 0.00%) 206.00 ( 3.29%)
Min alloc-odr0-16384 214.00 ( 0.00%) 206.00 ( 3.74%)
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The fair zone allocation policy is not without cost but it can be
reduced slightly. This patch removes an unnecessary local variable,
checks the likely conditions of the fair zone policy first, uses a bool
instead of a flags check and falls through when a remote node is
encountered instead of doing a full restart. The benefit is marginal
but it's there
4.6.0-rc2 4.6.0-rc2
decstat-v1r20 optfair-v1r20
Min alloc-odr0-1 377.00 ( 0.00%) 380.00 ( -0.80%)
Min alloc-odr0-2 273.00 ( 0.00%) 273.00 ( 0.00%)
Min alloc-odr0-4 226.00 ( 0.00%) 227.00 ( -0.44%)
Min alloc-odr0-8 196.00 ( 0.00%) 196.00 ( 0.00%)
Min alloc-odr0-16 183.00 ( 0.00%) 183.00 ( 0.00%)
Min alloc-odr0-32 175.00 ( 0.00%) 173.00 ( 1.14%)
Min alloc-odr0-64 172.00 ( 0.00%) 169.00 ( 1.74%)
Min alloc-odr0-128 170.00 ( 0.00%) 169.00 ( 0.59%)
Min alloc-odr0-256 183.00 ( 0.00%) 180.00 ( 1.64%)
Min alloc-odr0-512 191.00 ( 0.00%) 190.00 ( 0.52%)
Min alloc-odr0-1024 199.00 ( 0.00%) 198.00 ( 0.50%)
Min alloc-odr0-2048 204.00 ( 0.00%) 204.00 ( 0.00%)
Min alloc-odr0-4096 210.00 ( 0.00%) 209.00 ( 0.48%)
Min alloc-odr0-8192 213.00 ( 0.00%) 213.00 ( 0.00%)
Min alloc-odr0-16384 214.00 ( 0.00%) 214.00 ( 0.00%)
The benefit is marginal at best but one of the most important benefits,
avoiding a second search when falling back to another node is not
triggered by this particular test so the benefit for some corner cases
is understated.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The page allocator fast path checks page multiple times unnecessarily.
This patch avoids all the slowpath checks if the first allocation
attempt succeeds.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When bulk freeing pages from the per-cpu lists the zone is checked for
isolated pageblocks on every release. This patch checks it once per
drain.
[mgorman@techsingularity.net: fix locking radce, per Vlastimil]
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__GFP_HARDWALL only has meaning in the context of cpusets but the fast
path always applies the flag on the first attempt. Move the
manipulations into the cpuset paths where they will be masked by a
static branch in the common case.
With the other micro-optimisations in this series combined, the impact
on a page allocator microbenchmark is
4.6.0-rc2 4.6.0-rc2
decstat-v1r20 micro-v1r20
Min alloc-odr0-1 381.00 ( 0.00%) 377.00 ( 1.05%)
Min alloc-odr0-2 275.00 ( 0.00%) 273.00 ( 0.73%)
Min alloc-odr0-4 229.00 ( 0.00%) 226.00 ( 1.31%)
Min alloc-odr0-8 199.00 ( 0.00%) 196.00 ( 1.51%)
Min alloc-odr0-16 186.00 ( 0.00%) 183.00 ( 1.61%)
Min alloc-odr0-32 179.00 ( 0.00%) 175.00 ( 2.23%)
Min alloc-odr0-64 174.00 ( 0.00%) 172.00 ( 1.15%)
Min alloc-odr0-128 172.00 ( 0.00%) 170.00 ( 1.16%)
Min alloc-odr0-256 181.00 ( 0.00%) 183.00 ( -1.10%)
Min alloc-odr0-512 193.00 ( 0.00%) 191.00 ( 1.04%)
Min alloc-odr0-1024 201.00 ( 0.00%) 199.00 ( 1.00%)
Min alloc-odr0-2048 206.00 ( 0.00%) 204.00 ( 0.97%)
Min alloc-odr0-4096 212.00 ( 0.00%) 210.00 ( 0.94%)
Min alloc-odr0-8192 215.00 ( 0.00%) 213.00 ( 0.93%)
Min alloc-odr0-16384 216.00 ( 0.00%) 214.00 ( 0.93%)
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
page is guaranteed to be set before it is read with or without the
initialisation.
[akpm@linux-foundation.org: fix warning]
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
zonelist here is a copy of a struct field that is used once. Ditch it.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The number of zones skipped to a zone expiring its fair zone allocation
quota is irrelevant. Convert to bool.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
alloc_flags is a bitmask of flags but it is signed which does not
necessarily generate the best code depending on the compiler. Even
without an impact, it makes more sense that this be unsigned.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pageblocks have an associated bitmap to store migrate types and whether
the pageblock should be skipped during compaction. The bitmap may be
associated with a memory section or a zone but the zone is looked up
unconditionally. The compiler should optimise this away automatically
so this is a cosmetic patch only in many cases.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The page allocator iterates through a zonelist for zones that match the
addressing limitations and nodemask of the caller but many allocations
will not be restricted. Despite this, there is always functional call
overhead which builds up.
This patch inlines the optimistic basic case and only calls the iterator
function for the complex case. A hindrance was the fact that
cpuset_current_mems_allowed is used in the fastpath as the allowed
nodemask even though all nodes are allowed on most systems. The patch
handles this by only considering cpuset_current_mems_allowed if a cpuset
exists. As well as being faster in the fast-path, this removes some
junk in the slowpath.
The performance difference on a page allocator microbenchmark is;
4.6.0-rc2 4.6.0-rc2
statinline-v1r20 optiter-v1r20
Min alloc-odr0-1 412.00 ( 0.00%) 382.00 ( 7.28%)
Min alloc-odr0-2 301.00 ( 0.00%) 282.00 ( 6.31%)
Min alloc-odr0-4 247.00 ( 0.00%) 233.00 ( 5.67%)
Min alloc-odr0-8 215.00 ( 0.00%) 203.00 ( 5.58%)
Min alloc-odr0-16 199.00 ( 0.00%) 188.00 ( 5.53%)
Min alloc-odr0-32 191.00 ( 0.00%) 182.00 ( 4.71%)
Min alloc-odr0-64 187.00 ( 0.00%) 177.00 ( 5.35%)
Min alloc-odr0-128 185.00 ( 0.00%) 175.00 ( 5.41%)
Min alloc-odr0-256 193.00 ( 0.00%) 184.00 ( 4.66%)
Min alloc-odr0-512 207.00 ( 0.00%) 197.00 ( 4.83%)
Min alloc-odr0-1024 213.00 ( 0.00%) 203.00 ( 4.69%)
Min alloc-odr0-2048 220.00 ( 0.00%) 209.00 ( 5.00%)
Min alloc-odr0-4096 226.00 ( 0.00%) 214.00 ( 5.31%)
Min alloc-odr0-8192 229.00 ( 0.00%) 218.00 ( 4.80%)
Min alloc-odr0-16384 229.00 ( 0.00%) 219.00 ( 4.37%)
perf indicated that next_zones_zonelist disappeared in the profile and
__next_zones_zonelist did not appear. This is expected as the
micro-benchmark would hit the inlined fast-path every time.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The PageAnon check always checks for compound_head but this is a
relatively expensive check if the caller already knows the page is a
head page. This patch creates a helper and uses it in the page free
path which only operates on head pages.
With this patch and "Only check PageCompound for high-order pages", the
performance difference on a page allocator microbenchmark is;
4.6.0-rc2 4.6.0-rc2
vanilla nocompound-v1r20
Min alloc-odr0-1 425.00 ( 0.00%) 417.00 ( 1.88%)
Min alloc-odr0-2 313.00 ( 0.00%) 308.00 ( 1.60%)
Min alloc-odr0-4 257.00 ( 0.00%) 253.00 ( 1.56%)
Min alloc-odr0-8 224.00 ( 0.00%) 221.00 ( 1.34%)
Min alloc-odr0-16 208.00 ( 0.00%) 205.00 ( 1.44%)
Min alloc-odr0-32 199.00 ( 0.00%) 199.00 ( 0.00%)
Min alloc-odr0-64 195.00 ( 0.00%) 193.00 ( 1.03%)
Min alloc-odr0-128 192.00 ( 0.00%) 191.00 ( 0.52%)
Min alloc-odr0-256 204.00 ( 0.00%) 200.00 ( 1.96%)
Min alloc-odr0-512 213.00 ( 0.00%) 212.00 ( 0.47%)
Min alloc-odr0-1024 219.00 ( 0.00%) 219.00 ( 0.00%)
Min alloc-odr0-2048 225.00 ( 0.00%) 225.00 ( 0.00%)
Min alloc-odr0-4096 230.00 ( 0.00%) 231.00 ( -0.43%)
Min alloc-odr0-8192 235.00 ( 0.00%) 234.00 ( 0.43%)
Min alloc-odr0-16384 235.00 ( 0.00%) 234.00 ( 0.43%)
Min free-odr0-1 215.00 ( 0.00%) 191.00 ( 11.16%)
Min free-odr0-2 152.00 ( 0.00%) 136.00 ( 10.53%)
Min free-odr0-4 119.00 ( 0.00%) 107.00 ( 10.08%)
Min free-odr0-8 106.00 ( 0.00%) 96.00 ( 9.43%)
Min free-odr0-16 97.00 ( 0.00%) 87.00 ( 10.31%)
Min free-odr0-32 91.00 ( 0.00%) 83.00 ( 8.79%)
Min free-odr0-64 89.00 ( 0.00%) 81.00 ( 8.99%)
Min free-odr0-128 88.00 ( 0.00%) 80.00 ( 9.09%)
Min free-odr0-256 106.00 ( 0.00%) 95.00 ( 10.38%)
Min free-odr0-512 116.00 ( 0.00%) 111.00 ( 4.31%)
Min free-odr0-1024 125.00 ( 0.00%) 118.00 ( 5.60%)
Min free-odr0-2048 133.00 ( 0.00%) 126.00 ( 5.26%)
Min free-odr0-4096 136.00 ( 0.00%) 130.00 ( 4.41%)
Min free-odr0-8192 138.00 ( 0.00%) 130.00 ( 5.80%)
Min free-odr0-16384 137.00 ( 0.00%) 130.00 ( 5.11%)
There is a sizable boost to the free allocator performance. While there
is an apparent boost on the allocation side, it's likely a co-incidence
or due to the patches slightly reducing cache footprint.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__alloc_pages_may_oom is the central place to decide when the
out_of_memory should be invoked. This is a good approach for most
checks there because they are page allocator specific and the allocation
fails right after for all of them.
The notable exception is GFP_NOFS context which is faking
did_some_progress and keep the page allocator looping even though there
couldn't have been any progress from the OOM killer. This patch doesn't
change this behavior because we are not ready to allow those allocation
requests to fail yet (and maybe we will face the reality that we will
never manage to safely fail these request). Instead __GFP_FS check is
moved down to out_of_memory and prevent from OOM victim selection there.
There are two reasons for that
- OOM notifiers might release some memory even from this context
as none of the registered notifier seems to be FS related
- this might help a dying thread to get an access to memory
reserves and move on which will make the behavior more
consistent with the case when the task gets killed from a
different context.
Keep a comment in __alloc_pages_may_oom to make sure we do not forget
how GFP_NOFS is special and that we really want to do something about
it.
Note to the current oom_notifier users:
The observable difference for you is that oom notifiers cannot depend on
any fs locks because we could deadlock. Not that this would be allowed
today because that would just lockup machine in most of the cases and
ruling out the OOM killer along the way. Another difference is that
callbacks might be invoked sooner now because GFP_NOFS is a weaker
reclaim context and so there could be reclaimable memory which is just
not reachable now. That would require GFP_NOFS only loads which are
really rare and more importantly the observable result would be dropping
of reconstructible object and potential performance drop which is not
such a big deal when we are struggling to fulfill other important
allocation requests.
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Raushaniya Maksudova <rmaksudova@parallels.com>
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Daniel Vetter <daniel.vetter@intel.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
ZONE_MOVABLE could be treated as highmem so we need to consider it for
accurate statistics. And, in following patches, ZONE_CMA will be
introduced and it can be treated as highmem, too. So, instead of
manually adding stat of ZONE_MOVABLE, looping all zones and check
whether the zone is highmem or not and add stat of the zone which can be
treated as highmem.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Laura Abbott <lauraa@codeaurora.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is a system thats node's pfns are overlapped as follows:
-----pfn-------->
N0 N1 N2 N0 N1 N2
Therefore, we need to care this overlapping when iterating pfn range.
mark_free_pages() iterates requested zone's pfn range and unset all
range's bitmap first. And then it marks freepages in a zone to the
bitmap. If there is an overlapping zone, above unset could clear
previous marked bit and reference to this bitmap in the future will
cause the problem. To prevent it, this patch adds a zone check in
mark_free_pages().
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Laura Abbott <lauraa@codeaurora.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__offline_isolated_pages() and test_pages_isolated() are used by memory
hotplug. These functions require that range is in a single zone but
there is no code to do this because memory hotplug checks it before
calling these functions. To avoid confusing future user of these
functions, this patch adds comments to them.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Laura Abbott <lauraa@codeaurora.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__free_pages_boot_core has parameter pfn which is not used at all.
Remove it.
Signed-off-by: Li Zhang <zhlcindy@linux.vnet.ibm.com>
Reviewed-by: Pan Xinhui <xinhui.pan@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Many developers already know that field for reference count of the
struct page is _count and atomic type. They would try to handle it
directly and this could break the purpose of page reference count
tracepoint. To prevent direct _count modification, this patch rename it
to _refcount and add warning message on the code. After that, developer
who need to handle reference count will find that field should not be
accessed directly.
[akpm@linux-foundation.org: fix comments, per Vlastimil]
[akpm@linux-foundation.org: Documentation/vm/transhuge.txt too]
[sfr@canb.auug.org.au: sync ethernet driver changes]
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Berg <johannes@sipsolutions.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Sunil Goutham <sgoutham@cavium.com>
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Cc: Manish Chopra <manish.chopra@qlogic.com>
Cc: Yuval Mintz <yuval.mintz@qlogic.com>
Cc: Tariq Toukan <tariqt@mellanox.com>
Cc: Saeed Mahameed <saeedm@mellanox.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Khugepaged attempts to raise min_free_kbytes if its set too low.
However, on boot khugepaged sets min_free_kbytes first from
subsys_initcall(), and then the mm 'core' over-rides min_free_kbytes
after from init_per_zone_wmark_min(), via a module_init() call.
Khugepaged used to use a late_initcall() to set min_free_kbytes (such
that it occurred after the core initialization), however this was
removed when the initialization of min_free_kbytes was integrated into
the starting of the khugepaged thread.
The fix here is simply to invoke the core initialization using a
core_initcall() instead of module_init(), such that the previous
initialization ordering is restored. I didn't restore the
late_initcall() since start_stop_khugepaged() already sets
min_free_kbytes via set_recommended_min_free_kbytes().
This was noticed when we had a number of page allocation failures when
moving a workload to a kernel with this new initialization ordering. On
an 8GB system this restores min_free_kbytes back to 67584 from 11365
when CONFIG_TRANSPARENT_HUGEPAGE=y is set and either
CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS=y or
CONFIG_TRANSPARENT_HUGEPAGE_MADVISE=y.
Fixes: 79553da293 ("thp: cleanup khugepaged startup")
Signed-off-by: Jason Baron <jbaron@akamai.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Hanjun Guo has reported that a CMA stress test causes broken accounting of
CMA and free pages:
> Before the test, I got:
> -bash-4.3# cat /proc/meminfo | grep Cma
> CmaTotal: 204800 kB
> CmaFree: 195044 kB
>
>
> After running the test:
> -bash-4.3# cat /proc/meminfo | grep Cma
> CmaTotal: 204800 kB
> CmaFree: 6602584 kB
>
> So the freed CMA memory is more than total..
>
> Also the the MemFree is more than mem total:
>
> -bash-4.3# cat /proc/meminfo
> MemTotal: 16342016 kB
> MemFree: 22367268 kB
> MemAvailable: 22370528 kB
Laura Abbott has confirmed the issue and suspected the freepage accounting
rewrite around 3.18/4.0 by Joonsoo Kim. Joonsoo had a theory that this is
caused by unexpected merging between MIGRATE_ISOLATE and MIGRATE_CMA
pageblocks:
> CMA isolates MAX_ORDER aligned blocks, but, during the process,
> partialy isolated block exists. If MAX_ORDER is 11 and
> pageblock_order is 9, two pageblocks make up MAX_ORDER
> aligned block and I can think following scenario because pageblock
> (un)isolation would be done one by one.
>
> (each character means one pageblock. 'C', 'I' means MIGRATE_CMA,
> MIGRATE_ISOLATE, respectively.
>
> CC -> IC -> II (Isolation)
> II -> CI -> CC (Un-isolation)
>
> If some pages are freed at this intermediate state such as IC or CI,
> that page could be merged to the other page that is resident on
> different type of pageblock and it will cause wrong freepage count.
This was supposed to be prevented by CMA operating on MAX_ORDER blocks,
but since it doesn't hold the zone->lock between pageblocks, a race
window does exist.
It's also likely that unexpected merging can occur between
MIGRATE_ISOLATE and non-CMA pageblocks. This should be prevented in
__free_one_page() since commit 3c605096d3 ("mm/page_alloc: restrict
max order of merging on isolated pageblock"). However, we only check
the migratetype of the pageblock where buddy merging has been initiated,
not the migratetype of the buddy pageblock (or group of pageblocks)
which can be MIGRATE_ISOLATE.
Joonsoo has suggested checking for buddy migratetype as part of
page_is_buddy(), but that would add extra checks in allocator hotpath
and bloat-o-meter has shown significant code bloat (the function is
inline).
This patch reduces the bloat at some expense of more complicated code.
The buddy-merging while-loop in __free_one_page() is initially bounded
to pageblock_border and without any migratetype checks. The checks are
placed outside, bumping the max_order if merging is allowed, and
returning to the while-loop with a statement which can't be possibly
considered harmful.
This fixes the accounting bug and also removes the arguably weird state
in the original commit 3c605096d3 where buddies could be left
unmerged.
Fixes: 3c605096d3 ("mm/page_alloc: restrict max order of merging on isolated pageblock")
Link: https://lkml.org/lkml/2016/3/2/280
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reported-by: Hanjun Guo <guohanjun@huawei.com>
Tested-by: Hanjun Guo <guohanjun@huawei.com>
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Debugged-by: Laura Abbott <labbott@redhat.com>
Debugged-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: <stable@vger.kernel.org> [3.18+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After the OOM killer is disabled during suspend operation, any
!__GFP_NOFAIL && __GFP_FS allocations are forced to fail. Thus, any
!__GFP_NOFAIL && !__GFP_FS allocations should be forced to fail as well.
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Upstream has supported page parallel initialisation for X86 and the boot
time is improved greately. Some tests have been done for Power.
Here is the result I have done with different memory size.
* 4GB memory:
boot time is as the following:
with patch vs without patch: 10.4s vs 24.5s
boot time is improved 57%
* 200GB memory:
boot time looks the same with and without patches.
boot time is about 38s
* 32TB memory:
boot time looks the same with and without patches
boot time is about 160s.
The boot time is much shorter than X86 with 24TB memory.
From community discussion, it costs about 694s for X86 24T system.
Parallel initialisation improves the performance by deferring memory
initilisation to kswap with N kthreads, it should improve the performance
therotically.
In testing on X86, performance is improved greatly with huge memory. But
on Power platform, it is improved greatly with less than 100GB memory.
For huge memory, it is not improved greatly. But it saves the time with
several threads at least, as the following information shows(32TB system
log):
[ 22.648169] node 9 initialised, 16607461 pages in 280ms
[ 22.783772] node 3 initialised, 23937243 pages in 410ms
[ 22.858877] node 6 initialised, 29179347 pages in 490ms
[ 22.863252] node 2 initialised, 29179347 pages in 490ms
[ 22.907545] node 0 initialised, 32049614 pages in 540ms
[ 22.920891] node 15 initialised, 32212280 pages in 550ms
[ 22.923236] node 4 initialised, 32306127 pages in 550ms
[ 22.923384] node 12 initialised, 32314319 pages in 550ms
[ 22.924754] node 8 initialised, 32314319 pages in 550ms
[ 22.940780] node 13 initialised, 33353677 pages in 570ms
[ 22.940796] node 11 initialised, 33353677 pages in 570ms
[ 22.941700] node 5 initialised, 33353677 pages in 570ms
[ 22.941721] node 10 initialised, 33353677 pages in 570ms
[ 22.941876] node 7 initialised, 33353677 pages in 570ms
[ 22.944946] node 14 initialised, 33353677 pages in 570ms
[ 22.946063] node 1 initialised, 33345485 pages in 580ms
It saves the time about 550*16 ms at least, although it can be ignore to
compare the boot time about 160 seconds. What's more, the boot time is
much shorter on Power even without patches than x86 for huge memory
machine.
So this patchset is still necessary to be enabled for Power.
This patch (of 2):
This patch is based on Mel Gorman's old patch in the mailing list,
https://lkml.org/lkml/2015/5/5/280 which is discussed but it is fixed with
a completion to wait for all memory initialised in page_alloc_init_late().
It is to fix the OOM problem on X86 with 24TB memory which allocates
memory in late initialisation. But for Power platform with 32TB memory,
it causes a call trace in vfs_caches_init->inode_init() and inode hash
table needs more memory. So this patch allocates 1GB for 0.25TB/node for
large system as it is mentioned in https://lkml.org/lkml/2015/5/1/627
This call trace is found on Power with 32TB memory, 1024CPUs, 16nodes.
Currently, it only allocates 2GB*16=32GB for early initialisation. But
Dentry cache hash table needes 16GB and Inode cache hash table needs 16GB.
So the system have no enough memory for it. The log from dmesg as the
following:
Dentry cache hash table entries: 2147483648 (order: 18,17179869184 bytes)
vmalloc: allocation failure, allocated 16021913600 of 17179934720 bytes
swapper/0: page allocation failure: order:0,mode:0x2080020
CPU: 0 PID: 0 Comm: swapper/0 Not tainted 4.4.0-0-ppc64
Call Trace:
.dump_stack+0xb4/0xb664 (unreliable)
.warn_alloc_failed+0x114/0x160
.__vmalloc_area_node+0x1a4/0x2b0
.__vmalloc_node_range+0xe4/0x110
.__vmalloc_node+0x40/0x50
.alloc_large_system_hash+0x134/0x2a4
.inode_init+0xa4/0xf0
.vfs_caches_init+0x80/0x144
.start_kernel+0x40c/0x4e0
start_here_common+0x20/0x4a4
Signed-off-by: Li Zhang <zhlcindy@linux.vnet.ibm.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Most of the mm subsystem uses pr_<level> so make it consistent.
Miscellanea:
- Realign arguments
- Add missing newline to format
- kmemleak-test.c has a "kmemleak: " prefix added to the
"Kmemleak testing" logging message via pr_fmt
Signed-off-by: Joe Perches <joe@perches.com>
Acked-by: Tejun Heo <tj@kernel.org> [percpu]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Kernel style prefers a single string over split strings when the string is
'user-visible'.
Miscellanea:
- Add a missing newline
- Realign arguments
Signed-off-by: Joe Perches <joe@perches.com>
Acked-by: Tejun Heo <tj@kernel.org> [percpu]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 647757197c ("mm: clarify __GFP_NOFAIL deprecation status") was
incomplete and didn't remove the comment about __GFP_NOFAIL being
deprecated in buffered_rmqueue.
Let's get rid of this leftover but keep the WARN_ON_ONCE for order > 1
because we should really discourage from using __GFP_NOFAIL with higher
order allocations because those are just too subtle.
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Nikolay Borisov <kernel@kyup.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The success of CMA allocation largely depends on the success of
migration and key factor of it is page reference count. Until now, page
reference is manipulated by direct calling atomic functions so we cannot
follow up who and where manipulate it. Then, it is hard to find actual
reason of CMA allocation failure. CMA allocation should be guaranteed
to succeed so finding offending place is really important.
In this patch, call sites where page reference is manipulated are
converted to introduced wrapper function. This is preparation step to
add tracepoint to each page reference manipulation function. With this
facility, we can easily find reason of CMA allocation failure. There is
no functional change in this patch.
In addition, this patch also converts reference read sites. It will
help a second step that renames page._count to something else and
prevents later attempt to direct access to it (Suggested by Andrew).
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
THP defrag is enabled by default to direct reclaim/compact but not wake
kswapd in the event of a THP allocation failure. The problem is that
THP allocation requests potentially enter reclaim/compaction. This
potentially incurs a severe stall that is not guaranteed to be offset by
reduced TLB misses. While there has been considerable effort to reduce
the impact of reclaim/compaction, it is still a high cost and workloads
that should fit in memory fail to do so. Specifically, a simple
anon/file streaming workload will enter direct reclaim on NUMA at least
even though the working set size is 80% of RAM. It's been years and
it's time to throw in the towel.
First, this patch defines THP defrag as follows;
madvise: A failed allocation will direct reclaim/compact if the application requests it
never: Neither reclaim/compact nor wake kswapd
defer: A failed allocation will wake kswapd/kcompactd
always: A failed allocation will direct reclaim/compact (historical behaviour)
khugepaged defrag will enter direct/reclaim but not wake kswapd.
Next it sets the default defrag option to be "madvise" to only enter
direct reclaim/compaction for applications that specifically requested
it.
Lastly, it removes a check from the page allocator slowpath that is
related to __GFP_THISNODE to allow "defer" to work. The callers that
really cares are slub/slab and they are updated accordingly. The slab
one may be surprising because it also corrects a comment as kswapd was
never woken up by that path.
This means that a THP fault will no longer stall for most applications
by default and the ideal for most users that get THP if they are
immediately available. There are still options for users that prefer a
stall at startup of a new application by either restoring historical
behaviour with "always" or pick a half-way point with "defer" where
kswapd does some of the work in the background and wakes kcompactd if
necessary. THP defrag for khugepaged remains enabled and will enter
direct/reclaim but no wakeup kswapd or kcompactd.
After this patch a THP allocation failure will quickly fallback and rely
on khugepaged to recover the situation at some time in the future. In
some cases, this will reduce THP usage but the benefit of THP is hard to
measure and not a universal win where as a stall to reclaim/compaction
is definitely measurable and can be painful.
The first test for this is using "usemem" to read a large file and write
a large anonymous mapping (to avoid the zero page) multiple times. The
total size of the mappings is 80% of RAM and the benchmark simply
measures how long it takes to complete. It uses multiple threads to see
if that is a factor. On UMA, the performance is almost identical so is
not reported but on NUMA, we see this
usemem
4.4.0 4.4.0
kcompactd-v1r1 nodefrag-v1r3
Amean System-1 102.86 ( 0.00%) 46.81 ( 54.50%)
Amean System-4 37.85 ( 0.00%) 34.02 ( 10.12%)
Amean System-7 48.12 ( 0.00%) 46.89 ( 2.56%)
Amean System-12 51.98 ( 0.00%) 56.96 ( -9.57%)
Amean System-21 80.16 ( 0.00%) 79.05 ( 1.39%)
Amean System-30 110.71 ( 0.00%) 107.17 ( 3.20%)
Amean System-48 127.98 ( 0.00%) 124.83 ( 2.46%)
Amean Elapsd-1 185.84 ( 0.00%) 105.51 ( 43.23%)
Amean Elapsd-4 26.19 ( 0.00%) 25.58 ( 2.33%)
Amean Elapsd-7 21.65 ( 0.00%) 21.62 ( 0.16%)
Amean Elapsd-12 18.58 ( 0.00%) 17.94 ( 3.43%)
Amean Elapsd-21 17.53 ( 0.00%) 16.60 ( 5.33%)
Amean Elapsd-30 17.45 ( 0.00%) 17.13 ( 1.84%)
Amean Elapsd-48 15.40 ( 0.00%) 15.27 ( 0.82%)
For a single thread, the benchmark completes 43.23% faster with this
patch applied with smaller benefits as the thread increases. Similar,
notice the large reduction in most cases in system CPU usage. The
overall CPU time is
4.4.0 4.4.0
kcompactd-v1r1 nodefrag-v1r3
User 10357.65 10438.33
System 3988.88 3543.94
Elapsed 2203.01 1634.41
Which is substantial. Now, the reclaim figures
4.4.0 4.4.0
kcompactd-v1r1nodefrag-v1r3
Minor Faults 128458477 278352931
Major Faults 2174976 225
Swap Ins 16904701 0
Swap Outs 17359627 0
Allocation stalls 43611 0
DMA allocs 0 0
DMA32 allocs 19832646 19448017
Normal allocs 614488453 580941839
Movable allocs 0 0
Direct pages scanned 24163800 0
Kswapd pages scanned 0 0
Kswapd pages reclaimed 0 0
Direct pages reclaimed 20691346 0
Compaction stalls 42263 0
Compaction success 938 0
Compaction failures 41325 0
This patch eliminates almost all swapping and direct reclaim activity.
There is still overhead but it's from NUMA balancing which does not
identify that it's pointless trying to do anything with this workload.
I also tried the thpscale benchmark which forces a corner case where
compaction can be used heavily and measures the latency of whether base
or huge pages were used
thpscale Fault Latencies
4.4.0 4.4.0
kcompactd-v1r1 nodefrag-v1r3
Amean fault-base-1 5288.84 ( 0.00%) 2817.12 ( 46.73%)
Amean fault-base-3 6365.53 ( 0.00%) 3499.11 ( 45.03%)
Amean fault-base-5 6526.19 ( 0.00%) 4363.06 ( 33.15%)
Amean fault-base-7 7142.25 ( 0.00%) 4858.08 ( 31.98%)
Amean fault-base-12 13827.64 ( 0.00%) 10292.11 ( 25.57%)
Amean fault-base-18 18235.07 ( 0.00%) 13788.84 ( 24.38%)
Amean fault-base-24 21597.80 ( 0.00%) 24388.03 (-12.92%)
Amean fault-base-30 26754.15 ( 0.00%) 19700.55 ( 26.36%)
Amean fault-base-32 26784.94 ( 0.00%) 19513.57 ( 27.15%)
Amean fault-huge-1 4223.96 ( 0.00%) 2178.57 ( 48.42%)
Amean fault-huge-3 2194.77 ( 0.00%) 2149.74 ( 2.05%)
Amean fault-huge-5 2569.60 ( 0.00%) 2346.95 ( 8.66%)
Amean fault-huge-7 3612.69 ( 0.00%) 2997.70 ( 17.02%)
Amean fault-huge-12 3301.75 ( 0.00%) 6727.02 (-103.74%)
Amean fault-huge-18 6696.47 ( 0.00%) 6685.72 ( 0.16%)
Amean fault-huge-24 8000.72 ( 0.00%) 9311.43 (-16.38%)
Amean fault-huge-30 13305.55 ( 0.00%) 9750.45 ( 26.72%)
Amean fault-huge-32 9981.71 ( 0.00%) 10316.06 ( -3.35%)
The average time to fault pages is substantially reduced in the majority
of caseds but with the obvious caveat that fewer THPs are actually used
in this adverse workload
4.4.0 4.4.0
kcompactd-v1r1 nodefrag-v1r3
Percentage huge-1 0.71 ( 0.00%) 14.04 (1865.22%)
Percentage huge-3 10.77 ( 0.00%) 33.05 (206.85%)
Percentage huge-5 60.39 ( 0.00%) 38.51 (-36.23%)
Percentage huge-7 45.97 ( 0.00%) 34.57 (-24.79%)
Percentage huge-12 68.12 ( 0.00%) 40.07 (-41.17%)
Percentage huge-18 64.93 ( 0.00%) 47.82 (-26.35%)
Percentage huge-24 62.69 ( 0.00%) 44.23 (-29.44%)
Percentage huge-30 43.49 ( 0.00%) 55.38 ( 27.34%)
Percentage huge-32 50.72 ( 0.00%) 51.90 ( 2.35%)
4.4.0 4.4.0
kcompactd-v1r1nodefrag-v1r3
Minor Faults 37429143 47564000
Major Faults 1916 1558
Swap Ins 1466 1079
Swap Outs 2936863 149626
Allocation stalls 62510 3
DMA allocs 0 0
DMA32 allocs 6566458 6401314
Normal allocs 216361697 216538171
Movable allocs 0 0
Direct pages scanned 25977580 17998
Kswapd pages scanned 0 3638931
Kswapd pages reclaimed 0 207236
Direct pages reclaimed 8833714 88
Compaction stalls 103349 5
Compaction success 270 4
Compaction failures 103079 1
Note again that while this does swap as it's an aggressive workload, the
direct relcim activity and allocation stalls is substantially reduced.
There is some kswapd activity but ftrace showed that the kswapd activity
was due to normal wakeups from 4K pages being allocated.
Compaction-related stalls and activity are almost eliminated.
I also tried the stutter benchmark. For this, I do not have figures for
NUMA but it's something that does impact UMA so I'll report what is
available
stutter
4.4.0 4.4.0
kcompactd-v1r1 nodefrag-v1r3
Min mmap 7.3571 ( 0.00%) 7.3438 ( 0.18%)
1st-qrtle mmap 7.5278 ( 0.00%) 17.9200 (-138.05%)
2nd-qrtle mmap 7.6818 ( 0.00%) 21.6055 (-181.25%)
3rd-qrtle mmap 11.0889 ( 0.00%) 21.8881 (-97.39%)
Max-90% mmap 27.8978 ( 0.00%) 22.1632 ( 20.56%)
Max-93% mmap 28.3202 ( 0.00%) 22.3044 ( 21.24%)
Max-95% mmap 28.5600 ( 0.00%) 22.4580 ( 21.37%)
Max-99% mmap 29.6032 ( 0.00%) 25.5216 ( 13.79%)
Max mmap 4109.7289 ( 0.00%) 4813.9832 (-17.14%)
Mean mmap 12.4474 ( 0.00%) 19.3027 (-55.07%)
This benchmark is trying to fault an anonymous mapping while there is a
heavy IO load -- a scenario that desktop users used to complain about
frequently. This shows a mix because the ideal case of mapping with THP
is not hit as often. However, note that 99% of the mappings complete
13.79% faster. The CPU usage here is particularly interesting
4.4.0 4.4.0
kcompactd-v1r1nodefrag-v1r3
User 67.50 0.99
System 1327.88 91.30
Elapsed 2079.00 2128.98
And once again we look at the reclaim figures
4.4.0 4.4.0
kcompactd-v1r1nodefrag-v1r3
Minor Faults 335241922 1314582827
Major Faults 715 819
Swap Ins 0 0
Swap Outs 0 0
Allocation stalls 532723 0
DMA allocs 0 0
DMA32 allocs 1822364341 1177950222
Normal allocs 1815640808 1517844854
Movable allocs 0 0
Direct pages scanned 21892772 0
Kswapd pages scanned 20015890 41879484
Kswapd pages reclaimed 19961986 41822072
Direct pages reclaimed 21892741 0
Compaction stalls 1065755 0
Compaction success 514 0
Compaction failures 1065241 0
Allocation stalls and all direct reclaim activity is eliminated as well
as compaction-related stalls.
THP gives impressive gains in some cases but only if they are quickly
available. We're not going to reach the point where they are completely
free so lets take the costs out of the fast paths finally and defer the
cost to kswapd, kcompactd and khugepaged where it belongs.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In machines with 140G of memory and enterprise flash storage, we have
seen read and write bursts routinely exceed the kswapd watermarks and
cause thundering herds in direct reclaim. Unfortunately, the only way
to tune kswapd aggressiveness is through adjusting min_free_kbytes - the
system's emergency reserves - which is entirely unrelated to the
system's latency requirements. In order to get kswapd to maintain a
250M buffer of free memory, the emergency reserves need to be set to 1G.
That is a lot of memory wasted for no good reason.
On the other hand, it's reasonable to assume that allocation bursts and
overall allocation concurrency scale with memory capacity, so it makes
sense to make kswapd aggressiveness a function of that as well.
Change the kswapd watermark scale factor from the currently fixed 25% of
the tunable emergency reserve to a tunable 0.1% of memory.
Beyond 1G of memory, this will produce bigger watermark steps than the
current formula in default settings. Ensure that the new formula never
chooses steps smaller than that, i.e. 25% of the emergency reserve.
On a 140G machine, this raises the default watermark steps - the
distance between min and low, and low and high - from 16M to 143M.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add a new field, VIRTIO_BALLOON_S_AVAIL, to virtio_balloon memory
statistics protocol, corresponding to 'Available' in /proc/meminfo.
It indicates to the hypervisor how big the balloon can be inflated
without pushing the guest system to swap. This metric would be very
useful in VM orchestration software to improve memory management of
different VMs under overcommit.
This patch (of 2):
Factor out calculation of the available memory counter into a separate
exportable function, in order to be able to use it in other parts of the
kernel.
In particular, it appears a relevant metric to report to the hypervisor
via virtio-balloon statistics interface (in a followup patch).
Signed-off-by: Igor Redko <redkoi@virtuozzo.com>
Signed-off-by: Denis V. Lunev <den@openvz.org>
Reviewed-by: Roman Kagan <rkagan@virtuozzo.com>
Cc: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Memory compaction can be currently performed in several contexts:
- kswapd balancing a zone after a high-order allocation failure
- direct compaction to satisfy a high-order allocation, including THP
page fault attemps
- khugepaged trying to collapse a hugepage
- manually from /proc
The purpose of compaction is two-fold. The obvious purpose is to
satisfy a (pending or future) high-order allocation, and is easy to
evaluate. The other purpose is to keep overal memory fragmentation low
and help the anti-fragmentation mechanism. The success wrt the latter
purpose is more
The current situation wrt the purposes has a few drawbacks:
- compaction is invoked only when a high-order page or hugepage is not
available (or manually). This might be too late for the purposes of
keeping memory fragmentation low.
- direct compaction increases latency of allocations. Again, it would
be better if compaction was performed asynchronously to keep
fragmentation low, before the allocation itself comes.
- (a special case of the previous) the cost of compaction during THP
page faults can easily offset the benefits of THP.
- kswapd compaction appears to be complex, fragile and not working in
some scenarios. It could also end up compacting for a high-order
allocation request when it should be reclaiming memory for a later
order-0 request.
To improve the situation, we should be able to benefit from an
equivalent of kswapd, but for compaction - i.e. a background thread
which responds to fragmentation and the need for high-order allocations
(including hugepages) somewhat proactively.
One possibility is to extend the responsibilities of kswapd, which could
however complicate its design too much. It should be better to let
kswapd handle reclaim, as order-0 allocations are often more critical
than high-order ones.
Another possibility is to extend khugepaged, but this kthread is a
single instance and tied to THP configs.
This patch goes with the option of a new set of per-node kthreads called
kcompactd, and lays the foundations, without introducing any new
tunables. The lifecycle mimics kswapd kthreads, including the memory
hotplug hooks.
For compaction, kcompactd uses the standard compaction_suitable() and
ompact_finished() criteria and the deferred compaction functionality.
Unlike direct compaction, it uses only sync compaction, as there's no
allocation latency to minimize.
This patch doesn't yet add a call to wakeup_kcompactd. The kswapd
compact/reclaim loop for high-order pages will be replaced by waking up
kcompactd in the next patch with the description of what's wrong with
the old approach.
Waking up of the kcompactd threads is also tied to kswapd activity and
follows these rules:
- we don't want to affect any fastpaths, so wake up kcompactd only from
the slowpath, as it's done for kswapd
- if kswapd is doing reclaim, it's more important than compaction, so
don't invoke kcompactd until kswapd goes to sleep
- the target order used for kswapd is passed to kcompactd
Future possible future uses for kcompactd include the ability to wake up
kcompactd on demand in special situations, such as when hugepages are
not available (currently not done due to __GFP_NO_KSWAPD) or when a
fragmentation event (i.e. __rmqueue_fallback()) occurs. It's also
possible to perform periodic compaction with kcompactd.
[arnd@arndb.de: fix build errors with kcompactd]
[paul.gortmaker@windriver.com: don't use modular references for non modular code]
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: David Rientjes <rientjes@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We can disable debug_pagealloc processing even if the code is compiled
with CONFIG_DEBUG_PAGEALLOC. This patch changes the code to query
whether it is enabled or not in runtime.
[akpm@linux-foundation.org: export _debug_pagealloc_enabled to modules]
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Takashi Iwai <tiwai@suse.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently /proc/kpageflags returns nothing for "tail" buddy pages, which
is inconvenient when grasping how free pages are distributed. This
patch sets KPF_BUDDY for such pages.
With this patch:
$ grep MemFree /proc/meminfo ; tools/vm/page-types -b buddy
MemFree: 3134992 kB
flags page-count MB symbolic-flags long-symbolic-flags
0x0000000000000400 779272 3044 __________B_______________________________ buddy
0x0000000000000c00 4385 17 __________BM______________________________ buddy,mmap
total 783657 3061
783657 pages is 3134628 kB (roughly consistent with the global counter,)
so it's OK.
[akpm@linux-foundation.org: update comment, per Naoya]
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reviewed-by: Vladimir Davydov <vdavydov@virtuozzo.com>>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is a performance drop report due to hugepage allocation and in
there half of cpu time are spent on pageblock_pfn_to_page() in
compaction [1].
In that workload, compaction is triggered to make hugepage but most of
pageblocks are un-available for compaction due to pageblock type and
skip bit so compaction usually fails. Most costly operations in this
case is to find valid pageblock while scanning whole zone range. To
check if pageblock is valid to compact, valid pfn within pageblock is
required and we can obtain it by calling pageblock_pfn_to_page(). This
function checks whether pageblock is in a single zone and return valid
pfn if possible. Problem is that we need to check it every time before
scanning pageblock even if we re-visit it and this turns out to be very
expensive in this workload.
Although we have no way to skip this pageblock check in the system where
hole exists at arbitrary position, we can use cached value for zone
continuity and just do pfn_to_page() in the system where hole doesn't
exist. This optimization considerably speeds up in above workload.
Before vs After
Max: 1096 MB/s vs 1325 MB/s
Min: 635 MB/s 1015 MB/s
Avg: 899 MB/s 1194 MB/s
Avg is improved by roughly 30% [2].
[1]: http://www.spinics.net/lists/linux-mm/msg97378.html
[2]: https://lkml.org/lkml/2015/12/9/23
[akpm@linux-foundation.org: don't forget to restore zone->contiguous on error path, per Vlastimil]
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reported-by: Aaron Lu <aaron.lu@intel.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Aaron Lu <aaron.lu@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
By default, page poisoning uses a poison value (0xaa) on free. If this
is changed to 0, the page is not only sanitized but zeroing on alloc
with __GFP_ZERO can be skipped as well. The tradeoff is that detecting
corruption from the poisoning is harder to detect. This feature also
cannot be used with hibernation since pages are not guaranteed to be
zeroed after hibernation.
Credit to Grsecurity/PaX team for inspiring this work
Signed-off-by: Laura Abbott <labbott@fedoraproject.org>
Acked-by: Rafael J. Wysocki <rjw@rjwysocki.net>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Mathias Krause <minipli@googlemail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Jianyu Zhan <nasa4836@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Page poisoning is currently set up as a feature if architectures don't
have architecture debug page_alloc to allow unmapping of pages. It has
uses apart from that though. Clearing of the pages on free provides an
increase in security as it helps to limit the risk of information leaks.
Allow page poisoning to be enabled as a separate option independent of
kernel_map pages since the two features do separate work. Because of
how hiberanation is implemented, the checks on alloc cannot occur if
hibernation is enabled. The runtime alloc checks can also be enabled
with an option when !HIBERNATION.
Credit to Grsecurity/PaX team for inspiring this work
Signed-off-by: Laura Abbott <labbott@fedoraproject.org>
Cc: Rafael J. Wysocki <rjw@rjwysocki.net>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Mathias Krause <minipli@googlemail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Jianyu Zhan <nasa4836@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since bad_page() is the only user of the badflags parameter of
dump_page_badflags(), we can move the code to bad_page() and simplify a
bit.
The dump_page_badflags() function is renamed to __dump_page() and can
still be called separately from dump_page() for temporary debug prints
where page_owner info is not desired.
The only user-visible change is that page->mem_cgroup is printed before
the bad flags.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The page_owner mechanism is useful for dealing with memory leaks. By
reading /sys/kernel/debug/page_owner one can determine the stack traces
leading to allocations of all pages, and find e.g. a buggy driver.
This information might be also potentially useful for debugging, such as
the VM_BUG_ON_PAGE() calls to dump_page(). So let's print the stored
info from dump_page().
Example output:
page:ffffea000292f1c0 count:1 mapcount:0 mapping:ffff8800b2f6cc18 index:0x91d
flags: 0x1fffff8001002c(referenced|uptodate|lru|mappedtodisk)
page dumped because: VM_BUG_ON_PAGE(1)
page->mem_cgroup:ffff8801392c5000
page allocated via order 0, migratetype Movable, gfp_mask 0x24213ca(GFP_HIGHUSER_MOVABLE|__GFP_COLD|__GFP_NOWARN|__GFP_NORETRY)
[<ffffffff811682c4>] __alloc_pages_nodemask+0x134/0x230
[<ffffffff811b40c8>] alloc_pages_current+0x88/0x120
[<ffffffff8115e386>] __page_cache_alloc+0xe6/0x120
[<ffffffff8116ba6c>] __do_page_cache_readahead+0xdc/0x240
[<ffffffff8116bd05>] ondemand_readahead+0x135/0x260
[<ffffffff8116be9c>] page_cache_async_readahead+0x6c/0x70
[<ffffffff811604c2>] generic_file_read_iter+0x3f2/0x760
[<ffffffff811e0dc7>] __vfs_read+0xa7/0xd0
page has been migrated, last migrate reason: compaction
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The information in /sys/kernel/debug/page_owner includes the migratetype
of the pageblock the page belongs to. This is also checked against the
page's migratetype (as declared by gfp_flags during its allocation), and
the page is reported as Fallback if its migratetype differs from the
pageblock's one. t This is somewhat misleading because in fact fallback
allocation is not the only reason why these two can differ. It also
doesn't direcly provide the page's migratetype, although it's possible
to derive that from the gfp_flags.
It's arguably better to print both page and pageblock's migratetype and
leave the interpretation to the consumer than to suggest fallback
allocation as the only possible reason. While at it, we can print the
migratetypes as string the same way as /proc/pagetypeinfo does, as some
of the numeric values depend on kernel configuration. For that, this
patch moves the migratetype_names array from #ifdef CONFIG_PROC_FS part
of mm/vmstat.c to mm/page_alloc.c and exports it.
With the new format strings for flags, we can now also provide symbolic
page and gfp flags in the /sys/kernel/debug/page_owner file. This
replaces the positional printing of page flags as single letters, which
might have looked nicer, but was limited to a subset of flags, and
required the user to remember the letters.
Example page_owner entry after the patch:
Page allocated via order 0, mask 0x24213ca(GFP_HIGHUSER_MOVABLE|__GFP_COLD|__GFP_NOWARN|__GFP_NORETRY)
PFN 520 type Movable Block 1 type Movable Flags 0xfffff8001006c(referenced|uptodate|lru|active|mappedtodisk)
[<ffffffff811682c4>] __alloc_pages_nodemask+0x134/0x230
[<ffffffff811b4058>] alloc_pages_current+0x88/0x120
[<ffffffff8115e386>] __page_cache_alloc+0xe6/0x120
[<ffffffff8116ba6c>] __do_page_cache_readahead+0xdc/0x240
[<ffffffff8116bd05>] ondemand_readahead+0x135/0x260
[<ffffffff8116bfb1>] page_cache_sync_readahead+0x31/0x50
[<ffffffff81160523>] generic_file_read_iter+0x453/0x760
[<ffffffff811e0d57>] __vfs_read+0xa7/0xd0
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It would be useful to translate gfp_flags into string representation
when printing in case of an allocation failure, especially as the flags
have been undergoing some changes recently and the script
./scripts/gfp-translate needs a matching source version to be accurate.
Example output:
stapio: page allocation failure: order:9, mode:0x2080020(GFP_ATOMIC)
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit 031bc5743f ("mm/debug-pagealloc: make debug-pagealloc
boottime configurable") CONFIG_DEBUG_PAGEALLOC is by default not adding
any page debugging.
This resulted in several unnoticed bugs, e.g.
https://lkml.kernel.org/g/<569F5E29.3090107@de.ibm.com>
or
https://lkml.kernel.org/g/<56A20F30.4050705@de.ibm.com>
as this behaviour change was not even documented in Kconfig.
Let's provide a new Kconfig symbol that allows to change the default
back to enabled, e.g. for debug kernels. This also makes the change
obvious to kernel packagers.
Let's also change the Kconfig description for CONFIG_DEBUG_PAGEALLOC, to
indicate that there are two stages of overhead.
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This function is getting full of weird tricks to avoid word-wrapping.
Use a goto to eliminate a tab stop then use the new space
Cc: Taku Izumi <izumi.taku@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Xeon E7 v3 based systems supports Address Range Mirroring and UEFI BIOS
complied with UEFI spec 2.5 can notify which ranges are mirrored
(reliable) via EFI memory map. Now Linux kernel utilize its information
and allocates boot time memory from reliable region.
My requirement is:
- allocate kernel memory from mirrored region
- allocate user memory from non-mirrored region
In order to meet my requirement, ZONE_MOVABLE is useful. By arranging
non-mirrored range into ZONE_MOVABLE, mirrored memory is used for kernel
allocations.
My idea is to extend existing "kernelcore" option and introduces
kernelcore=mirror option. By specifying "mirror" instead of specifying
the amount of memory, non-mirrored region will be arranged into
ZONE_MOVABLE.
Earlier discussions are at:
https://lkml.org/lkml/2015/10/9/24https://lkml.org/lkml/2015/10/15/9https://lkml.org/lkml/2015/11/27/18https://lkml.org/lkml/2015/12/8/836
For example, suppose 2-nodes system with the following memory range:
node 0 [mem 0x0000000000001000-0x000000109fffffff]
node 1 [mem 0x00000010a0000000-0x000000209fffffff]
and the following ranges are marked as reliable (mirrored):
[0x0000000000000000-0x0000000100000000]
[0x0000000100000000-0x0000000180000000]
[0x0000000800000000-0x0000000880000000]
[0x00000010a0000000-0x0000001120000000]
[0x00000017a0000000-0x0000001820000000]
If you specify kernelcore=mirror, ZONE_NORMAL and ZONE_MOVABLE are
arranged like bellow:
- node 0:
ZONE_NORMAL : [0x0000000100000000-0x00000010a0000000]
ZONE_MOVABLE: [0x0000000180000000-0x00000010a0000000]
- node 1:
ZONE_NORMAL : [0x00000010a0000000-0x00000020a0000000]
ZONE_MOVABLE: [0x0000001120000000-0x00000020a0000000]
In overlapped range, pages to be ZONE_MOVABLE in ZONE_NORMAL are treated
as absent pages, and vice versa.
This patch (of 2):
Currently each zone's zone_start_pfn is calculated at
free_area_init_core(). However zone's range is fixed at the time when
invoking zone_spanned_pages_in_node().
This patch changes how each zone->zone_start_pfn is calculated in
zone_spanned_pages_in_node().
Signed-off-by: Taku Izumi <izumi.taku@jp.fujitsu.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: Sudeep Holla <sudeep.holla@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 944d9fec8d ("hugetlb: add support for gigantic page allocation
at runtime") has added the runtime gigantic page allocation via
alloc_contig_range(), making this support available only when CONFIG_CMA
is enabled. Because it doesn't depend on MIGRATE_CMA pageblocks and the
associated infrastructure, it is possible with few simple adjustments to
require only CONFIG_MEMORY_ISOLATION instead of full CONFIG_CMA.
After this patch, alloc_contig_range() and related functions are
available and used for gigantic pages with just CONFIG_MEMORY_ISOLATION
enabled. Note CONFIG_CMA selects CONFIG_MEMORY_ISOLATION. This allows
supporting runtime gigantic pages without the CMA-specific checks in
page allocator fastpaths.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Remove unused struct zone *z variable which appeared in 86051ca5ea
("mm: fix usemap initialization").
Signed-off-by: Alexander Kuleshov <kuleshovmail@gmail.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In support of providing struct page for large persistent memory
capacities, use struct vmem_altmap to change the default policy for
allocating memory for the memmap array. The default vmemmap_populate()
allocates page table storage area from the page allocator. Given
persistent memory capacities relative to DRAM it may not be feasible to
store the memmap in 'System Memory'. Instead vmem_altmap represents
pre-allocated "device pages" to satisfy vmemmap_alloc_block_buf()
requests.
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Reported-by: kbuild test robot <lkp@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently we don't split huge page on partial unmap. It's not an ideal
situation. It can lead to memory overhead.
Furtunately, we can detect partial unmap on page_remove_rmap(). But we
cannot call split_huge_page() from there due to locking context.
It's also counterproductive to do directly from munmap() codepath: in
many cases we will hit this from exit(2) and splitting the huge page
just to free it up in small pages is not what we really want.
The patch introduce deferred_split_huge_page() which put the huge page
into queue for splitting. The splitting itself will happen when we get
memory pressure via shrinker interface. The page will be dropped from
list on freeing through compound page destructor.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Jerome Marchand <jmarchan@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We're going to allow mapping of individual 4k pages of THP compound. It
means we need to track mapcount on per small page basis.
Straight-forward approach is to use ->_mapcount in all subpages to track
how many time this subpage is mapped with PMDs or PTEs combined. But
this is rather expensive: mapping or unmapping of a THP page with PMD
would require HPAGE_PMD_NR atomic operations instead of single we have
now.
The idea is to store separately how many times the page was mapped as
whole -- compound_mapcount. This frees up ->_mapcount in subpages to
track PTE mapcount.
We use the same approach as with compound page destructor and compound
order to store compound_mapcount: use space in first tail page,
->mapping this time.
Any time we map/unmap whole compound page (THP or hugetlb) -- we
increment/decrement compound_mapcount. When we map part of compound
page with PTE we operate on ->_mapcount of the subpage.
page_mapcount() counts both: PTE and PMD mappings of the page.
Basically, we have mapcount for a subpage spread over two counters. It
makes tricky to detect when last mapcount for a page goes away.
We introduced PageDoubleMap() for this. When we split THP PMD for the
first time and there's other PMD mapping left we offset up ->_mapcount
in all subpages by one and set PG_double_map on the compound page.
These additional references go away with last compound_mapcount.
This approach provides a way to detect when last mapcount goes away on
per small page basis without introducing new overhead for most common
cases.
[akpm@linux-foundation.org: fix typo in comment]
[mhocko@suse.com: ignore partial THP when moving task]
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Jerome Marchand <jmarchan@redhat.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We don't define meaning of page->mapping for tail pages. Currently it's
always NULL, which can be inconsistent with head page and potentially
lead to problems.
Let's poison the pointer to catch all illigal uses.
page_rmapping(), page_mapping() and page_anon_vma() are changed to look
on head page.
The only illegal use I've caught so far is __GPF_COMP pages from sound
subsystem, mapped with PTEs. do_shared_fault() is changed to use
page_rmapping() instead of direct access to fault_page->mapping.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Jérôme Glisse <jglisse@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Jerome Marchand <jmarchan@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__GFP_NOFAIL is a big hammer used to ensure that the allocation request
can never fail. This is a strong requirement and as such it also
deserves a special treatment when the system is OOM. The primary
problem here is that the allocation request might have come with some
locks held and the oom victim might be blocked on the same locks. This
is basically an OOM deadlock situation.
This patch tries to reduce the risk of such a deadlocks by giving
__GFP_NOFAIL allocations a special treatment and let them dive into
memory reserves after oom killer invocation. This should help them to
make a progress and release resources they are holding. The OOM victim
should compensate for the reserves consumption.
Signed-off-by: Michal Hocko <mhocko@suse.com>
Suggested-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use list_for_each_entry instead of list_for_each + list_entry to
simplify the code.
Signed-off-by: Geliang Tang <geliangtang@163.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
To make the intention clearer, use list_{first,last}_entry instead of
list_entry.
Signed-off-by: Geliang Tang <geliangtang@163.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 0aaa29a56e ("mm, page_alloc: reserve pageblocks for high-order
atomic allocations on demand") added an unnecessary and unused parameter
to __rmqueue. It was a parameter that was used in an earlier version of
the patch and then left behind. This patch cleans it up.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The dirty balance reserve that dirty throttling has to consider is
merely memory not available to userspace allocations. There is nothing
writeback-specific about it. Generalize the name so that it's reusable
outside of that context.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__alloc_pages_slowpath is looping over ALLOC_NO_WATERMARKS requests if
__GFP_NOFAIL is requested. This is fragile because we are basically
relying on somebody else to make the reclaim (be it the direct reclaim
or OOM killer) for us. The caller might be holding resources (e.g.
locks) which block other other reclaimers from making any progress for
example. Remove the retry loop and rely on __alloc_pages_slowpath to
invoke all allowed reclaim steps and retry logic.
We have to be careful about __GFP_NOFAIL allocations from the
PF_MEMALLOC context even though this is a very bad idea to begin with
because no progress can be gurateed at all. We shouldn't break the
__GFP_NOFAIL semantic here though. It could be argued that this is
essentially GFP_NOWAIT context which we do not support but PF_MEMALLOC
is much harder to check for existing users because they might happen
deep down the code path performed much later after setting the flag so
we cannot really rule out there is no kernel path triggering this
combination.
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__alloc_pages_high_priority doesn't do anything special other than it
calls get_page_from_freelist and loops around GFP_NOFAIL allocation
until it succeeds. It would be better if the first part was done in
__alloc_pages_slowpath where we modify the zonelist because this would
be easier to read and understand. Opencoding the function into its only
caller allows to simplify it a bit as well.
This patch doesn't introduce any functional changes.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>