This patch lands the last case which needs to be handled by the fsid
change code. Namely, this is the case where a multidisk filesystem has
already undergone at least one successful fsid change i.e all disks
have the METADATA_UUID incompat bit and power failure occurs as another
fsid change is in progress. When such an event occurs, disks could be
split in 2 groups. One of the groups will have both METADATA_UUID and
CHANGING_FSID_V2 flags set coupled with old fsid/metadata_uuid pairs.
The other group of disks will have only METADATA_UUID bit set and their
fsid will be different than the one in disks in the first group. Here
we look at the following cases:
a) A disk from the first group is scanned first, so fs_devices is
created with stale fsid/metdata_uuid. Then when a disk from the
second group is scanned it needs to first check whether there exists
such an fs_devices that has fsid_change set to true (because it was
created with a disk having the CHANGING_FSID_V2 flag), the
metadata_uuid and fsid of the fs_devices will be different (since it was
created by a disk which already has had at least 1 successful fsid change)
and finally the metadata_uuid of the fs_devices will equal that of the
currently scanned disk (because metadata_uuid never really changes).
When the correct fs_devices is found the information from the scanned
disk will replace the current one in fs_devices since the scanned disk
will have higher generation number.
b) A disk from the second group is scanned so fs_devices is created
as usual with differing fsid/metdata_uid. Then when a disk from the
first group is scanned the code detects that it has both
CHANGING_FSID_V2 and METADATA_UUID flags set and will search for
fs_devices that has differing metadata_uuid/fsid and whose
metadata_uuid is the same as that of the scanned device.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This commit continues hardening the scanning code to handle cases where
power loss could have caused disks in a multi-disk filesystem to be
in inconsistent state. Namely handle the situation that can occur when
some of the disks in multi-disk fs have completed their fsid change i.e
they have METADATA_UUID incompat flag set, have cleared the
CHANGING_FSID_V2 flag and their fsid/metadata_uuid are different. At
the same time the other half of the disks will have their
fsid/metadata_uuid unchanged and will only have CHANGING_FSID_V2 flag.
This is handled by introducing code in the scan path which:
a) Handles the case when a device with CHANGING_FSID_V2 flag is
scanned and as a result btrfs_fs_devices is created with matching
fsid/metdata_uuid. Subsequently, when a device with completed fsid
change is scanned it will detect this via the new code in find_fsid
i.e that such an fs_devices exist that fsid_change flag is set to true,
it's metadata_uuid/fsid match and the metadata_uuid of the scanned
device matches that of the fs_devices. In this case, it's important to
note that the devices which has its fsid change completed will have a
higher generation number than the device with FSID_CHANGING_V2 flag
set, so its superblock block will be used during mount. To prevent an
assertion triggering because the sb used for mounting will have
differing fsid/metadata_uuid than the ones in the fs_devices struct
also add code in device_list_add which overwrites the values in
fs_devices.
b) Alternatively we can end up with a device that completed its
fsid change be scanned first which will create the respective
btrfs_fs_devices struct with differing fsid/metadata_uuid. In this
case when a device with FSID_CHANGING_V2 flag set is scanned it will
call the newly added find_fsid_inprogress function which will return
the correct fs_devices.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In order to gracefully handle split-brain scenario during fsid change
(which are very unlikely, yet possible), two more pieces of information
will be necessary:
1. The highest generation number among all devices registered to a
particular btrfs_fs_devices
2. A boolean flag whether a given btrfs_fs_devices was created by a
device which had the FSID_CHANGING_V2 flag set.
This is a preparatory patch and just introduces the variables as well
as code which sets them, their actual use is going to happen in a later
patch.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Even though fsid change without rewrite is a very quick operation it's
still possible to experience a split-brain scenario if power loss occurs
at the most inconvenient time. This patch handles the case where power
failure occurs while the first transaction (the one setting
CHANGING_FSID_V2) flag is being persisted on disk. This can cause the
btrfs_fs_devices of this filesystem to be created by a device which:
a) has the CHANGING_FSID_V2 flag set but its fsid value is intact
b) or a device which doesn't have CHANGING_FSID_V2 flag set and its
fsid value is intact
This situation is trivially handled by the current find_fsid code since
in both cases the devices are going to be treated like ordinary devices.
Since btrfs is always mounted using the superblock of the latest
device (the one with highest generation number), meaning it will have
the CHANGING_FSID_V2 flag set, ensure it's being cleared on mount. On
the first transaction commit following mount all disks will have it
cleared.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently btrfs_fs_info structure contains a copy of the
fsid/metadata_uuid fields. Same values are also contained in the
btrfs_fs_devices structure which fs_info has a reference to. Let's
reduce duplication by removing the fields from fs_info and always refer
to the ones in fs_devices. No functional changes.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since the metadata_uuid is a new incompat feature it requires the
respective sysfs hooks. This patch adds the 'metdata_uuid' feature to
be shown if it supported by the kernel. Additionally it adds
/sys/fs/btrfs/UUID/metadata_uuid attribute which allows one to read
the current metadata_uuid.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This field is going to be used when the user wants to change the UUID
of the filesystem without having to rewrite all metadata blocks. This
field adds another level of indirection such that when the FSID is
changed what really happens is the current UUID (the one with which the
fs was created) is copied to the 'metadata_uuid' field in the superblock
as well as a new incompat flag is set METADATA_UUID. When the kernel
detects this flag is set it knows that the superblock in fact has 2
UUIDs:
1. Is the UUID which is user-visible, currently known as FSID.
2. Metadata UUID - this is the UUID which is stamped into all on-disk
datastructures belonging to this file system.
When the new incompat flag is present device scanning checks whether
both fsid/metadata_uuid of the scanned device match any of the
registered filesystems. When the flag is not set then both UUIDs are
equal and only the FSID is retained on disk, metadata_uuid is set only
in-memory during mount.
Additionally a new metadata_uuid field is also added to the fs_info
struct. It's initialised either with the FSID in case METADATA_UUID
incompat flag is not set or with the metdata_uuid of the superblock
otherwise.
This commit introduces the new fields as well as the new incompat flag
and switches all users of the fsid to the new logic.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ minor updates in comments ]
Signed-off-by: David Sterba <dsterba@suse.com>
Several functions in BTRFS are only used inside the source file they are
declared if CONFIG_BTRFS_FS_RUN_SANITY_TESTS is not defined. However if
CONFIG_BTRFS_FS_RUN_SANITY_TESTS is defined these functions are shared
with the unit tests code.
Before the introduction of the EXPORT_FOR_TESTS macro, these functions
could not be declared as static and the compiler had a harder task when
optimizing and inlining them.
As we have EXPORT_FOR_TESTS now, use it where appropriate to support the
compiler.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Depending on whether CONFIG_BTRFS_FS_RUN_SANITY_TESTS is set, some BTRFS
functions are either local to the file they are implemented in and thus
should be declared static or are called from within the test
implementation defined in a different file.
Introduce an EXPORT_FOR_TESTS macro which depending on
CONFIG_BTRFS_FS_RUN_SANITY_TESTS either adds the 'static' keyword to a
function or not.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: David Sterba <dsterba@suse.com>
Up to commit 32955c5422 ("btrfs: switch to discard_new_inode()") the
drop_on_err variable in btrfs_mkdir() was used to check whether the
inode had to be dropped via iput().
After commit 32955c5422 ("btrfs: switch to discard_new_inode()")
discard_new_inode() is called when err is set and inode is non NULL.
Therefore drop_on_err is not used anymore and thus causes a warning when
building with -Wunused-but-set-variable.
Reviewed-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: David Sterba <dsterba@suse.com>
lock_delalloc_pages should only return 2 values - 0 in case of success
and -EAGAIN if the range of pages to be locked should be shrunk due to
some of gone. Manual inspections confirms that this is indeed the case
since __process_pages_contig is where lock_delalloc_pages gets its
return value. The latter always returns 0 or -EAGAIN so the invariant
holds. No functional changes.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
All callers of this function pass BTRFS_MAX_EXTENT_SIZE (128M) so let's
reduce the argument count and make that a local variable. No functional
changes.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It's unnecessary to check map->stripes[i].dev for NULL given its value
is already set and dereferenced above the the check. No functional
changes.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
As of now only user requested replace cancel can cancel the
replace-scrub so no need to log the error.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When we successfully cancel the device replace, its scrub worker returns
-ECANCELED, which is then passed to btrfs_dev_replace_finishing.
It cleans up based on the returned status and propagates the same
-ECANCELED back the parent function. As of now only user can cancel the
replace-scrub, so its ok to silence the warning here.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We recast the replace return status
BTRFS_IOCTL_DEV_REPLACE_RESULT_SCRUB_INPROGRESS to 0, to indicate no
error.
And since BTRFS_IOCTL_DEV_REPLACE_RESULT_NO_ERROR should also return 0,
which is also declared as 0, so we just return. Instead add it to the if
statement so that there is enough clarity while reading the code.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When the replace state is in the suspended state, btrfs_scrub_cancel()
should fail with -ENOTCONN as there is no scrub running. As a safety
catch check if btrfs_scrub_cancel() returns -ENOTCONN and assert if it
doesn't.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The device-replace needs to check the result code of the scrub workers
in btrfs_dev_replace_cancel and distinguish if successful cancel
operation and when the there was no operation running.
If btrfs_scrub_cancel() fails, return
BTRFS_IOCTL_DEV_REPLACE_RESULT_NOT_STARTED so that user can try
to cancel the replace again.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ update changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
The device replace cancel thread can race with the replace start thread
and if fs_info::scrubs_running is not yet set, btrfs_scrub_cancel() will
fail to stop the scrub thread.
The scrub thread continues with the scrub for replace which then will
try to write to the target device and which is already freed by the
cancel thread.
scrub_setup_ctx() warns as tgtdev is NULL.
struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
{
...
if (is_dev_replace) {
WARN_ON(!fs_info->dev_replace.tgtdev); <===
sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
sctx->flush_all_writes = false;
}
[ 6724.497655] BTRFS info (device sdb): dev_replace from /dev/sdb (devid 1) to /dev/sdc started
[ 6753.945017] BTRFS info (device sdb): dev_replace from /dev/sdb (devid 1) to /dev/sdc canceled
[ 6852.426700] WARNING: CPU: 0 PID: 4494 at fs/btrfs/scrub.c:622 scrub_setup_ctx.isra.19+0x220/0x230 [btrfs]
...
[ 6852.428928] RIP: 0010:scrub_setup_ctx.isra.19+0x220/0x230 [btrfs]
...
[ 6852.432970] Call Trace:
[ 6852.433202] btrfs_scrub_dev+0x19b/0x5c0 [btrfs]
[ 6852.433471] btrfs_dev_replace_start+0x48c/0x6a0 [btrfs]
[ 6852.433800] btrfs_dev_replace_by_ioctl+0x3a/0x60 [btrfs]
[ 6852.434097] btrfs_ioctl+0x2476/0x2d20 [btrfs]
[ 6852.434365] ? do_sigaction+0x7d/0x1e0
[ 6852.434623] do_vfs_ioctl+0xa9/0x6c0
[ 6852.434865] ? syscall_trace_enter+0x1c8/0x310
[ 6852.435124] ? syscall_trace_enter+0x1c8/0x310
[ 6852.435387] ksys_ioctl+0x60/0x90
[ 6852.435663] __x64_sys_ioctl+0x16/0x20
[ 6852.435907] do_syscall_64+0x50/0x180
[ 6852.436150] entry_SYSCALL_64_after_hwframe+0x49/0xbe
Further, as the replace thread enters scrub_write_page_to_dev_replace()
without the target device it panics:
static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
struct scrub_page *spage)
{
...
bio_set_dev(bio, sbio->dev->bdev); <======
[ 6929.715145] BUG: unable to handle kernel NULL pointer dereference at 00000000000000a0
..
[ 6929.717106] Workqueue: btrfs-scrub btrfs_scrub_helper [btrfs]
[ 6929.717420] RIP: 0010:scrub_write_page_to_dev_replace+0xb4/0x260
[btrfs]
..
[ 6929.721430] Call Trace:
[ 6929.721663] scrub_write_block_to_dev_replace+0x3f/0x60 [btrfs]
[ 6929.721975] scrub_bio_end_io_worker+0x1af/0x490 [btrfs]
[ 6929.722277] normal_work_helper+0xf0/0x4c0 [btrfs]
[ 6929.722552] process_one_work+0x1f4/0x520
[ 6929.722805] ? process_one_work+0x16e/0x520
[ 6929.723063] worker_thread+0x46/0x3d0
[ 6929.723313] kthread+0xf8/0x130
[ 6929.723544] ? process_one_work+0x520/0x520
[ 6929.723800] ? kthread_delayed_work_timer_fn+0x80/0x80
[ 6929.724081] ret_from_fork+0x3a/0x50
Fix this by letting the btrfs_dev_replace_finishing() to do the job of
cleaning after the cancel, including freeing of the target device.
btrfs_dev_replace_finishing() is called when btrfs_scub_dev() returns
along with the scrub return status.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In a secnario where balance and replace co-exists as below,
- start balance
- pause balance
- start replace
- reboot
and when system restarts, balance resumes first. Then the replace is
attempted to restart but will fail as the EXCL_OP lock is already held
by the balance. If so place the replace state back to
BTRFS_IOCTL_DEV_REPLACE_STATE_SUSPENDED state.
Fixes: 010a47bde9 ("btrfs: add proper safety check before resuming dev-replace")
CC: stable@vger.kernel.org # 4.18+
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
At the time of forced unmount we place the running replace to
BTRFS_IOCTL_DEV_REPLACE_STATE_SUSPENDED state, so when the system comes
back and expect the target device is missing.
Then let the replace state continue to be in
BTRFS_IOCTL_DEV_REPLACE_STATE_SUSPENDED state instead of
BTRFS_IOCTL_DEV_REPLACE_STATE_STARTED as there isn't any matching scrub
running as part of replace.
Fixes: e93c89c1aa ("Btrfs: add new sources for device replace code")
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There isn't any other consumer other than in its own file dev-replace.c.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It's not that impossible to imagine that a device OR a btrfs image is
copied just by using the dd or the cp command. Which in case both the
copies of the btrfs will have the same fsid. If on the system with
automount enabled, the copied FS gets scanned.
We have a known bug in btrfs, that we let the device path be changed
after the device has been mounted. So using this loop hole the new
copied device would appears as if its mounted immediately after it's
been copied.
For example:
Initially.. /dev/mmcblk0p4 is mounted as /
$ lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
mmcblk0 179:0 0 29.2G 0 disk
|-mmcblk0p4 179:4 0 4G 0 part /
|-mmcblk0p2 179:2 0 500M 0 part /boot
|-mmcblk0p3 179:3 0 256M 0 part [SWAP]
`-mmcblk0p1 179:1 0 256M 0 part /boot/efi
$ btrfs fi show
Label: none uuid: 07892354-ddaa-4443-90ea-f76a06accaba
Total devices 1 FS bytes used 1.40GiB
devid 1 size 4.00GiB used 3.00GiB path /dev/mmcblk0p4
Copy mmcblk0 to sda
$ dd if=/dev/mmcblk0 of=/dev/sda
And immediately after the copy completes the change in the device
superblock is notified which the automount scans using btrfs device scan
and the new device sda becomes the mounted root device.
$ lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 1 14.9G 0 disk
|-sda4 8:4 1 4G 0 part /
|-sda2 8:2 1 500M 0 part
|-sda3 8:3 1 256M 0 part
`-sda1 8:1 1 256M 0 part
mmcblk0 179:0 0 29.2G 0 disk
|-mmcblk0p4 179:4 0 4G 0 part
|-mmcblk0p2 179:2 0 500M 0 part /boot
|-mmcblk0p3 179:3 0 256M 0 part [SWAP]
`-mmcblk0p1 179:1 0 256M 0 part /boot/efi
$ btrfs fi show /
Label: none uuid: 07892354-ddaa-4443-90ea-f76a06accaba
Total devices 1 FS bytes used 1.40GiB
devid 1 size 4.00GiB used 3.00GiB path /dev/sda4
The bug is quite nasty that you can't either unmount /dev/sda4 or
/dev/mmcblk0p4. And the problem does not get solved until you take sda
out of the system on to another system to change its fsid using the
'btrfstune -u' command.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Instead of hardcoding exceptions for RAID5 and RAID6 in the code, use an
nparity field in raid_attr.
Signed-off-by: Hans van Kranenburg <hans.van.kranenburg@mendix.com>
Signed-off-by: David Sterba <dsterba@suse.com>
RAID5 and RAID6 profile store one copy of the data, not 2 or 3. These
values are not yet used anywhere so there's no change.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Hans van Kranenburg <hans.van.kranenburg@mendix.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Commit 92e222df7b "btrfs: alloc_chunk: fix DUP stripe size handling"
fixed calculating the stripe_size for a new DUP chunk.
However, the same calculation reappears a bit later, and that one was
not changed yet. The resulting bug that is exposed is that the newly
allocated device extents ('stripes') can have a few MiB overlap with the
next thing stored after them, which is another device extent or the end
of the disk.
The scenario in which this can happen is:
* The block device for the filesystem is less than 10GiB in size.
* The amount of contiguous free unallocated disk space chosen to use for
chunk allocation is 20% of the total device size, or a few MiB more or
less.
An example:
- The filesystem device is 7880MiB (max_chunk_size gets set to 788MiB)
- There's 1578MiB unallocated raw disk space left in one contiguous
piece.
In this case stripe_size is first calculated as 789MiB, (half of
1578MiB).
Since 789MiB (stripe_size * data_stripes) > 788MiB (max_chunk_size), we
enter the if block. Now stripe_size value is immediately overwritten
while calculating an adjusted value based on max_chunk_size, which ends
up as 788MiB.
Next, the value is rounded up to a 16MiB boundary, 800MiB, which is
actually more than the value we had before. However, the last comparison
fails to detect this, because it's comparing the value with the total
amount of free space, which is about twice the size of stripe_size.
In the example above, this means that the resulting raw disk space being
allocated is 1600MiB, while only a gap of 1578MiB has been found. The
second device extent object for this DUP chunk will overlap for 22MiB
with whatever comes next.
The underlying problem here is that the stripe_size is reused all the
time for different things. So, when entering the code in the if block,
stripe_size is immediately overwritten with something else. If later we
decide we want to have the previous value back, then the logic to
compute it was copy pasted in again.
With this change, the value in stripe_size is not unnecessarily
destroyed, so the duplicated calculation is not needed any more.
Signed-off-by: Hans van Kranenburg <hans.van.kranenburg@mendix.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The variable num_bytes is really a way too generic name for a variable
in this function. There are a dozen other variables that hold a number
of bytes as value.
Give it a name that actually describes what it does, which is holding
the size of the chunk that we're allocating.
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: Hans van Kranenburg <hans.van.kranenburg@mendix.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The variable num_bytes is used to store the chunk length of the chunk
that we're allocating. Do not reuse it for something really different in
the same function.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Hans van Kranenburg <hans.van.kranenburg@mendix.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Snapshot is expected to be fast. But if there are writers steadily
creating dirty pages in our subvolume, the snapshot may take a very long
time to complete. To fix the problem, we use tagged writepage for
snapshot flusher as we do in the generic write_cache_pages(), so we can
omit pages dirtied after the snapshot command.
This does not change the semantics regarding which data get to the
snapshot, if there are pages being dirtied during the snapshotting
operation. There's a sync called before snapshot is taken in old/new
case, any IO in flight just after that may be in the snapshot but this
depends on other system effects that might still sync the IO.
We do a simple snapshot speed test on a Intel D-1531 box:
fio --ioengine=libaio --iodepth=32 --bs=4k --rw=write --size=64G
--direct=0 --thread=1 --numjobs=1 --time_based --runtime=120
--filename=/mnt/sub/testfile --name=job1 --group_reporting & sleep 5;
time btrfs sub snap -r /mnt/sub /mnt/snap; killall fio
original: 1m58sec
patched: 6.54sec
This is the best case for this patch since for a sequential write case,
we omit nearly all pages dirtied after the snapshot command.
For a multi writers, random write test:
fio --ioengine=libaio --iodepth=32 --bs=4k --rw=randwrite --size=64G
--direct=0 --thread=1 --numjobs=4 --time_based --runtime=120
--filename=/mnt/sub/testfile --name=job1 --group_reporting & sleep 5;
time btrfs sub snap -r /mnt/sub /mnt/snap; killall fio
original: 15.83sec
patched: 10.35sec
The improvement is smaller compared to the sequential write case,
since we omit only half of the pages dirtied after snapshot command.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Ethan Lien <ethanlien@synology.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This parameter was never used, yet was part of the interface of the
function ever since its introduction as extent_io_ops::writepage_end_io_hook
in e6dcd2dc9c ("Btrfs: New data=ordered implementation"). Now that
NULL is passed everywhere as a value for this parameter let's remove it
for good. No functional changes.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The only remaining use of the 'epd' argument in writepage_delalloc is
to reference the extent_io_tree which was set in extent_writepages. Since
it is guaranteed that page->mapping of any page passed to
writepage_delalloc (and __extent_writepage as the sole caller) to be
equal to that passed in extent_writepages we can directly get the
io_tree via the already passed inode (which is also taken from
page->mapping->host). No functional changes.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If epd::extent_locked is set then writepage_delalloc terminates. Make
this a bit more apparent in the caller by simply bubbling the check up.
This enables to remove epd as an argument to writepage_delalloc in a
future patch. No functional change.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Before btrfs_map_bio submits all stripe bios it does a number of checks
to ensure the device for every stripe is present. However, it doesn't do
a DEV_STATE_MISSING check, instead this is relegated to the lower level
btrfs_schedule_bio (in the async submission case, sync submission
doesn't check DEV_STATE_MISSING at all). Additionally
btrfs_schedule_bios does the duplicate device->bdev check which has
already been performed in btrfs_map_bio.
This patch moves the DEV_STATE_MISSING check in btrfs_map_bio and
removes the duplicate device->bdev check. Doing so ensures that no bio
cloning/submission happens for both async/sync requests in the face of
missing device. This makes the async io submission path slightly shorter
in terms of instruction count. No functional changes.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
dev_replace::replace_state has been set to
BTRFS_DEV_REPLACE_ITEM_STATE_NEVER_STARTED (0) in the same function,
So delete the line which sets replace_state = 0;
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The io_err field of struct btrfs_log_ctx is no longer used after the
recent simplification of the fast fsync path, where we now wait for
ordered extents to complete before logging the inode. We did this in
commit b5e6c3e170 ("btrfs: always wait on ordered extents at fsync
time") and commit a2120a473a ("btrfs: clean up the left over
logged_list usage") removed its last use.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We currently are in a loop finding each range (corresponding to a btree
node/leaf) in a log root's extent io tree and then clean it up. This is a
waste of time since we are traversing the extent io tree's rb_tree more
times then needed (one for a range lookup and another for cleaning it up)
without any good reason.
We free the log trees when we are in the critical section of a transaction
commit (the transaction state is set to TRANS_STATE_COMMIT_DOING), so it's
of great convenience to do everything as fast as possible in order to
reduce the time we block other tasks from starting a new transaction.
So fix this by traversing the extent io tree once and cleaning up all its
records in one go while traversing it.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The loop construct in free_extent_buffer was added in
242e18c7c1 ("Btrfs: reduce lock contention on extent buffer locks")
as means of reducing the times the eb lock is taken, the non-last ref
count is decremented and lock is released. As the special handling
of UNMAPPED extent buffers was removed now there is only one decrement
op which is happening for EXTENT_BUFFER_UNMAPPED case.
This commit modifies the loop condition so that in case of UNMAPPED
buffers the eb's lock is taken only if we are 100% sure the eb is going
to be freed by the current executor of the code. Additionally, remove
superfluous ref count ops in btrfs test.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that the whole of btrfs code has been audited for eb reference count
management it's time to remove the hunk in free_extent_buffer that
essentially considered the condition
"eb->ref == 2 && EXTENT_BUFFER_DUMMY"
to equal "eb->ref = 1". Also remove the last location
which takes an extra reference count in alloc_test_extent_buffer.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In qgroup_rescan_leaf a copy is made of the target leaf by calling
btrfs_clone_extent_buffer. The latter allocates a new buffer and
attaches a new set of pages and copies the content of the source buffer.
The new scratch buffer is only used to iterate it's items, it's not
published anywhere and cannot be accessed by a third party.
Hence, it's not necessary to perform any locking on it whatsoever.
Furthermore, remove the extra extent_buffer_get call since the new
buffer is always allocated with a reference count of 1 which is
sufficient here. No functional changes.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When the 2 comparison trees roots are initialised they are private to
the function and already have reference counts of 1 each. There is no
need to further increment the reference count since the cloned buffers
are already accessed via struct btrfs_path. Eventually the 2 paths used
for comparison are going to be released, effectively disposing of the
cloned buffers.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When a rewound buffer is created it already has a ref count of 1 and the
dummy flag set. Then another ref is taken bumping the count to 2.
Finally when this buffer is released from btrfs_release_path the extra
reference is decremented by the special handling code in
free_extent_buffer.
However, this special code is in fact redundant sinca ref count of 1 is
still correct since the buffer is only accessed via btrfs_path struct.
This paves the way forward of removing the special handling in
free_extent_buffer.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
get_old_root used used only by btrfs_search_old_slot to initialise the
path structure. The old root is always a cloned buffer (either via alloc
dummy or via btrfs_clone_extent_buffer) and its reference count is 2: 1
from allocation, 1 from extent_buffer_get call in get_old_root.
This latter explicit ref count acquire operation is in fact unnecessary
since the semantic is such that the newly allocated buffer is handed
over to the btrfs_path for lifetime management. Considering this just
remove the extra extent_buffer_get in get_old_root.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In iterate_inode_exrefs the eb is cloned via btrfs_clone_extent_buffer
which creates a private extent buffer with the dummy flag set and ref
count of 1. Then this buffer is locked for reading and its ref count is
incremented by 1. Finally it's fed to the passed iterate_irefs_t
function. The actual iterate call back is inode_to_path (coming from
paths_from_inode) which feeds the eb to btrfs_ref_to_path. In this final
function the passed eb is only read by first assigning it to the local
eb variable. This variable is only modified in the case another eb was
referenced from the passed path that is eb != eb_in check triggers.
Considering this there is no point in locking the cloned eb in
iterate_inode_refs since it's never being modified and is not published
anywhere. Furthermore the cloned eb is completely fine having its ref
count be 1.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In iterate_inode_refs the eb is cloned via btrfs_clone_extent_buffer
which creates a private extent buffer with the dummy flag set and ref
count of 1. Then this buffer is locked for reading and its ref count is
incremented by 1. Finally it's fed to the passed iterate_irefs_t
function. The actual iterate call back is inode_to_path (coming from
paths_from_inode) which feeds the eb to btrfs_ref_to_path. In this final
function the passed eb is only read by first assigning it to the local
eb variable. This variable is only modified in the case another eb was
referenced from the passed path that is eb != eb_in check triggers.
Considering this there is no point in locking the cloned eb in
iterate_inode_refs since it's never being modified and is not published
anywhere. Furthermore the cloned eb is completely fine having its ref
count be 1.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In extent-io self test, we need 2 ordered extents at its maximum size to
do the test.
Instead of using the intermediate numbers, use BTRFS_MAX_EXTENT_SIZE for
@max_bytes, and twice @max_bytes for @total_dirty. This should explain
why we need all these magic numbers and prevent people to modify them by
accident.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Btrfs has not allowed swap files since commit 35054394c4 ("Btrfs: stop
providing a bmap operation to avoid swapfile corruptions"). However, now
that the proper restrictions are in place, Btrfs can support swap files
through the swap file a_ops, similar to iomap in commit 67482129cd
("iomap: add a swapfile activation function").
For Btrfs, activation needs to make sure that the file can be used as a
swap file, which currently means that it must be fully allocated as
NOCOW with no compression on one device. It must also do the proper
tracking so that ioctls will not interfere with the swap file.
Deactivation clears this tracking.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The Btrfs swap code is going to need it, so give it a btrfs_ prefix and
make it non-static.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
A later patch will implement swap file support for Btrfs, but before we
do that, we need to make sure that the various Btrfs ioctls cannot
change a swap file.
When a swap file is active, we must make sure that the extents of the
file are not moved and that they don't become shared. That means that
the following are not safe:
- chattr +c (enable compression)
- reflink
- dedupe
- snapshot
- defrag
Don't allow those to happen on an active swap file.
Additionally, balance, resize, device remove, and device replace are
also unsafe if they affect an active swapfile. Add a red-black tree of
block groups and devices which contain an active swapfile. Relocation
checks each block group against this tree and skips it or errors out for
balance or resize, respectively. Device remove and device replace check
the tree for the device they will operate on.
Note that we don't have to worry about chattr -C (disable nocow), which
we ignore for non-empty files, because an active swapfile must be
non-empty and can't be truncated. We also don't have to worry about
autodefrag because it's only done on COW files. Truncate and fallocate
are already taken care of by the generic code. Device add doesn't do
relocation so it's not an issue, either.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is the counterpart to merge_extent_hook, similarly, it's used only
for data/freespace inodes so let's remove it, rename it and call it
directly where necessary. No functional changes.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This callback is used only for data and free space inodes. Such inodes
are guaranteed to have their extent_io_tree::private_data set to the
inode struct. Exploit this fact to directly call the function. Also give
it a more descriptive name. No functional changes.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>