836 lines
20 KiB
C
836 lines
20 KiB
C
/*
|
|
* acpi-cpufreq.c - ACPI Processor P-States Driver ($Revision: 1.4 $)
|
|
*
|
|
* Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
|
|
* Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
|
|
* Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
|
|
* Copyright (C) 2006 Denis Sadykov <denis.m.sadykov@intel.com>
|
|
*
|
|
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or (at
|
|
* your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
|
|
*
|
|
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/cpufreq.h>
|
|
#include <linux/compiler.h>
|
|
#include <linux/dmi.h>
|
|
|
|
#include <linux/acpi.h>
|
|
#include <acpi/processor.h>
|
|
|
|
#include <asm/io.h>
|
|
#include <asm/msr.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/cpufeature.h>
|
|
#include <asm/delay.h>
|
|
#include <asm/uaccess.h>
|
|
|
|
#define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, "acpi-cpufreq", msg)
|
|
|
|
MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
|
|
MODULE_DESCRIPTION("ACPI Processor P-States Driver");
|
|
MODULE_LICENSE("GPL");
|
|
|
|
enum {
|
|
UNDEFINED_CAPABLE = 0,
|
|
SYSTEM_INTEL_MSR_CAPABLE,
|
|
SYSTEM_IO_CAPABLE,
|
|
};
|
|
|
|
#define INTEL_MSR_RANGE (0xffff)
|
|
#define CPUID_6_ECX_APERFMPERF_CAPABILITY (0x1)
|
|
|
|
struct acpi_cpufreq_data {
|
|
struct acpi_processor_performance *acpi_data;
|
|
struct cpufreq_frequency_table *freq_table;
|
|
unsigned int max_freq;
|
|
unsigned int resume;
|
|
unsigned int cpu_feature;
|
|
};
|
|
|
|
static struct acpi_cpufreq_data *drv_data[NR_CPUS];
|
|
static struct acpi_processor_performance *acpi_perf_data[NR_CPUS];
|
|
|
|
static struct cpufreq_driver acpi_cpufreq_driver;
|
|
|
|
static unsigned int acpi_pstate_strict;
|
|
|
|
static int check_est_cpu(unsigned int cpuid)
|
|
{
|
|
struct cpuinfo_x86 *cpu = &cpu_data[cpuid];
|
|
|
|
if (cpu->x86_vendor != X86_VENDOR_INTEL ||
|
|
!cpu_has(cpu, X86_FEATURE_EST))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data)
|
|
{
|
|
struct acpi_processor_performance *perf;
|
|
int i;
|
|
|
|
perf = data->acpi_data;
|
|
|
|
for (i = 0; i < perf->state_count; i++) {
|
|
if (value == perf->states[i].status)
|
|
return data->freq_table[i].frequency;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data)
|
|
{
|
|
int i;
|
|
struct acpi_processor_performance *perf;
|
|
|
|
msr &= INTEL_MSR_RANGE;
|
|
perf = data->acpi_data;
|
|
|
|
for (i = 0; data->freq_table[i].frequency != CPUFREQ_TABLE_END; i++) {
|
|
if (msr == perf->states[data->freq_table[i].index].status)
|
|
return data->freq_table[i].frequency;
|
|
}
|
|
return data->freq_table[0].frequency;
|
|
}
|
|
|
|
static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data)
|
|
{
|
|
switch (data->cpu_feature) {
|
|
case SYSTEM_INTEL_MSR_CAPABLE:
|
|
return extract_msr(val, data);
|
|
case SYSTEM_IO_CAPABLE:
|
|
return extract_io(val, data);
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static void wrport(u16 port, u8 bit_width, u32 value)
|
|
{
|
|
if (bit_width <= 8) {
|
|
outb(value, port);
|
|
} else if (bit_width <= 16) {
|
|
outw(value, port);
|
|
} else if (bit_width <= 32) {
|
|
outl(value, port);
|
|
}
|
|
}
|
|
|
|
static void rdport(u16 port, u8 bit_width, u32 * ret)
|
|
{
|
|
*ret = 0;
|
|
if (bit_width <= 8) {
|
|
*ret = inb(port);
|
|
} else if (bit_width <= 16) {
|
|
*ret = inw(port);
|
|
} else if (bit_width <= 32) {
|
|
*ret = inl(port);
|
|
}
|
|
}
|
|
|
|
struct msr_addr {
|
|
u32 reg;
|
|
};
|
|
|
|
struct io_addr {
|
|
u16 port;
|
|
u8 bit_width;
|
|
};
|
|
|
|
typedef union {
|
|
struct msr_addr msr;
|
|
struct io_addr io;
|
|
} drv_addr_union;
|
|
|
|
struct drv_cmd {
|
|
unsigned int type;
|
|
cpumask_t mask;
|
|
drv_addr_union addr;
|
|
u32 val;
|
|
};
|
|
|
|
static void do_drv_read(struct drv_cmd *cmd)
|
|
{
|
|
u32 h;
|
|
|
|
switch (cmd->type) {
|
|
case SYSTEM_INTEL_MSR_CAPABLE:
|
|
rdmsr(cmd->addr.msr.reg, cmd->val, h);
|
|
break;
|
|
case SYSTEM_IO_CAPABLE:
|
|
rdport(cmd->addr.io.port, cmd->addr.io.bit_width, &cmd->val);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void do_drv_write(struct drv_cmd *cmd)
|
|
{
|
|
u32 h = 0;
|
|
|
|
switch (cmd->type) {
|
|
case SYSTEM_INTEL_MSR_CAPABLE:
|
|
wrmsr(cmd->addr.msr.reg, cmd->val, h);
|
|
break;
|
|
case SYSTEM_IO_CAPABLE:
|
|
wrport(cmd->addr.io.port, cmd->addr.io.bit_width, cmd->val);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static inline void drv_read(struct drv_cmd *cmd)
|
|
{
|
|
cpumask_t saved_mask = current->cpus_allowed;
|
|
cmd->val = 0;
|
|
|
|
set_cpus_allowed(current, cmd->mask);
|
|
do_drv_read(cmd);
|
|
set_cpus_allowed(current, saved_mask);
|
|
|
|
}
|
|
|
|
static void drv_write(struct drv_cmd *cmd)
|
|
{
|
|
cpumask_t saved_mask = current->cpus_allowed;
|
|
unsigned int i;
|
|
|
|
for_each_cpu_mask(i, cmd->mask) {
|
|
set_cpus_allowed(current, cpumask_of_cpu(i));
|
|
do_drv_write(cmd);
|
|
}
|
|
|
|
set_cpus_allowed(current, saved_mask);
|
|
return;
|
|
}
|
|
|
|
static u32 get_cur_val(cpumask_t mask)
|
|
{
|
|
struct acpi_processor_performance *perf;
|
|
struct drv_cmd cmd;
|
|
|
|
if (unlikely(cpus_empty(mask)))
|
|
return 0;
|
|
|
|
switch (drv_data[first_cpu(mask)]->cpu_feature) {
|
|
case SYSTEM_INTEL_MSR_CAPABLE:
|
|
cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
|
|
cmd.addr.msr.reg = MSR_IA32_PERF_STATUS;
|
|
break;
|
|
case SYSTEM_IO_CAPABLE:
|
|
cmd.type = SYSTEM_IO_CAPABLE;
|
|
perf = drv_data[first_cpu(mask)]->acpi_data;
|
|
cmd.addr.io.port = perf->control_register.address;
|
|
cmd.addr.io.bit_width = perf->control_register.bit_width;
|
|
break;
|
|
default:
|
|
return 0;
|
|
}
|
|
|
|
cmd.mask = mask;
|
|
|
|
drv_read(&cmd);
|
|
|
|
dprintk("get_cur_val = %u\n", cmd.val);
|
|
|
|
return cmd.val;
|
|
}
|
|
|
|
/*
|
|
* Return the measured active (C0) frequency on this CPU since last call
|
|
* to this function.
|
|
* Input: cpu number
|
|
* Return: Average CPU frequency in terms of max frequency (zero on error)
|
|
*
|
|
* We use IA32_MPERF and IA32_APERF MSRs to get the measured performance
|
|
* over a period of time, while CPU is in C0 state.
|
|
* IA32_MPERF counts at the rate of max advertised frequency
|
|
* IA32_APERF counts at the rate of actual CPU frequency
|
|
* Only IA32_APERF/IA32_MPERF ratio is architecturally defined and
|
|
* no meaning should be associated with absolute values of these MSRs.
|
|
*/
|
|
static unsigned int get_measured_perf(unsigned int cpu)
|
|
{
|
|
union {
|
|
struct {
|
|
u32 lo;
|
|
u32 hi;
|
|
} split;
|
|
u64 whole;
|
|
} aperf_cur, mperf_cur;
|
|
|
|
cpumask_t saved_mask;
|
|
unsigned int perf_percent;
|
|
unsigned int retval;
|
|
|
|
saved_mask = current->cpus_allowed;
|
|
set_cpus_allowed(current, cpumask_of_cpu(cpu));
|
|
if (get_cpu() != cpu) {
|
|
/* We were not able to run on requested processor */
|
|
put_cpu();
|
|
return 0;
|
|
}
|
|
|
|
rdmsr(MSR_IA32_APERF, aperf_cur.split.lo, aperf_cur.split.hi);
|
|
rdmsr(MSR_IA32_MPERF, mperf_cur.split.lo, mperf_cur.split.hi);
|
|
|
|
wrmsr(MSR_IA32_APERF, 0,0);
|
|
wrmsr(MSR_IA32_MPERF, 0,0);
|
|
|
|
#ifdef __i386__
|
|
/*
|
|
* We dont want to do 64 bit divide with 32 bit kernel
|
|
* Get an approximate value. Return failure in case we cannot get
|
|
* an approximate value.
|
|
*/
|
|
if (unlikely(aperf_cur.split.hi || mperf_cur.split.hi)) {
|
|
int shift_count;
|
|
u32 h;
|
|
|
|
h = max_t(u32, aperf_cur.split.hi, mperf_cur.split.hi);
|
|
shift_count = fls(h);
|
|
|
|
aperf_cur.whole >>= shift_count;
|
|
mperf_cur.whole >>= shift_count;
|
|
}
|
|
|
|
if (((unsigned long)(-1) / 100) < aperf_cur.split.lo) {
|
|
int shift_count = 7;
|
|
aperf_cur.split.lo >>= shift_count;
|
|
mperf_cur.split.lo >>= shift_count;
|
|
}
|
|
|
|
if (aperf_cur.split.lo && mperf_cur.split.lo) {
|
|
perf_percent = (aperf_cur.split.lo * 100) / mperf_cur.split.lo;
|
|
} else {
|
|
perf_percent = 0;
|
|
}
|
|
|
|
#else
|
|
if (unlikely(((unsigned long)(-1) / 100) < aperf_cur.whole)) {
|
|
int shift_count = 7;
|
|
aperf_cur.whole >>= shift_count;
|
|
mperf_cur.whole >>= shift_count;
|
|
}
|
|
|
|
if (aperf_cur.whole && mperf_cur.whole) {
|
|
perf_percent = (aperf_cur.whole * 100) / mperf_cur.whole;
|
|
} else {
|
|
perf_percent = 0;
|
|
}
|
|
|
|
#endif
|
|
|
|
retval = drv_data[cpu]->max_freq * perf_percent / 100;
|
|
|
|
put_cpu();
|
|
set_cpus_allowed(current, saved_mask);
|
|
|
|
dprintk("cpu %d: performance percent %d\n", cpu, perf_percent);
|
|
return retval;
|
|
}
|
|
|
|
static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
|
|
{
|
|
struct acpi_cpufreq_data *data = drv_data[cpu];
|
|
unsigned int freq;
|
|
|
|
dprintk("get_cur_freq_on_cpu (%d)\n", cpu);
|
|
|
|
if (unlikely(data == NULL ||
|
|
data->acpi_data == NULL || data->freq_table == NULL)) {
|
|
return 0;
|
|
}
|
|
|
|
freq = extract_freq(get_cur_val(cpumask_of_cpu(cpu)), data);
|
|
dprintk("cur freq = %u\n", freq);
|
|
|
|
return freq;
|
|
}
|
|
|
|
static unsigned int check_freqs(cpumask_t mask, unsigned int freq,
|
|
struct acpi_cpufreq_data *data)
|
|
{
|
|
unsigned int cur_freq;
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < 100; i++) {
|
|
cur_freq = extract_freq(get_cur_val(mask), data);
|
|
if (cur_freq == freq)
|
|
return 1;
|
|
udelay(10);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int acpi_cpufreq_target(struct cpufreq_policy *policy,
|
|
unsigned int target_freq, unsigned int relation)
|
|
{
|
|
struct acpi_cpufreq_data *data = drv_data[policy->cpu];
|
|
struct acpi_processor_performance *perf;
|
|
struct cpufreq_freqs freqs;
|
|
cpumask_t online_policy_cpus;
|
|
struct drv_cmd cmd;
|
|
unsigned int msr;
|
|
unsigned int next_state = 0;
|
|
unsigned int next_perf_state = 0;
|
|
unsigned int i;
|
|
int result = 0;
|
|
|
|
dprintk("acpi_cpufreq_target %d (%d)\n", target_freq, policy->cpu);
|
|
|
|
if (unlikely(data == NULL ||
|
|
data->acpi_data == NULL || data->freq_table == NULL)) {
|
|
return -ENODEV;
|
|
}
|
|
|
|
perf = data->acpi_data;
|
|
result = cpufreq_frequency_table_target(policy,
|
|
data->freq_table,
|
|
target_freq,
|
|
relation, &next_state);
|
|
if (unlikely(result))
|
|
return -ENODEV;
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
/* cpufreq holds the hotplug lock, so we are safe from here on */
|
|
cpus_and(online_policy_cpus, cpu_online_map, policy->cpus);
|
|
#else
|
|
online_policy_cpus = policy->cpus;
|
|
#endif
|
|
|
|
next_perf_state = data->freq_table[next_state].index;
|
|
if (perf->state == next_perf_state) {
|
|
if (unlikely(data->resume)) {
|
|
dprintk("Called after resume, resetting to P%d\n",
|
|
next_perf_state);
|
|
data->resume = 0;
|
|
} else {
|
|
dprintk("Already at target state (P%d)\n",
|
|
next_perf_state);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
switch (data->cpu_feature) {
|
|
case SYSTEM_INTEL_MSR_CAPABLE:
|
|
cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
|
|
cmd.addr.msr.reg = MSR_IA32_PERF_CTL;
|
|
msr =
|
|
(u32) perf->states[next_perf_state].
|
|
control & INTEL_MSR_RANGE;
|
|
cmd.val = (cmd.val & ~INTEL_MSR_RANGE) | msr;
|
|
break;
|
|
case SYSTEM_IO_CAPABLE:
|
|
cmd.type = SYSTEM_IO_CAPABLE;
|
|
cmd.addr.io.port = perf->control_register.address;
|
|
cmd.addr.io.bit_width = perf->control_register.bit_width;
|
|
cmd.val = (u32) perf->states[next_perf_state].control;
|
|
break;
|
|
default:
|
|
return -ENODEV;
|
|
}
|
|
|
|
cpus_clear(cmd.mask);
|
|
|
|
if (policy->shared_type != CPUFREQ_SHARED_TYPE_ANY)
|
|
cmd.mask = online_policy_cpus;
|
|
else
|
|
cpu_set(policy->cpu, cmd.mask);
|
|
|
|
freqs.old = data->freq_table[perf->state].frequency;
|
|
freqs.new = data->freq_table[next_perf_state].frequency;
|
|
for_each_cpu_mask(i, cmd.mask) {
|
|
freqs.cpu = i;
|
|
cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
|
|
}
|
|
|
|
drv_write(&cmd);
|
|
|
|
if (acpi_pstate_strict) {
|
|
if (!check_freqs(cmd.mask, freqs.new, data)) {
|
|
dprintk("acpi_cpufreq_target failed (%d)\n",
|
|
policy->cpu);
|
|
return -EAGAIN;
|
|
}
|
|
}
|
|
|
|
for_each_cpu_mask(i, cmd.mask) {
|
|
freqs.cpu = i;
|
|
cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
|
|
}
|
|
perf->state = next_perf_state;
|
|
|
|
return result;
|
|
}
|
|
|
|
static int acpi_cpufreq_verify(struct cpufreq_policy *policy)
|
|
{
|
|
struct acpi_cpufreq_data *data = drv_data[policy->cpu];
|
|
|
|
dprintk("acpi_cpufreq_verify\n");
|
|
|
|
return cpufreq_frequency_table_verify(policy, data->freq_table);
|
|
}
|
|
|
|
static unsigned long
|
|
acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
|
|
{
|
|
struct acpi_processor_performance *perf = data->acpi_data;
|
|
|
|
if (cpu_khz) {
|
|
/* search the closest match to cpu_khz */
|
|
unsigned int i;
|
|
unsigned long freq;
|
|
unsigned long freqn = perf->states[0].core_frequency * 1000;
|
|
|
|
for (i = 0; i < (perf->state_count - 1); i++) {
|
|
freq = freqn;
|
|
freqn = perf->states[i + 1].core_frequency * 1000;
|
|
if ((2 * cpu_khz) > (freqn + freq)) {
|
|
perf->state = i;
|
|
return freq;
|
|
}
|
|
}
|
|
perf->state = perf->state_count - 1;
|
|
return freqn;
|
|
} else {
|
|
/* assume CPU is at P0... */
|
|
perf->state = 0;
|
|
return perf->states[0].core_frequency * 1000;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* acpi_cpufreq_early_init - initialize ACPI P-States library
|
|
*
|
|
* Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
|
|
* in order to determine correct frequency and voltage pairings. We can
|
|
* do _PDC and _PSD and find out the processor dependency for the
|
|
* actual init that will happen later...
|
|
*/
|
|
static int acpi_cpufreq_early_init(void)
|
|
{
|
|
struct acpi_processor_performance *data;
|
|
cpumask_t covered;
|
|
unsigned int i, j;
|
|
|
|
dprintk("acpi_cpufreq_early_init\n");
|
|
|
|
for_each_possible_cpu(i) {
|
|
data = kzalloc(sizeof(struct acpi_processor_performance),
|
|
GFP_KERNEL);
|
|
if (!data) {
|
|
for_each_cpu_mask(j, covered) {
|
|
kfree(acpi_perf_data[j]);
|
|
acpi_perf_data[j] = NULL;
|
|
}
|
|
return -ENOMEM;
|
|
}
|
|
acpi_perf_data[i] = data;
|
|
cpu_set(i, covered);
|
|
}
|
|
|
|
/* Do initialization in ACPI core */
|
|
acpi_processor_preregister_performance(acpi_perf_data);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Some BIOSes do SW_ANY coordination internally, either set it up in hw
|
|
* or do it in BIOS firmware and won't inform about it to OS. If not
|
|
* detected, this has a side effect of making CPU run at a different speed
|
|
* than OS intended it to run at. Detect it and handle it cleanly.
|
|
*/
|
|
static int bios_with_sw_any_bug;
|
|
|
|
static int sw_any_bug_found(struct dmi_system_id *d)
|
|
{
|
|
bios_with_sw_any_bug = 1;
|
|
return 0;
|
|
}
|
|
|
|
static struct dmi_system_id sw_any_bug_dmi_table[] = {
|
|
{
|
|
.callback = sw_any_bug_found,
|
|
.ident = "Supermicro Server X6DLP",
|
|
.matches = {
|
|
DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
|
|
DMI_MATCH(DMI_BIOS_VERSION, "080010"),
|
|
DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
|
|
},
|
|
},
|
|
{ }
|
|
};
|
|
|
|
static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
|
|
{
|
|
unsigned int i;
|
|
unsigned int valid_states = 0;
|
|
unsigned int cpu = policy->cpu;
|
|
struct acpi_cpufreq_data *data;
|
|
unsigned int result = 0;
|
|
struct cpuinfo_x86 *c = &cpu_data[policy->cpu];
|
|
struct acpi_processor_performance *perf;
|
|
|
|
dprintk("acpi_cpufreq_cpu_init\n");
|
|
|
|
if (!acpi_perf_data[cpu])
|
|
return -ENODEV;
|
|
|
|
data = kzalloc(sizeof(struct acpi_cpufreq_data), GFP_KERNEL);
|
|
if (!data)
|
|
return -ENOMEM;
|
|
|
|
data->acpi_data = acpi_perf_data[cpu];
|
|
drv_data[cpu] = data;
|
|
|
|
if (cpu_has(c, X86_FEATURE_CONSTANT_TSC)) {
|
|
acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
|
|
}
|
|
|
|
result = acpi_processor_register_performance(data->acpi_data, cpu);
|
|
if (result)
|
|
goto err_free;
|
|
|
|
perf = data->acpi_data;
|
|
policy->shared_type = perf->shared_type;
|
|
/*
|
|
* Will let policy->cpus know about dependency only when software
|
|
* coordination is required.
|
|
*/
|
|
if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
|
|
policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
|
|
policy->cpus = perf->shared_cpu_map;
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
dmi_check_system(sw_any_bug_dmi_table);
|
|
if (bios_with_sw_any_bug && cpus_weight(policy->cpus) == 1) {
|
|
policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
|
|
policy->cpus = cpu_core_map[cpu];
|
|
}
|
|
#endif
|
|
|
|
/* capability check */
|
|
if (perf->state_count <= 1) {
|
|
dprintk("No P-States\n");
|
|
result = -ENODEV;
|
|
goto err_unreg;
|
|
}
|
|
|
|
if (perf->control_register.space_id != perf->status_register.space_id) {
|
|
result = -ENODEV;
|
|
goto err_unreg;
|
|
}
|
|
|
|
switch (perf->control_register.space_id) {
|
|
case ACPI_ADR_SPACE_SYSTEM_IO:
|
|
dprintk("SYSTEM IO addr space\n");
|
|
data->cpu_feature = SYSTEM_IO_CAPABLE;
|
|
break;
|
|
case ACPI_ADR_SPACE_FIXED_HARDWARE:
|
|
dprintk("HARDWARE addr space\n");
|
|
if (!check_est_cpu(cpu)) {
|
|
result = -ENODEV;
|
|
goto err_unreg;
|
|
}
|
|
data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
|
|
break;
|
|
default:
|
|
dprintk("Unknown addr space %d\n",
|
|
(u32) (perf->control_register.space_id));
|
|
result = -ENODEV;
|
|
goto err_unreg;
|
|
}
|
|
|
|
data->freq_table =
|
|
kmalloc(sizeof(struct cpufreq_frequency_table) *
|
|
(perf->state_count + 1), GFP_KERNEL);
|
|
if (!data->freq_table) {
|
|
result = -ENOMEM;
|
|
goto err_unreg;
|
|
}
|
|
|
|
/* detect transition latency */
|
|
policy->cpuinfo.transition_latency = 0;
|
|
for (i = 0; i < perf->state_count; i++) {
|
|
if ((perf->states[i].transition_latency * 1000) >
|
|
policy->cpuinfo.transition_latency)
|
|
policy->cpuinfo.transition_latency =
|
|
perf->states[i].transition_latency * 1000;
|
|
}
|
|
policy->governor = CPUFREQ_DEFAULT_GOVERNOR;
|
|
|
|
data->max_freq = perf->states[0].core_frequency * 1000;
|
|
/* table init */
|
|
for (i = 0; i < perf->state_count; i++) {
|
|
if (i > 0 && perf->states[i].core_frequency ==
|
|
perf->states[i - 1].core_frequency)
|
|
continue;
|
|
|
|
data->freq_table[valid_states].index = i;
|
|
data->freq_table[valid_states].frequency =
|
|
perf->states[i].core_frequency * 1000;
|
|
valid_states++;
|
|
}
|
|
data->freq_table[perf->state_count].frequency = CPUFREQ_TABLE_END;
|
|
|
|
result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table);
|
|
if (result) {
|
|
goto err_freqfree;
|
|
}
|
|
|
|
switch (data->cpu_feature) {
|
|
case ACPI_ADR_SPACE_SYSTEM_IO:
|
|
/* Current speed is unknown and not detectable by IO port */
|
|
policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
|
|
break;
|
|
case ACPI_ADR_SPACE_FIXED_HARDWARE:
|
|
acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
|
|
get_cur_freq_on_cpu(cpu);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* notify BIOS that we exist */
|
|
acpi_processor_notify_smm(THIS_MODULE);
|
|
|
|
/* Check for APERF/MPERF support in hardware */
|
|
if (c->x86_vendor == X86_VENDOR_INTEL && c->cpuid_level >= 6) {
|
|
unsigned int ecx;
|
|
ecx = cpuid_ecx(6);
|
|
if (ecx & CPUID_6_ECX_APERFMPERF_CAPABILITY) {
|
|
acpi_cpufreq_driver.getavg = get_measured_perf;
|
|
}
|
|
}
|
|
|
|
dprintk("CPU%u - ACPI performance management activated.\n", cpu);
|
|
for (i = 0; i < perf->state_count; i++)
|
|
dprintk(" %cP%d: %d MHz, %d mW, %d uS\n",
|
|
(i == perf->state ? '*' : ' '), i,
|
|
(u32) perf->states[i].core_frequency,
|
|
(u32) perf->states[i].power,
|
|
(u32) perf->states[i].transition_latency);
|
|
|
|
cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu);
|
|
|
|
/*
|
|
* the first call to ->target() should result in us actually
|
|
* writing something to the appropriate registers.
|
|
*/
|
|
data->resume = 1;
|
|
|
|
return result;
|
|
|
|
err_freqfree:
|
|
kfree(data->freq_table);
|
|
err_unreg:
|
|
acpi_processor_unregister_performance(perf, cpu);
|
|
err_free:
|
|
kfree(data);
|
|
drv_data[cpu] = NULL;
|
|
|
|
return result;
|
|
}
|
|
|
|
static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
|
|
{
|
|
struct acpi_cpufreq_data *data = drv_data[policy->cpu];
|
|
|
|
dprintk("acpi_cpufreq_cpu_exit\n");
|
|
|
|
if (data) {
|
|
cpufreq_frequency_table_put_attr(policy->cpu);
|
|
drv_data[policy->cpu] = NULL;
|
|
acpi_processor_unregister_performance(data->acpi_data,
|
|
policy->cpu);
|
|
kfree(data);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
|
|
{
|
|
struct acpi_cpufreq_data *data = drv_data[policy->cpu];
|
|
|
|
dprintk("acpi_cpufreq_resume\n");
|
|
|
|
data->resume = 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct freq_attr *acpi_cpufreq_attr[] = {
|
|
&cpufreq_freq_attr_scaling_available_freqs,
|
|
NULL,
|
|
};
|
|
|
|
static struct cpufreq_driver acpi_cpufreq_driver = {
|
|
.verify = acpi_cpufreq_verify,
|
|
.target = acpi_cpufreq_target,
|
|
.init = acpi_cpufreq_cpu_init,
|
|
.exit = acpi_cpufreq_cpu_exit,
|
|
.resume = acpi_cpufreq_resume,
|
|
.name = "acpi-cpufreq",
|
|
.owner = THIS_MODULE,
|
|
.attr = acpi_cpufreq_attr,
|
|
};
|
|
|
|
static int __init acpi_cpufreq_init(void)
|
|
{
|
|
dprintk("acpi_cpufreq_init\n");
|
|
|
|
acpi_cpufreq_early_init();
|
|
|
|
return cpufreq_register_driver(&acpi_cpufreq_driver);
|
|
}
|
|
|
|
static void __exit acpi_cpufreq_exit(void)
|
|
{
|
|
unsigned int i;
|
|
dprintk("acpi_cpufreq_exit\n");
|
|
|
|
cpufreq_unregister_driver(&acpi_cpufreq_driver);
|
|
|
|
for_each_possible_cpu(i) {
|
|
kfree(acpi_perf_data[i]);
|
|
acpi_perf_data[i] = NULL;
|
|
}
|
|
return;
|
|
}
|
|
|
|
module_param(acpi_pstate_strict, uint, 0644);
|
|
MODULE_PARM_DESC(acpi_pstate_strict,
|
|
"value 0 or non-zero. non-zero -> strict ACPI checks are performed during frequency changes.");
|
|
|
|
late_initcall(acpi_cpufreq_init);
|
|
module_exit(acpi_cpufreq_exit);
|
|
|
|
MODULE_ALIAS("acpi");
|