PulseFocusPlatform/ppdet/modeling/reid/pyramidal_embedding.py

152 lines
5.9 KiB
Python
Raw Permalink Normal View History

2022-06-01 11:18:00 +08:00
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn.initializer import Normal, Constant
from paddle import ParamAttr
from .resnet import *
from ppdet.core.workspace import register
__all__ = ['PCBPyramid']
@register
class PCBPyramid(nn.Layer):
"""
PCB (Part-based Convolutional Baseline), see https://arxiv.org/abs/1711.09349,
Pyramidal Person Re-IDentification, see https://arxiv.org/abs/1810.12193
Args:
input_ch (int): Number of channels of the input feature.
num_stripes (int): Number of sub-parts.
used_levels (tuple): Whether the level is used, 1 means used.
num_classes (int): Number of classes for identities.
last_conv_stride (int): Stride of the last conv.
last_conv_dilation (int): Dilation of the last conv.
num_conv_out_channels (int): Number of channels of conv feature.
"""
def __init__(self,
input_ch=2048,
num_stripes=6,
used_levels=(1, 1, 1, 1, 1, 1),
num_classes=751,
last_conv_stride=1,
last_conv_dilation=1,
num_conv_out_channels=128):
super(PCBPyramid, self).__init__()
self.num_stripes = num_stripes
self.used_levels = used_levels
self.num_classes = num_classes
self.num_in_each_level = [i for i in range(self.num_stripes, 0, -1)]
self.num_branches = sum(self.num_in_each_level)
self.base = ResNet101(
lr_mult=0.1,
last_conv_stride=last_conv_stride,
last_conv_dilation=last_conv_dilation)
self.dropout_layer = nn.Dropout(p=0.2)
self.pyramid_conv_list0, self.pyramid_fc_list0 = self.basic_branch(
num_conv_out_channels, input_ch)
def basic_branch(self, num_conv_out_channels, input_ch):
# the level indexes are defined from fine to coarse,
# the branch will contain one more part than that of its previous level
# the sliding step is set to 1
pyramid_conv_list = nn.LayerList()
pyramid_fc_list = nn.LayerList()
idx_levels = 0
for idx_branches in range(self.num_branches):
if idx_branches >= sum(self.num_in_each_level[0:idx_levels + 1]):
idx_levels += 1
if self.used_levels[idx_levels] == 0:
continue
pyramid_conv_list.append(
nn.Sequential(
nn.Conv2D(input_ch, num_conv_out_channels, 1),
nn.BatchNorm2D(num_conv_out_channels), nn.ReLU()))
idx_levels = 0
for idx_branches in range(self.num_branches):
if idx_branches >= sum(self.num_in_each_level[0:idx_levels + 1]):
idx_levels += 1
if self.used_levels[idx_levels] == 0:
continue
name = "Linear_branch_id_{}".format(idx_branches)
fc = nn.Linear(
in_features=num_conv_out_channels,
out_features=self.num_classes,
weight_attr=ParamAttr(
name=name + "_weights",
initializer=Normal(
mean=0., std=0.001)),
bias_attr=ParamAttr(
name=name + "_bias", initializer=Constant(value=0.)))
pyramid_fc_list.append(fc)
return pyramid_conv_list, pyramid_fc_list
def pyramid_forward(self, feat):
each_stripe_size = int(feat.shape[2] / self.num_stripes)
feat_list, logits_list = [], []
idx_levels = 0
used_branches = 0
for idx_branches in range(self.num_branches):
if idx_branches >= sum(self.num_in_each_level[0:idx_levels + 1]):
idx_levels += 1
if self.used_levels[idx_levels] == 0:
continue
idx_in_each_level = idx_branches - sum(self.num_in_each_level[
0:idx_levels])
stripe_size_in_each_level = each_stripe_size * (idx_levels + 1)
start = idx_in_each_level * each_stripe_size
end = start + stripe_size_in_each_level
k = feat.shape[-1]
local_feat_avgpool = F.avg_pool2d(
feat[:, :, start:end, :],
kernel_size=(stripe_size_in_each_level, k))
local_feat_maxpool = F.max_pool2d(
feat[:, :, start:end, :],
kernel_size=(stripe_size_in_each_level, k))
local_feat = local_feat_avgpool + local_feat_maxpool
local_feat = self.pyramid_conv_list0[used_branches](local_feat)
local_feat = paddle.reshape(
local_feat, shape=[local_feat.shape[0], -1])
feat_list.append(local_feat)
local_logits = self.pyramid_fc_list0[used_branches](
self.dropout_layer(local_feat))
logits_list.append(local_logits)
used_branches += 1
return feat_list, logits_list
def forward(self, x):
feat = self.base(x)
assert feat.shape[2] % self.num_stripes == 0
feat_list, logits_list = self.pyramid_forward(feat)
feat_out = paddle.concat(feat_list, axis=-1)
return feat_out