forked from PulseFocusPlatform/PulseFocusPlatform
152 lines
5.9 KiB
Python
152 lines
5.9 KiB
Python
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import paddle
|
|
import paddle.nn as nn
|
|
import paddle.nn.functional as F
|
|
from paddle.nn.initializer import Normal, Constant
|
|
from paddle import ParamAttr
|
|
from .resnet import *
|
|
from ppdet.core.workspace import register
|
|
|
|
__all__ = ['PCBPyramid']
|
|
|
|
|
|
@register
|
|
class PCBPyramid(nn.Layer):
|
|
"""
|
|
PCB (Part-based Convolutional Baseline), see https://arxiv.org/abs/1711.09349,
|
|
Pyramidal Person Re-IDentification, see https://arxiv.org/abs/1810.12193
|
|
|
|
Args:
|
|
input_ch (int): Number of channels of the input feature.
|
|
num_stripes (int): Number of sub-parts.
|
|
used_levels (tuple): Whether the level is used, 1 means used.
|
|
num_classes (int): Number of classes for identities.
|
|
last_conv_stride (int): Stride of the last conv.
|
|
last_conv_dilation (int): Dilation of the last conv.
|
|
num_conv_out_channels (int): Number of channels of conv feature.
|
|
"""
|
|
|
|
def __init__(self,
|
|
input_ch=2048,
|
|
num_stripes=6,
|
|
used_levels=(1, 1, 1, 1, 1, 1),
|
|
num_classes=751,
|
|
last_conv_stride=1,
|
|
last_conv_dilation=1,
|
|
num_conv_out_channels=128):
|
|
super(PCBPyramid, self).__init__()
|
|
self.num_stripes = num_stripes
|
|
self.used_levels = used_levels
|
|
self.num_classes = num_classes
|
|
|
|
self.num_in_each_level = [i for i in range(self.num_stripes, 0, -1)]
|
|
self.num_branches = sum(self.num_in_each_level)
|
|
|
|
self.base = ResNet101(
|
|
lr_mult=0.1,
|
|
last_conv_stride=last_conv_stride,
|
|
last_conv_dilation=last_conv_dilation)
|
|
self.dropout_layer = nn.Dropout(p=0.2)
|
|
self.pyramid_conv_list0, self.pyramid_fc_list0 = self.basic_branch(
|
|
num_conv_out_channels, input_ch)
|
|
|
|
def basic_branch(self, num_conv_out_channels, input_ch):
|
|
# the level indexes are defined from fine to coarse,
|
|
# the branch will contain one more part than that of its previous level
|
|
# the sliding step is set to 1
|
|
pyramid_conv_list = nn.LayerList()
|
|
pyramid_fc_list = nn.LayerList()
|
|
|
|
idx_levels = 0
|
|
for idx_branches in range(self.num_branches):
|
|
if idx_branches >= sum(self.num_in_each_level[0:idx_levels + 1]):
|
|
idx_levels += 1
|
|
if self.used_levels[idx_levels] == 0:
|
|
continue
|
|
pyramid_conv_list.append(
|
|
nn.Sequential(
|
|
nn.Conv2D(input_ch, num_conv_out_channels, 1),
|
|
nn.BatchNorm2D(num_conv_out_channels), nn.ReLU()))
|
|
|
|
idx_levels = 0
|
|
for idx_branches in range(self.num_branches):
|
|
if idx_branches >= sum(self.num_in_each_level[0:idx_levels + 1]):
|
|
idx_levels += 1
|
|
if self.used_levels[idx_levels] == 0:
|
|
continue
|
|
name = "Linear_branch_id_{}".format(idx_branches)
|
|
fc = nn.Linear(
|
|
in_features=num_conv_out_channels,
|
|
out_features=self.num_classes,
|
|
weight_attr=ParamAttr(
|
|
name=name + "_weights",
|
|
initializer=Normal(
|
|
mean=0., std=0.001)),
|
|
bias_attr=ParamAttr(
|
|
name=name + "_bias", initializer=Constant(value=0.)))
|
|
pyramid_fc_list.append(fc)
|
|
return pyramid_conv_list, pyramid_fc_list
|
|
|
|
def pyramid_forward(self, feat):
|
|
each_stripe_size = int(feat.shape[2] / self.num_stripes)
|
|
|
|
feat_list, logits_list = [], []
|
|
idx_levels = 0
|
|
used_branches = 0
|
|
for idx_branches in range(self.num_branches):
|
|
if idx_branches >= sum(self.num_in_each_level[0:idx_levels + 1]):
|
|
idx_levels += 1
|
|
if self.used_levels[idx_levels] == 0:
|
|
continue
|
|
idx_in_each_level = idx_branches - sum(self.num_in_each_level[
|
|
0:idx_levels])
|
|
stripe_size_in_each_level = each_stripe_size * (idx_levels + 1)
|
|
start = idx_in_each_level * each_stripe_size
|
|
end = start + stripe_size_in_each_level
|
|
|
|
k = feat.shape[-1]
|
|
local_feat_avgpool = F.avg_pool2d(
|
|
feat[:, :, start:end, :],
|
|
kernel_size=(stripe_size_in_each_level, k))
|
|
local_feat_maxpool = F.max_pool2d(
|
|
feat[:, :, start:end, :],
|
|
kernel_size=(stripe_size_in_each_level, k))
|
|
local_feat = local_feat_avgpool + local_feat_maxpool
|
|
|
|
local_feat = self.pyramid_conv_list0[used_branches](local_feat)
|
|
local_feat = paddle.reshape(
|
|
local_feat, shape=[local_feat.shape[0], -1])
|
|
feat_list.append(local_feat)
|
|
|
|
local_logits = self.pyramid_fc_list0[used_branches](
|
|
self.dropout_layer(local_feat))
|
|
logits_list.append(local_logits)
|
|
|
|
used_branches += 1
|
|
|
|
return feat_list, logits_list
|
|
|
|
def forward(self, x):
|
|
feat = self.base(x)
|
|
assert feat.shape[2] % self.num_stripes == 0
|
|
feat_list, logits_list = self.pyramid_forward(feat)
|
|
feat_out = paddle.concat(feat_list, axis=-1)
|
|
return feat_out
|