forked from PulseFocusPlatform/PulseFocusPlatform
1.6 KiB
1.6 KiB
How to train on kunlun
Prepare kunlun environment
Paddle installation for machines with Kunlun XPU card
yolov3
Prepare data
Prepare data roadsign:
cd PaddleDetection/static/dataset/roadsign_voc/
python3.7 download_roadsign_voc.py
Train
python3.7 -u tools/train.py -c configs/yolov3_mobilenet_v1_roadsign.yml -o use_gpu=False use_xpu=True
Eval
python3.7 -u tools/eval.py -c configs/yolov3_mobilenet_v1_roadsign.yml -o weights=output/yolov3_mobilenet_v1_roadsign/model_final.pdparams use_gpu=False use_xpu=True
Train on Darknet
cd static/
python3.7 -u tools/train.py -c configs/yolov3_datknet_roadsign_kunlun.yml -o use_gpu=False use_xpu=True
Eval on Darknet
cd static/
python3.7 -u tools/eval.py -c configs/yolov3_darknet_roadsign_kunlun.yml -o weights=output/yolov3_darknet_roadsign_kunlun/model_final.pdparams use_gpu=False use_xpu=True
ppyolo
Prepare data
Prepare data roadsign
Train
python3.7 -u tools/train.py --eval -c configs/ppyolo/ppyolo_roadsign_kunlun.yml
Eval
python3.7 -u tools/eval.py -c configs/ppyolo/ppyolo_roadsign_kunlun.yml
mask_rcnn
Prepare data
Download dataset from https://dataset.bj.bcebos.com/PaddleDetection_demo/cocome.tar and put it in the dataset directory.
Train
python3.7 -u tools/train.py --eval -c configs/mask_rcnn_r50_1x_cocome_kunlun.yml
Eval
python3.7 -u tools/eval.py -c configs/mask_rcnn_r50_1x_cocome_kunlun.yml