PulseFocusPlatform/static/configs/rcnn_enhance/README.md

3.3 KiB
Raw Permalink Blame History

服务器端实用目标检测方案

简介

  • 近年来,学术界和工业界广泛关注图像中目标检测任务。基于PaddleClas中SSLD蒸馏方案训练得到的ResNet50_vd预训练模型(ImageNet1k验证集上Top1 Acc为82.39%)结合PaddleDetection中的丰富算子飞桨提供了一种面向服务器端实用的目标检测方案PSS-DET(Practical Server Side Detection)。基于COCO2017目标检测数据集V100单卡预测速度为为61FPS时COCO mAP可达41.6%预测速度为20FPS时COCO mAP可达47.8%。

  • 以标准的Faster RCNN ResNet50_vd FPN为例下表给出了PSS-DET不同的模块的速度与精度收益。

Trick Train scale Test scale COCO mAP Infer speed/FPS
baseline 640x640 640x640 36.4% 43.589
+test proposal=pre/post topk 500/300 640x640 640x640 36.2% 52.512
+fpn channel=64 640x640 640x640 35.1% 67.450
+ssld pretrain 640x640 640x640 36.3% 67.450
+ciou loss 640x640 640x640 37.1% 67.450
+DCNv2 640x640 640x640 39.4% 60.345
+3x, multi-scale training 640x640 640x640 41.0% 60.345
+auto augment 640x640 640x640 41.4% 60.345
+libra sampling 640x640 640x640 41.6% 60.345

基于该实验结论PaddleDetection结合Cascade RCNN使用更大的训练与评估尺度(1000x1500)最终在单卡V100上速度为20FPSCOCO mAP达47.8%。下图给出了目前类似速度的目标检测方法的速度与精度指标。

pssdet

注意

这里为了更方便地对比统一将V100的预测耗时乘以1.2倍近似转化为Titan V的预测耗时。

模型库

骨架网络 网络类型 每张GPU图片个数 学习率策略 推理时间(fps) Box AP Mask AP 下载 配置文件
ResNet50-vd-FPN-Dcnv2 Faster 2 3x 61.425 41.6 - 下载链接 配置文件
ResNet50-vd-FPN-Dcnv2 Cascade Faster 2 3x 20.001 47.8 - 下载链接 配置文件
ResNet101-vd-FPN-Dcnv2 Cascade Faster 2 3x 19.523 49.4 - 下载链接 配置文件

generic文件夹下面的配置文件对应的预训练模型均只支持预测不支持训练与评估。