6.9 KiB
English | 简体中文
Getting Started
Installation
For setting up the running environment, please refer to installation instructions.
Data preparation
- Please refer to PrepareDataSet for data preparation
- Please set the data path for data configuration file in
configs/datasets
Training & Evaluation & Inference
PaddleDetection provides scripts for training, evalution and inference with various features according to different configure.
# training on single-GPU
export CUDA_VISIBLE_DEVICES=0
python tools/train.py -c configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.yml
# training on multi-GPU
export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
python -m paddle.distributed.launch --gpus 0,1,2,3,4,5,6,7 tools/train.py -c configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.yml
# GPU evaluation
export CUDA_VISIBLE_DEVICES=0
python tools/eval.py -c configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_fpn_1x_coco.pdparams
# Inference
python tools/infer.py -c configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.yml --infer_img=demo/000000570688.jpg -o weights=https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_fpn_1x_coco.pdparams
Other argument list
list below can be viewed by --help
FLAG | script supported | description | default | remark |
---|---|---|---|---|
-c | ALL | Select config file | None | required, such as -c configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.yml |
-o | ALL | Set parameters in configure file | None | -o has higher priority to file configured by -c . Such as -o use_gpu=False |
--eval | train | Whether to perform evaluation in training | False | set --eval if needed |
-r/--resume_checkpoint | train | Checkpoint path for resuming training | None | such as -r output/faster_rcnn_r50_1x_coco/10000 |
--slim_config | ALL | Configure file of slim method | None | such as --slim_config configs/slim/prune/yolov3_prune_l1_norm.yml |
--use_vdl | train/infer | Whether to record the data with VisualDL, so as to display in VisualDL | False | VisualDL requires Python>=3.5 |
--vdl_log_dir | train/infer | VisualDL logging directory for image | train:vdl_log_dir/scalar infer: vdl_log_dir/image |
VisualDL requires Python>=3.5 |
--output_eval | eval | Directory for storing the evaluation output | None | such as --output_eval=eval_output , default is current directory |
--json_eval | eval | Whether to evaluate with already existed bbox.json or mask.json | False | set --json_eval if needed and json path is set in --output_eval |
--classwise | eval | Whether to eval AP for each class and draw PR curve | False | set --classwise if needed |
--output_dir | infer | Directory for storing the output visualization files | ./output |
such as --output_dir output |
--draw_threshold | infer | Threshold to reserve the result for visualization | 0.5 | such as --draw_threshold 0.7 |
--infer_dir | infer | Directory for images to perform inference on | None | One of infer_dir and infer_img is requied |
--infer_img | infer | Image path | None | One of infer_dir and infer_img is requied, infer_img has higher priority over infer_dir |
Examples
Training
-
Perform evaluation in training
export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m paddle.distributed.launch --gpus 0,1,2,3,4,5,6,7 tools/train.py -c configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.yml --eval
Perform training and evalution alternatively and evaluate at each end of epoch. Meanwhile, the best model with highest MAP is saved at each epoch which has the same path as
model_final
.If evaluation dataset is large, we suggest modifing
snapshot_epoch
inconfigs/runtime.yml
to decrease evaluation times or evaluating after training. -
Fine-tune other task
When using pre-trained model to fine-tune other task, pretrain_weights can be used directly. The parameters with different shape will be ignored automatically. For example:
export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 # If the shape of parameters in program is different from pretrain_weights, # then PaddleDetection will not use such parameters. python -m paddle.distributed.launch --gpus 0,1,2,3,4,5,6,7 tools/train.py -c configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.yml \ -o pretrain_weights=output/faster_rcnn_r50_1x_coco/model_final \
NOTES
CUDA_VISIBLE_DEVICES
can specify different gpu numbers. Such as:export CUDA_VISIBLE_DEVICES=0,1,2,3
.- Dataset will be downloaded automatically and cached in
~/.cache/paddle/dataset
if not be found locally. - Pretrained model is downloaded automatically and cached in
~/.cache/paddle/weights
. - Checkpoints are saved in
output
by default, and can be revised fromsave_dir
inconfigs/runtime.yml
.
Evaluation
-
Evaluate by specified weights path and dataset path
export CUDA_VISIBLE_DEVICES=0 python -u tools/eval.py -c configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.yml \ -o weights=https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_fpn_1x_coco.pdparams
The path of model to be evaluted can be both local path and link in MODEL_ZOO.
-
Evaluate with json
export CUDA_VISIBLE_DEVICES=0 python tools/eval.py -c configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.yml \ --json_eval \ -output_eval evaluation/
The json file must be named bbox.json or mask.json, placed in the
evaluation/
directory.
Inference
-
Output specified directory && Set up threshold
export CUDA_VISIBLE_DEVICES=0 python tools/infer.py -c configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.yml \ --infer_img=demo/000000570688.jpg \ --output_dir=infer_output/ \ --draw_threshold=0.5 \ -o weights=output/faster_rcnn_r50_fpn_1x_coco/model_final \ --use_vdl=Ture
--draw_threshold
is an optional argument. Default is 0.5. Different thresholds will produce different results depending on the calculation of NMS.
Deployment
Please refer to depolyment
Model Compression
Please refer to slim