PulseFocusPlatform/docs/MODEL_ZOO_cn.md

88 lines
2.9 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# 模型库和基线
## 测试环境
- Python 3.7
- PaddlePaddle 每日版本
- CUDA 10.1
- cuDNN 7.5
- NCCL 2.4.8
## 通用设置
- 所有模型均在COCO17数据集中训练和测试。
- 除非特殊说明所有ResNet骨干网络采用[ResNet-B](https://arxiv.org/pdf/1812.01187)结构。
- **推理时间(fps)**: 推理时间是在一张Tesla V100的GPU上通过'tools/eval.py'测试所有验证集得到单位是fps(图片数/秒), cuDNN版本是7.5,包括数据加载、网络前向执行和后处理, batch size是1。
## 训练策略
- 我们采用和[Detectron](https://github.com/facebookresearch/Detectron/blob/master/MODEL_ZOO.md#training-schedules)相同的训练策略。
- 1x 策略表示在总batch size为8时初始学习率为0.01在8 epoch和11 epoch后学习率分别下降10倍最终训练12 epoch。
- 2x 策略为1x策略的两倍同时学习率调整位置也为1x的两倍。
## ImageNet预训练模型
Paddle提供基于ImageNet的骨架网络预训练模型。所有预训练模型均通过标准的Imagenet-1k数据集训练得到ResNet和MobileNet等是采用余弦学习率调整策略或SSLD知识蒸馏训练得到的高精度预训练模型可在[PaddleClas](https://github.com/PaddlePaddle/PaddleClas)查看模型细节。
## 基线
### Faster R-CNN
请参考[Faster R-CNN](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.1/configs/faster_rcnn/)
### Mask R-CNN
请参考[Mask R-CNN](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.1/configs/mask_rcnn/)
### Cascade R-CNN
请参考[Cascade R-CNN](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.1/configs/cascade_rcnn)
### YOLOv3
请参考[YOLOv3](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.1/configs/yolov3/)
### SSD
请参考[SSD](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.1/configs/ssd/)
### FCOS
请参考[FCOS](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.1/configs/fcos/)
### SOLOv2
请参考[SOLOv2](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.1/configs/solov2/)
### PP-YOLO
请参考[PP-YOLO](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.1/configs/ppyolo/)
### TTFNet
请参考[TTFNet](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.1/configs/ttfnet/)
### Group Normalization
请参考[Group Normalization](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.1/configs/gn/)
### Deformable ConvNets v2
请参考[Deformable ConvNets v2](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.1/configs/dcn/)
### HRNets
请参考[HRNets](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.1/configs/hrnet/)
### Res2Net
请参考[Res2Net](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.1/configs/res2net/)
## 旋转框检测
### S2ANet
请参考[S2ANet](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.1/configs/dota/)