forked from jiuyuan/CPM-9G-8B
Update quick_start.md
This commit is contained in:
parent
b987ee93a1
commit
1d72e4acb7
|
@ -81,7 +81,7 @@ conda activate fm-9g
|
|||
# 需要先查看CUDA版本,根据CUDA版本挑选合适的pytorch版本
|
||||
conda install pytorch==1.13.1 torchvision==0.14.1 torchaudio==0.13.1 pytorch-cuda=11.6 -c pytorch -c nvidia
|
||||
|
||||
9.安装OpenDelta
|
||||
4.安装OpenDelta
|
||||
# 也可以在官网上下载好安装包后进行安装
|
||||
# 官网地址为:https://github.com/thunlp/OpenDelta
|
||||
pip install opendelta
|
||||
|
@ -89,10 +89,10 @@ pip install opendelta
|
|||
5. 安装BMTrain
|
||||
pip install bmtrain==1.0.0
|
||||
|
||||
5. 安装flash-attn
|
||||
6. 安装flash-attn
|
||||
pip install flash-attn==2.4.2
|
||||
|
||||
6. 安装其他依赖包
|
||||
7. 安装其他依赖包
|
||||
pip install einops
|
||||
pip install pytrie
|
||||
pip install transformers
|
||||
|
@ -100,13 +100,13 @@ pip install matplotlib
|
|||
pip install h5py
|
||||
pip install sentencepiece
|
||||
|
||||
7.安装tensorboard
|
||||
8.安装tensorboard
|
||||
pip install protobuf==3.20.0 #protobuf版本过高时无法适配tensorboard
|
||||
pip install tensorboard
|
||||
pip install tensorboardX
|
||||
|
||||
|
||||
8.安装vllm(模型推理)
|
||||
9.安装vllm(模型推理)
|
||||
我们提供python3.8、python3.10版本的vllm安装包,相关依赖均已封装,可直接安装后执行推理:
|
||||
[vllm-0.5.0.dev0+cu122-cp38-cp38-linux_x86_64.whl](https://qy-obs-6d58.obs.cn-north-4.myhuaweicloud.com/vllm-0.5.0.dev0%2Bcu122-cp38-cp38-linux_x86_64.whl)
|
||||
[vllm-0.5.0.dev0+cu122-cp310-cp310-linux_x86_64.whl](https://qy-obs-6d58.obs.cn-north-4.myhuaweicloud.com/vllm-0.5.0.dev0%2Bcu122-cp310-cp310-linux_x86_64.whl)
|
||||
|
@ -115,10 +115,10 @@ pip install tensorboardX
|
|||
|
||||
## 开源模型
|
||||
1. 8B的百亿SFT模型,v2版本是在v1基础上精度和对话能力的优化模型,下载链接:
|
||||
[8b_sft_model_v1](https://qy-obs-6d58.obs.cn-north-4.myhuaweicloud.com/checkpoints-epoch-1.tar.gz), [8b_sft_model_v2](https://qy-obs-6d58.obs.cn-north-4.myhuaweicloud.com/sft_8b_v2.zip)
|
||||
[8b_sft_model_v2(.pt格式)](https://qy-obs-6d58.obs.cn-north-4.myhuaweicloud.com/sft_8b_v2.zip), [8b_sft_model_v2(.bin格式)](https://qy-obs-6d58.obs.cn-north-4.myhuaweicloud.com/8b_sft_model.tar)
|
||||
|
||||
2. 端侧2B模型,下载链接:
|
||||
[2b_sft_model](https://qy-obs-6d58.obs.cn-north-4.myhuaweicloud.com/fm9g_2b_hf_models.tar.gz)
|
||||
[2b_sft_model(.pt格式)](https://qy-obs-6d58.obs.cn-north-4.myhuaweicloud.com/fm9g_2b_hf_models.tar.gz), [2b_sft_model(.bin格式)](https://qy-obs-6d58.obs.cn-north-4.myhuaweicloud.com/2b_sft_model.tar)
|
||||
|
||||
## 数据处理流程
|
||||
### 单个数据集处理
|
||||
|
@ -432,7 +432,7 @@ prompts = [
|
|||
# temperature越大,生成结果的随机性越强,top_p过滤掉生成词汇表中概率低于给定阈值的词汇,控制随机性
|
||||
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
|
||||
|
||||
# 初始化语言模型
|
||||
# 初始化语言模型,需注意加载的是.bin格式模型
|
||||
llm = LLM(model="../models/9G/", trust_remote_code=True)
|
||||
|
||||
# 根据提示生成文本
|
||||
|
@ -449,7 +449,7 @@ for output in outputs:
|
|||
端侧2B模型:
|
||||
``` python
|
||||
# 初始化语言模型,与Hugging Face Transformers库兼容,支持AWQ、GPTQ和GGUF量化格式转换
|
||||
llm = LLM(model="../models/FM9G/", tokenizer_mode="auto", trust_remote_code=True)
|
||||
llm = LLM(model="../models/2b_sft_model/", tokenizer_mode="auto", trust_remote_code=True)
|
||||
```
|
||||
8B百亿SFT模型:
|
||||
``` python
|
||||
|
@ -465,11 +465,12 @@ vLLM可以为 LLM 服务进行部署,这里提供了一个示例:
|
|||
端侧2B模型:
|
||||
```shell
|
||||
python -m vllm.entrypoints.openai.api_server \
|
||||
--model ../models/FM9G/ \
|
||||
--model ../models/2b_sft_model/ \
|
||||
--tokenizer-mode auto \
|
||||
--dtype auto \
|
||||
--trust-remote-code \
|
||||
--api-key CPMAPI
|
||||
#同样需注意模型加载的是.bin格式
|
||||
#与离线批量推理类似,使用端侧2B模型,tokenizer-mode为"auto"
|
||||
#dtype为模型数据类型,设置为"auto"即可
|
||||
#api-key为可选项,可在此处指定你的api密钥
|
||||
|
|
Loading…
Reference in New Issue