forked from openkylin/imagemagick
1709 lines
52 KiB
C
1709 lines
52 KiB
C
/*
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
% %
|
||
% %
|
||
% %
|
||
% GGGG EEEEE M M %
|
||
% G E MM MM %
|
||
% G GG EEE M M M %
|
||
% G G E M M %
|
||
% GGGG EEEEE M M %
|
||
% %
|
||
% %
|
||
% Graphic Gems - Graphic Support Methods %
|
||
% %
|
||
% Software Design %
|
||
% Cristy %
|
||
% August 1996 %
|
||
% %
|
||
% %
|
||
% Copyright 1999-2021 ImageMagick Studio LLC, a non-profit organization %
|
||
% dedicated to making software imaging solutions freely available. %
|
||
% %
|
||
% You may not use this file except in compliance with the License. You may %
|
||
% obtain a copy of the License at %
|
||
% %
|
||
% https://imagemagick.org/script/license.php %
|
||
% %
|
||
% Unless required by applicable law or agreed to in writing, software %
|
||
% distributed under the License is distributed on an "AS IS" BASIS, %
|
||
% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. %
|
||
% See the License for the specific language governing permissions and %
|
||
% limitations under the License. %
|
||
% %
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
%
|
||
%
|
||
%
|
||
*/
|
||
|
||
/*
|
||
Include declarations.
|
||
*/
|
||
#include "magick/studio.h"
|
||
#include "magick/color-private.h"
|
||
#include "magick/draw.h"
|
||
#include "magick/gem.h"
|
||
#include "magick/gem-private.h"
|
||
#include "magick/image.h"
|
||
#include "magick/image-private.h"
|
||
#include "magick/log.h"
|
||
#include "magick/memory_.h"
|
||
#include "magick/pixel-private.h"
|
||
#include "magick/quantum.h"
|
||
#include "magick/random_.h"
|
||
#include "magick/resize.h"
|
||
#include "magick/transform.h"
|
||
#include "magick/signature-private.h"
|
||
|
||
/*
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
% %
|
||
% %
|
||
% %
|
||
% C o n v e r t H C L T o R G B %
|
||
% %
|
||
% %
|
||
% %
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
%
|
||
% ConvertHCLToRGB() transforms a (hue, chroma, luma) to a (red, green,
|
||
% blue) triple.
|
||
%
|
||
% The format of the ConvertHCLToRGBImage method is:
|
||
%
|
||
% void ConvertHCLToRGB(const double hue,const double chroma,
|
||
% const double luma,Quantum *red,Quantum *green,Quantum *blue)
|
||
%
|
||
% A description of each parameter follows:
|
||
%
|
||
% o hue, chroma, luma: A double value representing a component of the
|
||
% HCL color space.
|
||
%
|
||
% o red, green, blue: A pointer to a pixel component of type Quantum.
|
||
%
|
||
*/
|
||
MagickExport void ConvertHCLToRGB(const double hue,const double chroma,
|
||
const double luma,Quantum *red,Quantum *green,Quantum *blue)
|
||
{
|
||
double
|
||
b,
|
||
c,
|
||
g,
|
||
h,
|
||
m,
|
||
r,
|
||
x;
|
||
|
||
/*
|
||
Convert HCL to RGB colorspace.
|
||
*/
|
||
assert(red != (Quantum *) NULL);
|
||
assert(green != (Quantum *) NULL);
|
||
assert(blue != (Quantum *) NULL);
|
||
h=6.0*hue;
|
||
c=chroma;
|
||
x=c*(1.0-fabs(fmod(h,2.0)-1.0));
|
||
r=0.0;
|
||
g=0.0;
|
||
b=0.0;
|
||
if ((0.0 <= h) && (h < 1.0))
|
||
{
|
||
r=c;
|
||
g=x;
|
||
}
|
||
else
|
||
if ((1.0 <= h) && (h < 2.0))
|
||
{
|
||
r=x;
|
||
g=c;
|
||
}
|
||
else
|
||
if ((2.0 <= h) && (h < 3.0))
|
||
{
|
||
g=c;
|
||
b=x;
|
||
}
|
||
else
|
||
if ((3.0 <= h) && (h < 4.0))
|
||
{
|
||
g=x;
|
||
b=c;
|
||
}
|
||
else
|
||
if ((4.0 <= h) && (h < 5.0))
|
||
{
|
||
r=x;
|
||
b=c;
|
||
}
|
||
else
|
||
if ((5.0 <= h) && (h < 6.0))
|
||
{
|
||
r=c;
|
||
b=x;
|
||
}
|
||
m=luma-(0.298839*r+0.586811*g+0.114350*b);
|
||
*red=ClampToQuantum(QuantumRange*(r+m));
|
||
*green=ClampToQuantum(QuantumRange*(g+m));
|
||
*blue=ClampToQuantum(QuantumRange*(b+m));
|
||
}
|
||
|
||
/*
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
% %
|
||
% %
|
||
% %
|
||
% C o n v e r t H C L p T o R G B %
|
||
% %
|
||
% %
|
||
% %
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
%
|
||
% ConvertHCLpToRGB() transforms a (hue, chroma, luma) to a (red, green,
|
||
% blue) triple. Since HCL colorspace is wider than RGB, we instead choose a
|
||
% saturation strategy to project it on the RGB cube.
|
||
%
|
||
% The format of the ConvertHCLpToRGBImage method is:
|
||
%
|
||
% void ConvertHCLpToRGB(const double hue,const double chroma,
|
||
% const double luma,Quantum *red,Quantum *green,Quantum *blue)
|
||
%
|
||
% A description of each parameter follows:
|
||
%
|
||
% o hue, chroma, luma: A double value representing a component of the
|
||
% HCLp color space.
|
||
%
|
||
% o red, green, blue: A pointer to a pixel component of type Quantum.
|
||
%
|
||
*/
|
||
MagickExport void ConvertHCLpToRGB(const double hue,const double chroma,
|
||
const double luma,Quantum *red,Quantum *green,Quantum *blue)
|
||
{
|
||
double
|
||
b,
|
||
c,
|
||
g,
|
||
h,
|
||
m,
|
||
r,
|
||
x,
|
||
z;
|
||
|
||
/*
|
||
Convert HCLp to RGB colorspace.
|
||
*/
|
||
assert(red != (Quantum *) NULL);
|
||
assert(green != (Quantum *) NULL);
|
||
assert(blue != (Quantum *) NULL);
|
||
h=6.0*hue;
|
||
c=chroma;
|
||
x=c*(1.0-fabs(fmod(h,2.0)-1.0));
|
||
r=0.0;
|
||
g=0.0;
|
||
b=0.0;
|
||
if ((0.0 <= h) && (h < 1.0))
|
||
{
|
||
r=c;
|
||
g=x;
|
||
}
|
||
else
|
||
if ((1.0 <= h) && (h < 2.0))
|
||
{
|
||
r=x;
|
||
g=c;
|
||
}
|
||
else
|
||
if ((2.0 <= h) && (h < 3.0))
|
||
{
|
||
g=c;
|
||
b=x;
|
||
}
|
||
else
|
||
if ((3.0 <= h) && (h < 4.0))
|
||
{
|
||
g=x;
|
||
b=c;
|
||
}
|
||
else
|
||
if ((4.0 <= h) && (h < 5.0))
|
||
{
|
||
r=x;
|
||
b=c;
|
||
}
|
||
else
|
||
if ((5.0 <= h) && (h < 6.0))
|
||
{
|
||
r=c;
|
||
b=x;
|
||
}
|
||
m=luma-(0.298839*r+0.586811*g+0.114350*b);
|
||
z=1.0;
|
||
if (m < 0.0)
|
||
{
|
||
z=luma/(luma-m);
|
||
m=0.0;
|
||
}
|
||
else
|
||
if (m+c > 1.0)
|
||
{
|
||
z=(1.0-luma)/(m+c-luma);
|
||
m=1.0-z*c;
|
||
}
|
||
*red=ClampToQuantum(QuantumRange*(z*r+m));
|
||
*green=ClampToQuantum(QuantumRange*(z*g+m));
|
||
*blue=ClampToQuantum(QuantumRange*(z*b+m));
|
||
}
|
||
|
||
/*
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
% %
|
||
% %
|
||
% %
|
||
% C o n v e r t H S B T o R G B %
|
||
% %
|
||
% %
|
||
% %
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
%
|
||
% ConvertHSBToRGB() transforms a (hue, saturation, brightness) to a (red,
|
||
% green, blue) triple.
|
||
%
|
||
% The format of the ConvertHSBToRGBImage method is:
|
||
%
|
||
% void ConvertHSBToRGB(const double hue,const double saturation,
|
||
% const double brightness,Quantum *red,Quantum *green,Quantum *blue)
|
||
%
|
||
% A description of each parameter follows:
|
||
%
|
||
% o hue, saturation, brightness: A double value representing a
|
||
% component of the HSB color space.
|
||
%
|
||
% o red, green, blue: A pointer to a pixel component of type Quantum.
|
||
%
|
||
*/
|
||
MagickExport void ConvertHSBToRGB(const double hue,const double saturation,
|
||
const double brightness,Quantum *red,Quantum *green,Quantum *blue)
|
||
{
|
||
double
|
||
f,
|
||
h,
|
||
p,
|
||
q,
|
||
t;
|
||
|
||
/*
|
||
Convert HSB to RGB colorspace.
|
||
*/
|
||
assert(red != (Quantum *) NULL);
|
||
assert(green != (Quantum *) NULL);
|
||
assert(blue != (Quantum *) NULL);
|
||
if (fabs(saturation) < MagickEpsilon)
|
||
{
|
||
*red=ClampToQuantum(QuantumRange*brightness);
|
||
*green=(*red);
|
||
*blue=(*red);
|
||
return;
|
||
}
|
||
h=6.0*(hue-floor(hue));
|
||
f=h-floor((double) h);
|
||
p=brightness*(1.0-saturation);
|
||
q=brightness*(1.0-saturation*f);
|
||
t=brightness*(1.0-(saturation*(1.0-f)));
|
||
switch ((int) h)
|
||
{
|
||
case 0:
|
||
default:
|
||
{
|
||
*red=ClampToQuantum(QuantumRange*brightness);
|
||
*green=ClampToQuantum(QuantumRange*t);
|
||
*blue=ClampToQuantum(QuantumRange*p);
|
||
break;
|
||
}
|
||
case 1:
|
||
{
|
||
*red=ClampToQuantum(QuantumRange*q);
|
||
*green=ClampToQuantum(QuantumRange*brightness);
|
||
*blue=ClampToQuantum(QuantumRange*p);
|
||
break;
|
||
}
|
||
case 2:
|
||
{
|
||
*red=ClampToQuantum(QuantumRange*p);
|
||
*green=ClampToQuantum(QuantumRange*brightness);
|
||
*blue=ClampToQuantum(QuantumRange*t);
|
||
break;
|
||
}
|
||
case 3:
|
||
{
|
||
*red=ClampToQuantum(QuantumRange*p);
|
||
*green=ClampToQuantum(QuantumRange*q);
|
||
*blue=ClampToQuantum(QuantumRange*brightness);
|
||
break;
|
||
}
|
||
case 4:
|
||
{
|
||
*red=ClampToQuantum(QuantumRange*t);
|
||
*green=ClampToQuantum(QuantumRange*p);
|
||
*blue=ClampToQuantum(QuantumRange*brightness);
|
||
break;
|
||
}
|
||
case 5:
|
||
{
|
||
*red=ClampToQuantum(QuantumRange*brightness);
|
||
*green=ClampToQuantum(QuantumRange*p);
|
||
*blue=ClampToQuantum(QuantumRange*q);
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/*
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
% %
|
||
% %
|
||
% %
|
||
% C o n v e r t H S I T o R G B %
|
||
% %
|
||
% %
|
||
% %
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
%
|
||
% ConvertHSIToRGB() transforms a (hue, saturation, intensity) to a (red,
|
||
% green, blue) triple.
|
||
%
|
||
% The format of the ConvertHSIToRGBImage method is:
|
||
%
|
||
% void ConvertHSIToRGB(const double hue,const double saturation,
|
||
% const double intensity,Quantum *red,Quantum *green,Quantum *blue)
|
||
%
|
||
% A description of each parameter follows:
|
||
%
|
||
% o hue, saturation, intensity: A double value representing a
|
||
% component of the HSI color space.
|
||
%
|
||
% o red, green, blue: A pointer to a pixel component of type Quantum.
|
||
%
|
||
*/
|
||
MagickExport void ConvertHSIToRGB(const double hue,const double saturation,
|
||
const double intensity,Quantum *red,Quantum *green,Quantum *blue)
|
||
{
|
||
double
|
||
b,
|
||
g,
|
||
h,
|
||
r;
|
||
|
||
/*
|
||
Convert HSI to RGB colorspace.
|
||
*/
|
||
assert(red != (Quantum *) NULL);
|
||
assert(green != (Quantum *) NULL);
|
||
assert(blue != (Quantum *) NULL);
|
||
h=360.0*hue;
|
||
h-=360.0*floor(h/360.0);
|
||
if (h < 120.0)
|
||
{
|
||
b=intensity*(1.0-saturation);
|
||
r=intensity*(1.0+saturation*cos(h*(MagickPI/180.0))/cos((60.0-h)*
|
||
(MagickPI/180.0)));
|
||
g=3.0*intensity-r-b;
|
||
}
|
||
else
|
||
if (h < 240.0)
|
||
{
|
||
h-=120.0;
|
||
r=intensity*(1.0-saturation);
|
||
g=intensity*(1.0+saturation*cos(h*(MagickPI/180.0))/cos((60.0-h)*
|
||
(MagickPI/180.0)));
|
||
b=3.0*intensity-r-g;
|
||
}
|
||
else
|
||
{
|
||
h-=240.0;
|
||
g=intensity*(1.0-saturation);
|
||
b=intensity*(1.0+saturation*cos(h*(MagickPI/180.0))/cos((60.0-h)*
|
||
(MagickPI/180.0)));
|
||
r=3.0*intensity-g-b;
|
||
}
|
||
*red=ClampToQuantum(QuantumRange*r);
|
||
*green=ClampToQuantum(QuantumRange*g);
|
||
*blue=ClampToQuantum(QuantumRange*b);
|
||
}
|
||
|
||
/*
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
% %
|
||
% %
|
||
% %
|
||
% C o n v e r t H S L T o R G B %
|
||
% %
|
||
% %
|
||
% %
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
%
|
||
% ConvertHSLToRGB() transforms a (hue, saturation, lightness) to a (red,
|
||
% green, blue) triple.
|
||
%
|
||
% The format of the ConvertHSLToRGBImage method is:
|
||
%
|
||
% void ConvertHSLToRGB(const double hue,const double saturation,
|
||
% const double lightness,Quantum *red,Quantum *green,Quantum *blue)
|
||
%
|
||
% A description of each parameter follows:
|
||
%
|
||
% o hue, saturation, lightness: A double value representing a
|
||
% component of the HSL color space.
|
||
%
|
||
% o red, green, blue: A pointer to a pixel component of type Quantum.
|
||
%
|
||
*/
|
||
MagickExport void ConvertHSLToRGB(const double hue,const double saturation,
|
||
const double lightness,Quantum *red,Quantum *green,Quantum *blue)
|
||
{
|
||
double
|
||
b,
|
||
c,
|
||
g,
|
||
h,
|
||
min,
|
||
r,
|
||
x;
|
||
|
||
/*
|
||
Convert HSL to RGB colorspace.
|
||
*/
|
||
assert(red != (Quantum *) NULL);
|
||
assert(green != (Quantum *) NULL);
|
||
assert(blue != (Quantum *) NULL);
|
||
h=hue*360.0;
|
||
if (lightness <= 0.5)
|
||
c=2.0*lightness*saturation;
|
||
else
|
||
c=(2.0-2.0*lightness)*saturation;
|
||
min=lightness-0.5*c;
|
||
h-=360.0*floor(h/360.0);
|
||
h/=60.0;
|
||
x=c*(1.0-fabs(h-2.0*floor(h/2.0)-1.0));
|
||
switch ((int) floor(h))
|
||
{
|
||
case 0:
|
||
{
|
||
r=min+c;
|
||
g=min+x;
|
||
b=min;
|
||
break;
|
||
}
|
||
case 1:
|
||
{
|
||
r=min+x;
|
||
g=min+c;
|
||
b=min;
|
||
break;
|
||
}
|
||
case 2:
|
||
{
|
||
r=min;
|
||
g=min+c;
|
||
b=min+x;
|
||
break;
|
||
}
|
||
case 3:
|
||
{
|
||
r=min;
|
||
g=min+x;
|
||
b=min+c;
|
||
break;
|
||
}
|
||
case 4:
|
||
{
|
||
r=min+x;
|
||
g=min;
|
||
b=min+c;
|
||
break;
|
||
}
|
||
case 5:
|
||
{
|
||
r=min+c;
|
||
g=min;
|
||
b=min+x;
|
||
break;
|
||
}
|
||
default:
|
||
{
|
||
r=0.0;
|
||
g=0.0;
|
||
b=0.0;
|
||
}
|
||
}
|
||
*red=ClampToQuantum(QuantumRange*r);
|
||
*green=ClampToQuantum(QuantumRange*g);
|
||
*blue=ClampToQuantum(QuantumRange*b);
|
||
}
|
||
|
||
/*
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
% %
|
||
% %
|
||
% %
|
||
% C o n v e r t H S V T o R G B %
|
||
% %
|
||
% %
|
||
% %
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
%
|
||
% ConvertHSVToRGB() transforms a (hue, saturation, value) to a (red,
|
||
% green, blue) triple.
|
||
%
|
||
% The format of the ConvertHSVToRGBImage method is:
|
||
%
|
||
% void ConvertHSVToRGB(const double hue,const double saturation,
|
||
% const double value,Quantum *red,Quantum *green,Quantum *blue)
|
||
%
|
||
% A description of each parameter follows:
|
||
%
|
||
% o hue, saturation, value: A double value representing a
|
||
% component of the HSV color space.
|
||
%
|
||
% o red, green, blue: A pointer to a pixel component of type Quantum.
|
||
%
|
||
*/
|
||
MagickExport void ConvertHSVToRGB(const double hue,const double saturation,
|
||
const double value,Quantum *red,Quantum *green,Quantum *blue)
|
||
{
|
||
double
|
||
b,
|
||
c,
|
||
g,
|
||
h,
|
||
min,
|
||
r,
|
||
x;
|
||
|
||
/*
|
||
Convert HSV to RGB colorspace.
|
||
*/
|
||
assert(red != (Quantum *) NULL);
|
||
assert(green != (Quantum *) NULL);
|
||
assert(blue != (Quantum *) NULL);
|
||
h=hue*360.0;
|
||
c=value*saturation;
|
||
min=value-c;
|
||
h-=360.0*floor(h/360.0);
|
||
h/=60.0;
|
||
x=c*(1.0-fabs(h-2.0*floor(h/2.0)-1.0));
|
||
switch ((int) floor(h))
|
||
{
|
||
case 0:
|
||
{
|
||
r=min+c;
|
||
g=min+x;
|
||
b=min;
|
||
break;
|
||
}
|
||
case 1:
|
||
{
|
||
r=min+x;
|
||
g=min+c;
|
||
b=min;
|
||
break;
|
||
}
|
||
case 2:
|
||
{
|
||
r=min;
|
||
g=min+c;
|
||
b=min+x;
|
||
break;
|
||
}
|
||
case 3:
|
||
{
|
||
r=min;
|
||
g=min+x;
|
||
b=min+c;
|
||
break;
|
||
}
|
||
case 4:
|
||
{
|
||
r=min+x;
|
||
g=min;
|
||
b=min+c;
|
||
break;
|
||
}
|
||
case 5:
|
||
{
|
||
r=min+c;
|
||
g=min;
|
||
b=min+x;
|
||
break;
|
||
}
|
||
default:
|
||
{
|
||
r=0.0;
|
||
g=0.0;
|
||
b=0.0;
|
||
}
|
||
}
|
||
*red=ClampToQuantum(QuantumRange*r);
|
||
*green=ClampToQuantum(QuantumRange*g);
|
||
*blue=ClampToQuantum(QuantumRange*b);
|
||
}
|
||
|
||
/*
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
% %
|
||
% %
|
||
% %
|
||
% C o n v e r t H W B T o R G B %
|
||
% %
|
||
% %
|
||
% %
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
%
|
||
% ConvertHWBToRGB() transforms a (hue, whiteness, blackness) to a (red, green,
|
||
% blue) triple.
|
||
%
|
||
% The format of the ConvertHWBToRGBImage method is:
|
||
%
|
||
% void ConvertHWBToRGB(const double hue,const double whiteness,
|
||
% const double blackness,Quantum *red,Quantum *green,Quantum *blue)
|
||
%
|
||
% A description of each parameter follows:
|
||
%
|
||
% o hue, whiteness, blackness: A double value representing a
|
||
% component of the HWB color space.
|
||
%
|
||
% o red, green, blue: A pointer to a pixel component of type Quantum.
|
||
%
|
||
*/
|
||
MagickExport void ConvertHWBToRGB(const double hue,const double whiteness,
|
||
const double blackness,Quantum *red,Quantum *green,Quantum *blue)
|
||
{
|
||
double
|
||
b,
|
||
f,
|
||
g,
|
||
n,
|
||
r,
|
||
v;
|
||
|
||
ssize_t
|
||
i;
|
||
|
||
/*
|
||
Convert HWB to RGB colorspace.
|
||
*/
|
||
assert(red != (Quantum *) NULL);
|
||
assert(green != (Quantum *) NULL);
|
||
assert(blue != (Quantum *) NULL);
|
||
v=1.0-blackness;
|
||
if (fabs(hue-(-1.0)) < MagickEpsilon)
|
||
{
|
||
*red=ClampToQuantum(QuantumRange*v);
|
||
*green=ClampToQuantum(QuantumRange*v);
|
||
*blue=ClampToQuantum(QuantumRange*v);
|
||
return;
|
||
}
|
||
i=CastDoubleToLong(floor(6.0*hue));
|
||
f=6.0*hue-i;
|
||
if ((i & 0x01) != 0)
|
||
f=1.0-f;
|
||
n=whiteness+f*(v-whiteness); /* linear interpolation */
|
||
switch (i)
|
||
{
|
||
default:
|
||
case 6:
|
||
case 0: r=v; g=n; b=whiteness; break;
|
||
case 1: r=n; g=v; b=whiteness; break;
|
||
case 2: r=whiteness; g=v; b=n; break;
|
||
case 3: r=whiteness; g=n; b=v; break;
|
||
case 4: r=n; g=whiteness; b=v; break;
|
||
case 5: r=v; g=whiteness; b=n; break;
|
||
}
|
||
*red=ClampToQuantum(QuantumRange*r);
|
||
*green=ClampToQuantum(QuantumRange*g);
|
||
*blue=ClampToQuantum(QuantumRange*b);
|
||
}
|
||
|
||
/*
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
% %
|
||
% %
|
||
% %
|
||
% C o n v e r t L C H a b T o R G B %
|
||
% %
|
||
% %
|
||
% %
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
%
|
||
% ConvertLCHabToRGB() transforms a (luma, chroma, hue) to a (red, green,
|
||
% blue) triple.
|
||
%
|
||
% The format of the ConvertLCHabToRGBImage method is:
|
||
%
|
||
% void ConvertLCHabToRGB(const double luma,const double chroma,
|
||
% const double hue,Quantum *red,Quantum *green,Quantum *blue)
|
||
%
|
||
% A description of each parameter follows:
|
||
%
|
||
% o luma, chroma, hue: A double value representing a component of the LCHab
|
||
% color space.
|
||
%
|
||
% o red, green, blue: A pointer to a pixel component of type Quantum.
|
||
%
|
||
*/
|
||
|
||
static inline void ConvertLCHabToXYZ(const double luma,const double chroma,
|
||
const double hue,double *X,double *Y,double *Z)
|
||
{
|
||
ConvertLabToXYZ(luma,chroma*cos(hue*MagickPI/180.0),chroma*
|
||
sin(hue*MagickPI/180.0),X,Y,Z);
|
||
}
|
||
|
||
MagickExport void ConvertLCHabToRGB(const double luma,const double chroma,
|
||
const double hue,Quantum *red,Quantum *green,Quantum *blue)
|
||
{
|
||
double
|
||
X,
|
||
Y,
|
||
Z;
|
||
|
||
/*
|
||
Convert LCHab to RGB colorspace.
|
||
*/
|
||
assert(red != (Quantum *) NULL);
|
||
assert(green != (Quantum *) NULL);
|
||
assert(blue != (Quantum *) NULL);
|
||
ConvertLCHabToXYZ(100.0*luma,255.0*(chroma-0.5),360.0*hue,&X,&Y,&Z);
|
||
ConvertXYZToRGB(X,Y,Z,red,green,blue);
|
||
}
|
||
|
||
/*
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
% %
|
||
% %
|
||
% %
|
||
% C o n v e r t L C H u v T o R G B %
|
||
% %
|
||
% %
|
||
% %
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
%
|
||
% ConvertLCHuvToRGB() transforms a (luma, chroma, hue) to a (red, green,
|
||
% blue) triple.
|
||
%
|
||
% The format of the ConvertLCHuvToRGBImage method is:
|
||
%
|
||
% void ConvertLCHuvToRGB(const double luma,const double chroma,
|
||
% const double hue,Quantum *red,Quantum *green,Quantum *blue)
|
||
%
|
||
% A description of each parameter follows:
|
||
%
|
||
% o luma, chroma, hue: A double value representing a component of the LCHuv
|
||
% color space.
|
||
%
|
||
% o red, green, blue: A pointer to a pixel component of type Quantum.
|
||
%
|
||
*/
|
||
|
||
static inline void ConvertLCHuvToXYZ(const double luma,const double chroma,
|
||
const double hue,double *X,double *Y,double *Z)
|
||
{
|
||
ConvertLuvToXYZ(luma,chroma*cos(hue*MagickPI/180.0),chroma*
|
||
sin(hue*MagickPI/180.0),X,Y,Z);
|
||
}
|
||
|
||
MagickExport void ConvertLCHuvToRGB(const double luma,const double chroma,
|
||
const double hue,Quantum *red,Quantum *green,Quantum *blue)
|
||
{
|
||
double
|
||
X,
|
||
Y,
|
||
Z;
|
||
|
||
/*
|
||
Convert LCHuv to RGB colorspace.
|
||
*/
|
||
assert(red != (Quantum *) NULL);
|
||
assert(green != (Quantum *) NULL);
|
||
assert(blue != (Quantum *) NULL);
|
||
ConvertLCHuvToXYZ(100.0*luma,255.0*(chroma-0.5),360.0*hue,&X,&Y,&Z);
|
||
ConvertXYZToRGB(X,Y,Z,red,green,blue);
|
||
}
|
||
|
||
/*
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
% %
|
||
% %
|
||
% %
|
||
% C o n v e r t R G B T o H C L %
|
||
% %
|
||
% %
|
||
% %
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
%
|
||
% ConvertRGBToHCL() transforms a (red, green, blue) to a (hue, chroma,
|
||
% luma) triple.
|
||
%
|
||
% The format of the ConvertRGBToHCL method is:
|
||
%
|
||
% void ConvertRGBToHCL(const Quantum red,const Quantum green,
|
||
% const Quantum blue,double *hue,double *chroma,double *luma)
|
||
%
|
||
% A description of each parameter follows:
|
||
%
|
||
% o red, green, blue: A Quantum value representing the red, green, and
|
||
% blue component of a pixel.
|
||
%
|
||
% o hue, chroma, luma: A pointer to a double value representing a
|
||
% component of the HCL color space.
|
||
%
|
||
*/
|
||
MagickExport void ConvertRGBToHCL(const Quantum red,const Quantum green,
|
||
const Quantum blue,double *hue,double *chroma,double *luma)
|
||
{
|
||
double
|
||
b,
|
||
c,
|
||
g,
|
||
h,
|
||
max,
|
||
r;
|
||
|
||
/*
|
||
Convert RGB to HCL colorspace.
|
||
*/
|
||
assert(hue != (double *) NULL);
|
||
assert(chroma != (double *) NULL);
|
||
assert(luma != (double *) NULL);
|
||
r=(double) red;
|
||
g=(double) green;
|
||
b=(double) blue;
|
||
max=MagickMax(r,MagickMax(g,b));
|
||
c=max-(double) MagickMin(r,MagickMin(g,b));
|
||
h=0.0;
|
||
if (fabs(c) < MagickEpsilon)
|
||
h=0.0;
|
||
else
|
||
if (red == (Quantum) max)
|
||
h=fmod((g-b)/c+6.0,6.0);
|
||
else
|
||
if (green == (Quantum) max)
|
||
h=((b-r)/c)+2.0;
|
||
else
|
||
if (blue == (Quantum) max)
|
||
h=((r-g)/c)+4.0;
|
||
*hue=(h/6.0);
|
||
*chroma=QuantumScale*c;
|
||
*luma=QuantumScale*(0.298839*r+0.586811*g+0.114350*b);
|
||
}
|
||
|
||
/*
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
% %
|
||
% %
|
||
% %
|
||
% C o n v e r t R G B T o H C L p %
|
||
% %
|
||
% %
|
||
% %
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
%
|
||
% ConvertRGBToHCLp() transforms a (red, green, blue) to a (hue, chroma,
|
||
% luma) triple.
|
||
%
|
||
% The format of the ConvertRGBToHCLp method is:
|
||
%
|
||
% void ConvertRGBToHCLp(const Quantum red,const Quantum green,
|
||
% const Quantum blue,double *hue,double *chroma,double *luma)
|
||
%
|
||
% A description of each parameter follows:
|
||
%
|
||
% o red, green, blue: A Quantum value representing the red, green, and
|
||
% blue component of a pixel.
|
||
%
|
||
% o hue, chroma, luma: A pointer to a double value representing a
|
||
% component of the HCLp color space.
|
||
%
|
||
*/
|
||
MagickExport void ConvertRGBToHCLp(const Quantum red,const Quantum green,
|
||
const Quantum blue,double *hue,double *chroma,double *luma)
|
||
{
|
||
double
|
||
b,
|
||
c,
|
||
g,
|
||
h,
|
||
max,
|
||
r;
|
||
|
||
/*
|
||
Convert RGB to HCLp colorspace.
|
||
*/
|
||
assert(hue != (double *) NULL);
|
||
assert(chroma != (double *) NULL);
|
||
assert(luma != (double *) NULL);
|
||
r=(double) red;
|
||
g=(double) green;
|
||
b=(double) blue;
|
||
max=MagickMax(r,MagickMax(g,b));
|
||
c=max-(double) MagickMin(r,MagickMin(g,b));
|
||
h=0.0;
|
||
if (fabs(c) < MagickEpsilon)
|
||
h=0.0;
|
||
else
|
||
if (red == (Quantum) max)
|
||
h=fmod((g-b)/c+6.0,6.0);
|
||
else
|
||
if (green == (Quantum) max)
|
||
h=((b-r)/c)+2.0;
|
||
else
|
||
if (blue == (Quantum) max)
|
||
h=((r-g)/c)+4.0;
|
||
*hue=(h/6.0);
|
||
*chroma=QuantumScale*c;
|
||
*luma=QuantumScale*(0.298839*r+0.586811*g+0.114350*b);
|
||
}
|
||
|
||
/*
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
% %
|
||
% %
|
||
% %
|
||
% C o n v e r t R G B T o H S B %
|
||
% %
|
||
% %
|
||
% %
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
%
|
||
% ConvertRGBToHSB() transforms a (red, green, blue) to a (hue, saturation,
|
||
% brightness) triple.
|
||
%
|
||
% The format of the ConvertRGBToHSB method is:
|
||
%
|
||
% void ConvertRGBToHSB(const Quantum red,const Quantum green,
|
||
% const Quantum blue,double *hue,double *saturation,double *brightness)
|
||
%
|
||
% A description of each parameter follows:
|
||
%
|
||
% o red, green, blue: A Quantum value representing the red, green, and
|
||
% blue component of a pixel..
|
||
%
|
||
% o hue, saturation, brightness: A pointer to a double value representing a
|
||
% component of the HSB color space.
|
||
%
|
||
*/
|
||
MagickExport void ConvertRGBToHSB(const Quantum red,const Quantum green,
|
||
const Quantum blue,double *hue,double *saturation,double *brightness)
|
||
{
|
||
double
|
||
b,
|
||
delta,
|
||
g,
|
||
max,
|
||
min,
|
||
r;
|
||
|
||
/*
|
||
Convert RGB to HSB colorspace.
|
||
*/
|
||
assert(hue != (double *) NULL);
|
||
assert(saturation != (double *) NULL);
|
||
assert(brightness != (double *) NULL);
|
||
*hue=0.0;
|
||
*saturation=0.0;
|
||
*brightness=0.0;
|
||
r=(double) red;
|
||
g=(double) green;
|
||
b=(double) blue;
|
||
min=r < g ? r : g;
|
||
if (b < min)
|
||
min=b;
|
||
max=r > g ? r : g;
|
||
if (b > max)
|
||
max=b;
|
||
if (fabs(max) < MagickEpsilon)
|
||
return;
|
||
delta=max-min;
|
||
*saturation=delta/max;
|
||
*brightness=QuantumScale*max;
|
||
if (fabs(delta) < MagickEpsilon)
|
||
return;
|
||
if (fabs(r-max) < MagickEpsilon)
|
||
*hue=(g-b)/delta;
|
||
else
|
||
if (fabs(g-max) < MagickEpsilon)
|
||
*hue=2.0+(b-r)/delta;
|
||
else
|
||
*hue=4.0+(r-g)/delta;
|
||
*hue/=6.0;
|
||
if (*hue < 0.0)
|
||
*hue+=1.0;
|
||
}
|
||
|
||
/*
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
% %
|
||
% %
|
||
% %
|
||
% C o n v e r t R G B T o H S I %
|
||
% %
|
||
% %
|
||
% %
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
%
|
||
% ConvertRGBToHSI() transforms a (red, green, blue) to a (hue, saturation,
|
||
% intensity) triple.
|
||
%
|
||
% The format of the ConvertRGBToHSI method is:
|
||
%
|
||
% void ConvertRGBToHSI(const Quantum red,const Quantum green,
|
||
% const Quantum blue,double *hue,double *saturation,double *intensity)
|
||
%
|
||
% A description of each parameter follows:
|
||
%
|
||
% o red, green, blue: A Quantum value representing the red, green, and
|
||
% blue component of a pixel..
|
||
%
|
||
% o hue, saturation, intensity: A pointer to a double value representing a
|
||
% component of the HSI color space.
|
||
%
|
||
*/
|
||
MagickExport void ConvertRGBToHSI(const Quantum red,const Quantum green,
|
||
const Quantum blue,double *hue,double *saturation,double *intensity)
|
||
{
|
||
double
|
||
alpha,
|
||
beta;
|
||
|
||
/*
|
||
Convert RGB to HSI colorspace.
|
||
*/
|
||
assert(hue != (double *) NULL);
|
||
assert(saturation != (double *) NULL);
|
||
assert(intensity != (double *) NULL);
|
||
*intensity=(QuantumScale*red+QuantumScale*green+QuantumScale*blue)/3.0;
|
||
if (*intensity <= 0.0)
|
||
{
|
||
*hue=0.0;
|
||
*saturation=0.0;
|
||
return;
|
||
}
|
||
*saturation=1.0-MagickMin(QuantumScale*red,MagickMin(QuantumScale*green,
|
||
QuantumScale*blue))/(*intensity);
|
||
alpha=0.5*(2.0*QuantumScale*red-QuantumScale*green-QuantumScale*blue);
|
||
beta=0.8660254037844385*(QuantumScale*green-QuantumScale*blue);
|
||
*hue=atan2(beta,alpha)*(180.0/MagickPI)/360.0;
|
||
if (*hue < 0.0)
|
||
*hue+=1.0;
|
||
}
|
||
|
||
/*
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
% %
|
||
% %
|
||
% %
|
||
% C o n v e r t R G B T o H S L %
|
||
% %
|
||
% %
|
||
% %
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
%
|
||
% ConvertRGBToHSL() transforms a (red, green, blue) to a (hue, saturation,
|
||
% lightness) triple.
|
||
%
|
||
% The format of the ConvertRGBToHSL method is:
|
||
%
|
||
% void ConvertRGBToHSL(const Quantum red,const Quantum green,
|
||
% const Quantum blue,double *hue,double *saturation,double *lightness)
|
||
%
|
||
% A description of each parameter follows:
|
||
%
|
||
% o red, green, blue: A Quantum value representing the red, green, and
|
||
% blue component of a pixel..
|
||
%
|
||
% o hue, saturation, lightness: A pointer to a double value representing a
|
||
% component of the HSL color space.
|
||
%
|
||
*/
|
||
MagickExport void ConvertRGBToHSL(const Quantum red,const Quantum green,
|
||
const Quantum blue,double *hue,double *saturation,double *lightness)
|
||
{
|
||
double
|
||
c,
|
||
max,
|
||
min;
|
||
|
||
/*
|
||
Convert RGB to HSL colorspace.
|
||
*/
|
||
assert(hue != (double *) NULL);
|
||
assert(saturation != (double *) NULL);
|
||
assert(lightness != (double *) NULL);
|
||
max=MagickMax(QuantumScale*red,MagickMax(QuantumScale*green,
|
||
QuantumScale*blue));
|
||
min=MagickMin(QuantumScale*red,MagickMin(QuantumScale*green,
|
||
QuantumScale*blue));
|
||
c=max-min;
|
||
*lightness=(max+min)/2.0;
|
||
if (c <= 0.0)
|
||
{
|
||
*hue=0.0;
|
||
*saturation=0.0;
|
||
return;
|
||
}
|
||
if (fabs(max-QuantumScale*red) < MagickEpsilon)
|
||
{
|
||
*hue=(QuantumScale*green-QuantumScale*blue)/c;
|
||
if ((QuantumScale*green) < (QuantumScale*blue))
|
||
*hue+=6.0;
|
||
}
|
||
else
|
||
if (fabs(max-QuantumScale*green) < MagickEpsilon)
|
||
*hue=2.0+(QuantumScale*blue-QuantumScale*red)/c;
|
||
else
|
||
*hue=4.0+(QuantumScale*red-QuantumScale*green)/c;
|
||
*hue*=60.0/360.0;
|
||
if (*lightness <= 0.5)
|
||
*saturation=c/(2.0*(*lightness));
|
||
else
|
||
*saturation=c/(2.0-2.0*(*lightness));
|
||
}
|
||
|
||
/*
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
% %
|
||
% %
|
||
% %
|
||
% C o n v e r t R G B T o H S V %
|
||
% %
|
||
% %
|
||
% %
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
%
|
||
% ConvertRGBToHSV() transforms a (red, green, blue) to a (hue, saturation,
|
||
% value) triple.
|
||
%
|
||
% The format of the ConvertRGBToHSV method is:
|
||
%
|
||
% void ConvertRGBToHSV(const Quantum red,const Quantum green,
|
||
% const Quantum blue,double *hue,double *saturation,double *value)
|
||
%
|
||
% A description of each parameter follows:
|
||
%
|
||
% o red, green, blue: A Quantum value representing the red, green, and
|
||
% blue component of a pixel..
|
||
%
|
||
% o hue, saturation, value: A pointer to a double value representing a
|
||
% component of the HSV color space.
|
||
%
|
||
*/
|
||
MagickExport void ConvertRGBToHSV(const Quantum red,const Quantum green,
|
||
const Quantum blue,double *hue,double *saturation,double *value)
|
||
{
|
||
double
|
||
c,
|
||
max,
|
||
min;
|
||
|
||
/*
|
||
Convert RGB to HSV colorspace.
|
||
*/
|
||
assert(hue != (double *) NULL);
|
||
assert(saturation != (double *) NULL);
|
||
assert(value != (double *) NULL);
|
||
max=MagickMax(QuantumScale*red,MagickMax(QuantumScale*green,
|
||
QuantumScale*blue));
|
||
min=MagickMin(QuantumScale*red,MagickMin(QuantumScale*green,
|
||
QuantumScale*blue));
|
||
c=max-min;
|
||
*value=max;
|
||
if (c <= 0.0)
|
||
{
|
||
*hue=0.0;
|
||
*saturation=0.0;
|
||
return;
|
||
}
|
||
if (fabs(max-QuantumScale*red) < MagickEpsilon)
|
||
{
|
||
*hue=(QuantumScale*green-QuantumScale*blue)/c;
|
||
if ((QuantumScale*green) < (QuantumScale*blue))
|
||
*hue+=6.0;
|
||
}
|
||
else
|
||
if (fabs(max-QuantumScale*green) < MagickEpsilon)
|
||
*hue=2.0+(QuantumScale*blue-QuantumScale*red)/c;
|
||
else
|
||
*hue=4.0+(QuantumScale*red-QuantumScale*green)/c;
|
||
*hue*=60.0/360.0;
|
||
*saturation=c/max;
|
||
}
|
||
|
||
/*
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
% %
|
||
% %
|
||
% %
|
||
% C o n v e r t R G B T o H W B %
|
||
% %
|
||
% %
|
||
% %
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
%
|
||
% ConvertRGBToHWB() transforms a (red, green, blue) to a (hue, whiteness,
|
||
% blackness) triple.
|
||
%
|
||
% The format of the ConvertRGBToHWB method is:
|
||
%
|
||
% void ConvertRGBToHWB(const Quantum red,const Quantum green,
|
||
% const Quantum blue,double *hue,double *whiteness,double *blackness)
|
||
%
|
||
% A description of each parameter follows:
|
||
%
|
||
% o red, green, blue: A Quantum value representing the red, green, and
|
||
% blue component of a pixel.
|
||
%
|
||
% o hue, whiteness, blackness: A pointer to a double value representing a
|
||
% component of the HWB color space.
|
||
%
|
||
*/
|
||
MagickExport void ConvertRGBToHWB(const Quantum red,const Quantum green,
|
||
const Quantum blue,double *hue,double *whiteness,double *blackness)
|
||
{
|
||
double
|
||
b,
|
||
f,
|
||
g,
|
||
p,
|
||
r,
|
||
v,
|
||
w;
|
||
|
||
/*
|
||
Convert RGB to HWB colorspace.
|
||
*/
|
||
assert(hue != (double *) NULL);
|
||
assert(whiteness != (double *) NULL);
|
||
assert(blackness != (double *) NULL);
|
||
r=(double) red;
|
||
g=(double) green;
|
||
b=(double) blue;
|
||
w=MagickMin(r,MagickMin(g,b));
|
||
v=MagickMax(r,MagickMax(g,b));
|
||
*blackness=1.0-QuantumScale*v;
|
||
*whiteness=QuantumScale*w;
|
||
if (fabs(v-w) < MagickEpsilon)
|
||
{
|
||
*hue=(-1.0);
|
||
return;
|
||
}
|
||
f=(fabs(r-w) < MagickEpsilon) ? g-b : ((fabs(g-w) < MagickEpsilon) ? b-r : r-g);
|
||
p=(fabs(r-w) < MagickEpsilon) ? 3.0 : ((fabs(g-w) < MagickEpsilon) ? 5.0 : 1.0);
|
||
*hue=(p-f/(v-1.0*w))/6.0;
|
||
}
|
||
|
||
/*
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
% %
|
||
% %
|
||
% %
|
||
% C o n v e r t R G B T o L C H a b %
|
||
% %
|
||
% %
|
||
% %
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
%
|
||
% ConvertRGBToLCHab() transforms a (red, green, blue) to a (luma, chroma,
|
||
% hue) triple.
|
||
%
|
||
% The format of the ConvertRGBToLCHab method is:
|
||
%
|
||
% void ConvertRGBToLCHab(const Quantum red,const Quantum green,
|
||
% const Quantum blue,double *luma,double *chroma,double *hue)
|
||
%
|
||
% A description of each parameter follows:
|
||
%
|
||
% o red, green, blue: A Quantum value representing the red, green, and
|
||
% blue component of a pixel.
|
||
%
|
||
% o hue, chroma, luma: A pointer to a double value representing a
|
||
% component of the LCHab color space.
|
||
%
|
||
*/
|
||
static inline void ConvertXYZToLCHab(const double X,const double Y,
|
||
const double Z,double *luma,double *chroma,double *hue)
|
||
{
|
||
double
|
||
a,
|
||
b;
|
||
|
||
ConvertXYZToLab(X,Y,Z,luma,&a,&b);
|
||
*chroma=hypot(255.0*(a-0.5),255.0*(b-0.5))/255.0+0.5;
|
||
*hue=180.0*atan2(255.0*(b-0.5),255.0*(a-0.5))/MagickPI/360.0;
|
||
if (*hue < 0.0)
|
||
*hue+=1.0;
|
||
}
|
||
|
||
MagickExport void ConvertRGBToLCHab(const Quantum red,const Quantum green,
|
||
const Quantum blue,double *luma,double *chroma,double *hue)
|
||
{
|
||
double
|
||
X,
|
||
Y,
|
||
Z;
|
||
|
||
/*
|
||
Convert RGB to LCHab colorspace.
|
||
*/
|
||
assert(luma != (double *) NULL);
|
||
assert(chroma != (double *) NULL);
|
||
assert(hue != (double *) NULL);
|
||
ConvertRGBToXYZ(red,green,blue,&X,&Y,&Z);
|
||
ConvertXYZToLCHab(X,Y,Z,luma,chroma,hue);
|
||
}
|
||
|
||
/*
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
% %
|
||
% %
|
||
% %
|
||
% C o n v e r t R G B T o L C H u v %
|
||
% %
|
||
% %
|
||
% %
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
%
|
||
% ConvertRGBToLCHuv() transforms a (red, green, blue) to a (luma, chroma,
|
||
% hue) triple.
|
||
%
|
||
% The format of the ConvertRGBToLCHuv method is:
|
||
%
|
||
% void ConvertRGBToLCHuv(const Quantum red,const Quantum green,
|
||
% const Quantum blue,double *luma,double *chroma,double *hue)
|
||
%
|
||
% A description of each parameter follows:
|
||
%
|
||
% o red, green, blue: A Quantum value representing the red, green, and
|
||
% blue component of a pixel.
|
||
%
|
||
% o hue, chroma, luma: A pointer to a double value representing a
|
||
% component of the LCHuv color space.
|
||
%
|
||
*/
|
||
|
||
static inline void ConvertXYZToLCHuv(const double X,const double Y,
|
||
const double Z,double *luma,double *chroma,double *hue)
|
||
{
|
||
double
|
||
u,
|
||
v;
|
||
|
||
ConvertXYZToLuv(X,Y,Z,luma,&u,&v);
|
||
*chroma=hypot(354.0*u-134.0,262.0*v-140.0)/255.0+0.5;
|
||
*hue=180.0*atan2(262.0*v-140.0,354.0*u-134.0)/MagickPI/360.0;
|
||
if (*hue < 0.0)
|
||
*hue+=1.0;
|
||
}
|
||
|
||
MagickExport void ConvertRGBToLCHuv(const Quantum red,const Quantum green,
|
||
const Quantum blue,double *luma,double *chroma,double *hue)
|
||
{
|
||
double
|
||
X,
|
||
Y,
|
||
Z;
|
||
|
||
/*
|
||
Convert RGB to LCHuv colorspace.
|
||
*/
|
||
assert(luma != (double *) NULL);
|
||
assert(chroma != (double *) NULL);
|
||
assert(hue != (double *) NULL);
|
||
ConvertRGBToXYZ(red,green,blue,&X,&Y,&Z);
|
||
ConvertXYZToLCHuv(X,Y,Z,luma,chroma,hue);
|
||
}
|
||
|
||
/*
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
% %
|
||
% %
|
||
% %
|
||
% E x p a n d A f f i n e %
|
||
% %
|
||
% %
|
||
% %
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
%
|
||
% ExpandAffine() computes the affine's expansion factor, i.e. the square root
|
||
% of the factor by which the affine transform affects area. In an affine
|
||
% transform composed of scaling, rotation, shearing, and translation, returns
|
||
% the amount of scaling.
|
||
%
|
||
% The format of the ExpandAffine method is:
|
||
%
|
||
% double ExpandAffine(const AffineMatrix *affine)
|
||
%
|
||
% A description of each parameter follows:
|
||
%
|
||
% o expansion: ExpandAffine returns the affine's expansion factor.
|
||
%
|
||
% o affine: A pointer the affine transform of type AffineMatrix.
|
||
%
|
||
*/
|
||
MagickExport double ExpandAffine(const AffineMatrix *affine)
|
||
{
|
||
assert(affine != (const AffineMatrix *) NULL);
|
||
return(sqrt(fabs(affine->sx*affine->sy-affine->rx*affine->ry)));
|
||
}
|
||
|
||
/*
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
% %
|
||
% %
|
||
% %
|
||
% G e n e r a t e D i f f e r e n t i a l N o i s e %
|
||
% %
|
||
% %
|
||
% %
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
%
|
||
% GenerateDifferentialNoise() generates differentual noise.
|
||
%
|
||
% The format of the GenerateDifferentialNoise method is:
|
||
%
|
||
% double GenerateDifferentialNoise(RandomInfo *random_info,
|
||
% const Quantum pixel,const NoiseType noise_type,
|
||
% const MagickRealType attenuate)
|
||
%
|
||
% A description of each parameter follows:
|
||
%
|
||
% o random_info: the random info.
|
||
%
|
||
% o pixel: noise is relative to this pixel value.
|
||
%
|
||
% o noise_type: the type of noise.
|
||
%
|
||
% o attenuate: attenuate the noise.
|
||
%
|
||
*/
|
||
MagickExport double GenerateDifferentialNoise(RandomInfo *random_info,
|
||
const Quantum pixel,const NoiseType noise_type,const MagickRealType attenuate)
|
||
{
|
||
#define SigmaUniform (attenuate*0.015625)
|
||
#define SigmaGaussian (attenuate*0.015625)
|
||
#define SigmaImpulse (attenuate*0.1)
|
||
#define SigmaLaplacian (attenuate*0.0390625)
|
||
#define SigmaMultiplicativeGaussian (attenuate*0.5)
|
||
#define SigmaPoisson (attenuate*12.5)
|
||
#define SigmaRandom (attenuate)
|
||
#define TauGaussian (attenuate*0.078125)
|
||
|
||
double
|
||
alpha,
|
||
beta,
|
||
noise,
|
||
sigma;
|
||
|
||
alpha=GetPseudoRandomValue(random_info);
|
||
switch (noise_type)
|
||
{
|
||
case UniformNoise:
|
||
default:
|
||
{
|
||
noise=(double) (pixel+QuantumRange*SigmaUniform*(alpha-0.5));
|
||
break;
|
||
}
|
||
case GaussianNoise:
|
||
{
|
||
double
|
||
gamma,
|
||
tau;
|
||
|
||
if (fabs(alpha) < MagickEpsilon)
|
||
alpha=1.0;
|
||
beta=GetPseudoRandomValue(random_info);
|
||
gamma=sqrt(-2.0*log(alpha));
|
||
sigma=gamma*cos((double) (2.0*MagickPI*beta));
|
||
tau=gamma*sin((double) (2.0*MagickPI*beta));
|
||
noise=(double) (pixel+sqrt((double) pixel)*SigmaGaussian*sigma+
|
||
QuantumRange*TauGaussian*tau);
|
||
break;
|
||
}
|
||
case ImpulseNoise:
|
||
{
|
||
if (alpha < (SigmaImpulse/2.0))
|
||
noise=0.0;
|
||
else
|
||
if (alpha >= (1.0-(SigmaImpulse/2.0)))
|
||
noise=(double) QuantumRange;
|
||
else
|
||
noise=(double) pixel;
|
||
break;
|
||
}
|
||
case LaplacianNoise:
|
||
{
|
||
if (alpha <= 0.5)
|
||
{
|
||
if (alpha <= MagickEpsilon)
|
||
noise=(double) (pixel-QuantumRange);
|
||
else
|
||
noise=(double) (pixel+QuantumRange*SigmaLaplacian*log(2.0*alpha)+
|
||
0.5);
|
||
break;
|
||
}
|
||
beta=1.0-alpha;
|
||
if (beta <= (0.5*MagickEpsilon))
|
||
noise=(double) (pixel+QuantumRange);
|
||
else
|
||
noise=(double) (pixel-QuantumRange*SigmaLaplacian*log(2.0*beta)+0.5);
|
||
break;
|
||
}
|
||
case MultiplicativeGaussianNoise:
|
||
{
|
||
sigma=1.0;
|
||
if (alpha > MagickEpsilon)
|
||
sigma=sqrt(-2.0*log(alpha));
|
||
beta=GetPseudoRandomValue(random_info);
|
||
noise=(double) (pixel+pixel*SigmaMultiplicativeGaussian*sigma*
|
||
cos((double) (2.0*MagickPI*beta))/2.0);
|
||
break;
|
||
}
|
||
case PoissonNoise:
|
||
{
|
||
double
|
||
poisson;
|
||
|
||
ssize_t
|
||
i;
|
||
|
||
poisson=exp(-SigmaPoisson*QuantumScale*pixel);
|
||
for (i=0; alpha > poisson; i++)
|
||
{
|
||
beta=GetPseudoRandomValue(random_info);
|
||
alpha*=beta;
|
||
}
|
||
noise=(double) (QuantumRange*i*PerceptibleReciprocal(SigmaPoisson));
|
||
break;
|
||
}
|
||
case RandomNoise:
|
||
{
|
||
noise=(double) (QuantumRange*SigmaRandom*alpha);
|
||
break;
|
||
}
|
||
}
|
||
return(noise);
|
||
}
|
||
|
||
/*
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
% %
|
||
% %
|
||
% %
|
||
% G e t O p t i m a l K e r n e l W i d t h %
|
||
% %
|
||
% %
|
||
% %
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
%
|
||
% GetOptimalKernelWidth() computes the optimal kernel radius for a convolution
|
||
% filter. Start with the minimum value of 3 pixels and walk out until we drop
|
||
% below the threshold of one pixel numerical accuracy.
|
||
%
|
||
% The format of the GetOptimalKernelWidth method is:
|
||
%
|
||
% size_t GetOptimalKernelWidth(const double radius,const double sigma)
|
||
%
|
||
% A description of each parameter follows:
|
||
%
|
||
% o radius: the radius of the Gaussian, in pixels, not counting the center
|
||
% pixel.
|
||
%
|
||
% o sigma: the standard deviation of the Gaussian, in pixels.
|
||
%
|
||
*/
|
||
MagickExport size_t GetOptimalKernelWidth1D(const double radius,
|
||
const double sigma)
|
||
{
|
||
double
|
||
alpha,
|
||
beta,
|
||
gamma,
|
||
normalize,
|
||
value;
|
||
|
||
ssize_t
|
||
i;
|
||
|
||
size_t
|
||
width;
|
||
|
||
ssize_t
|
||
j;
|
||
|
||
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"...");
|
||
if (radius > MagickEpsilon)
|
||
return((size_t) (2.0*ceil(radius)+1.0));
|
||
gamma=fabs(sigma);
|
||
if (gamma <= MagickEpsilon)
|
||
return(3UL);
|
||
alpha=PerceptibleReciprocal(2.0*gamma*gamma);
|
||
beta=(double) PerceptibleReciprocal((double) MagickSQ2PI*gamma);
|
||
for (width=5; ; )
|
||
{
|
||
normalize=0.0;
|
||
j=(ssize_t) (width-1)/2;
|
||
for (i=(-j); i <= j; i++)
|
||
normalize+=exp(-((double) (i*i))*alpha)*beta;
|
||
value=exp(-((double) (j*j))*alpha)*beta/normalize;
|
||
if ((value < QuantumScale) || (value < MagickEpsilon))
|
||
break;
|
||
width+=2;
|
||
}
|
||
return((size_t) (width-2));
|
||
}
|
||
|
||
MagickExport size_t GetOptimalKernelWidth2D(const double radius,
|
||
const double sigma)
|
||
{
|
||
double
|
||
alpha,
|
||
beta,
|
||
gamma,
|
||
normalize,
|
||
value;
|
||
|
||
size_t
|
||
width;
|
||
|
||
ssize_t
|
||
j,
|
||
u,
|
||
v;
|
||
|
||
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"...");
|
||
if (radius > MagickEpsilon)
|
||
return((size_t) (2.0*ceil(radius)+1.0));
|
||
gamma=fabs(sigma);
|
||
if (gamma <= MagickEpsilon)
|
||
return(3UL);
|
||
alpha=PerceptibleReciprocal(2.0*gamma*gamma);
|
||
beta=(double) PerceptibleReciprocal((double) Magick2PI*gamma*gamma);
|
||
for (width=5; ; )
|
||
{
|
||
normalize=0.0;
|
||
j=(ssize_t) (width-1)/2;
|
||
for (v=(-j); v <= j; v++)
|
||
for (u=(-j); u <= j; u++)
|
||
normalize+=exp(-((double) (u*u+v*v))*alpha)*beta;
|
||
value=exp(-((double) (j*j))*alpha)*beta/normalize;
|
||
if ((value < QuantumScale) || (value < MagickEpsilon))
|
||
break;
|
||
width+=2;
|
||
}
|
||
return((size_t) (width-2));
|
||
}
|
||
|
||
MagickExport size_t GetOptimalKernelWidth(const double radius,
|
||
const double sigma)
|
||
{
|
||
return(GetOptimalKernelWidth1D(radius,sigma));
|
||
}
|