Commit Graph

782874 Commits

Author SHA1 Message Date
Sean Christopherson 3df5c37e55 KVM: nVMX: try to set EFER bits correctly when initializing controls
VM_ENTRY_IA32E_MODE and VM_{ENTRY,EXIT}_LOAD_IA32_EFER will be
explicitly set/cleared as needed by vmx_set_efer(), but attempt
to get the bits set correctly when intializing the control fields.
Setting the value correctly can avoid multiple VMWrites.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:29:52 +02:00
Sean Christopherson 02343cf207 KVM: vmx: do not unconditionally clear EFER switching
Do not unconditionally call clear_atomic_switch_msr() when updating
EFER.  This adds up to four unnecessary VMWrites in the case where
guest_efer != host_efer, e.g. if the load_on_{entry,exit} bits were
already set.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:29:51 +02:00
Sean Christopherson b7031fd40f KVM: nVMX: reset cache/shadows when switching loaded VMCS
Reset the vm_{entry,exit}_controls_shadow variables as well as the
segment cache after loading a new VMCS in vmx_switch_vmcs().  The
shadows/cache track VMCS data, i.e. they're stale every time we
switch to a new VMCS regardless of reason.

This fixes a bug where stale control shadows would be consumed after
a nested VMExit due to a failed consistency check.

Suggested-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:29:50 +02:00
Sean Christopherson 1abf23fb42 KVM: nVMX: use vm_exit_controls_init() to write exit controls for vmcs02
Write VM_EXIT_CONTROLS using vm_exit_controls_init() when configuring
vmcs02, otherwise vm_exit_controls_shadow will be stale.  EFER in
particular can be corrupted if VM_EXIT_LOAD_IA32_EFER is not updated
due to an incorrect shadow optimization, which can crash L0 due to
EFER not being loaded on exit.  This does not occur with the current
code base simply because update_transition_efer() unconditionally
clears VM_EXIT_LOAD_IA32_EFER before conditionally setting it, and
because a nested guest always starts with VM_EXIT_LOAD_IA32_EFER
clear, i.e. we'll only ever unnecessarily clear the bit.  That is,
until someone optimizes update_transition_efer()...

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:29:50 +02:00
Sean Christopherson 5b8ba41daf KVM: nVMX: move vmcs12 EPTP consistency check to check_vmentry_prereqs()
An invalid EPTP causes a VMFail(VMXERR_ENTRY_INVALID_CONTROL_FIELD),
not a VMExit.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:29:49 +02:00
Sean Christopherson 64a919f7b5 KVM: nVMX: move host EFER consistency checks to VMFail path
Invalid host state related to loading EFER on VMExit causes a
VMFail(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD), not a VMExit.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:29:49 +02:00
Wei Yang 31fc4f95dd KVM: leverage change to adjust slots->used_slots in update_memslots()
update_memslots() is only called by __kvm_set_memory_region(), in which
"change" is calculated and indicates how to adjust slots->used_slots

  * increase by one if it is KVM_MR_CREATE
  * decrease by one if it is KVM_MR_DELETE
  * not change for others

This patch adjusts slots->used_slots in update_memslots() based on "change"
value instead of re-calculate those states again.

Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:29:48 +02:00
Jim Mattson 3c6e099fa1 KVM: nVMX: Always reflect #NM VM-exits to L1
When bit 3 (corresponding to CR0.TS) of the VMCS12 cr0_guest_host_mask
field is clear, the VMCS12 guest_cr0 field does not necessarily hold
the current value of the L2 CR0.TS bit, so the code that checked for
L2's CR0.TS bit being set was incorrect. Moreover, I'm not sure that
the CR0.TS check was adequate. (What if L2's CR0.EM was set, for
instance?)

Fortunately, lazy FPU has gone away, so L0 has lost all interest in
intercepting #NM exceptions. See commit bd7e5b0899 ("KVM: x86:
remove code for lazy FPU handling"). Therefore, there is no longer any
question of which hypervisor gets first dibs. The #NM VM-exit should
always be reflected to L1. (Note that the corresponding bit must be
set in the VMCS12 exception_bitmap field for there to be an #NM
VM-exit at all.)

Fixes: ccf9844e5d ("kvm, vmx: Really fix lazy FPU on nested guest")
Reported-by: Abhiroop Dabral <adabral@paloaltonetworks.com>
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Tested-by: Abhiroop Dabral <adabral@paloaltonetworks.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:29:47 +02:00
Vitaly Kuznetsov 214ff83d44 KVM: x86: hyperv: implement PV IPI send hypercalls
Using hypercall for sending IPIs is faster because this allows to specify
any number of vCPUs (even > 64 with sparse CPU set), the whole procedure
will take only one VMEXIT.

Current Hyper-V TLFS (v5.0b) claims that HvCallSendSyntheticClusterIpi
hypercall can't be 'fast' (passing parameters through registers) but
apparently this is not true, Windows always uses it as 'fast' so we need
to support that.

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:29:47 +02:00
Vitaly Kuznetsov 2cefc5feb8 KVM: x86: hyperv: optimize kvm_hv_flush_tlb() for vp_index == vcpu_idx case
VP inedx almost always matches VCPU and when it does it's faster to walk
the sparse set instead of all vcpus.

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:29:46 +02:00
Vitaly Kuznetsov 0b0a31badb KVM: x86: hyperv: valid_bank_mask should be 'u64'
This probably doesn't matter much (KVM_MAX_VCPUS is much lower nowadays)
but valid_bank_mask is really u64 and not unsigned long.

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Roman Kagan <rkagan@virtuozzo.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:29:46 +02:00
Vitaly Kuznetsov 87ee613d07 KVM: x86: hyperv: keep track of mismatched VP indexes
In most common cases VP index of a vcpu matches its vcpu index. Userspace
is, however, free to set any mapping it wishes and we need to account for
that when we need to find a vCPU with a particular VP index. To keep search
algorithms optimal in both cases introduce 'num_mismatched_vp_indexes'
counter showing how many vCPUs with mismatching VP index we have. In case
the counter is zero we can assume vp_index == vcpu_idx.

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Roman Kagan <rkagan@virtuozzo.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:29:45 +02:00
Vitaly Kuznetsov 1779a39f78 KVM: x86: hyperv: consistently use 'hv_vcpu' for 'struct kvm_vcpu_hv' variables
Rename 'hv' to 'hv_vcpu' in kvm_hv_set_msr/kvm_hv_get_msr(); 'hv' is
'reserved' for 'struct kvm_hv' variables across the file.

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Roman Kagan <rkagan@virtuozzo.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:29:45 +02:00
Vitaly Kuznetsov a812297c4f KVM: x86: hyperv: optimize 'all cpus' case in kvm_hv_flush_tlb()
We can use 'NULL' to represent 'all cpus' case in
kvm_make_vcpus_request_mask() and avoid building vCPU mask with
all vCPUs.

Suggested-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Roman Kagan <rkagan@virtuozzo.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:29:44 +02:00
Vitaly Kuznetsov 9170200ec0 KVM: x86: hyperv: enforce vp_index < KVM_MAX_VCPUS
Hyper-V TLFS (5.0b) states:

> Virtual processors are identified by using an index (VP index). The
> maximum number of virtual processors per partition supported by the
> current implementation of the hypervisor can be obtained through CPUID
> leaf 0x40000005. A virtual processor index must be less than the
> maximum number of virtual processors per partition.

Forbid userspace to set VP_INDEX above KVM_MAX_VCPUS. get_vcpu_by_vpidx()
can now be optimized to bail early when supplied vpidx is >= KVM_MAX_VCPUS.

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Roman Kagan <rkagan@virtuozzo.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:29:43 +02:00
Paolo Bonzini 0624fca951 kvm/x86: return meaningful value from KVM_SIGNAL_MSI
If kvm_apic_map_get_dest_lapic() finds a disabled LAPIC,
it will return with bitmap==0 and (*r == -1) will be returned to
userspace.

QEMU may then record "KVM: injection failed, MSI lost
(Operation not permitted)" in its log, which is quite puzzling.

Reported-by: Peng Hao <penghao122@sina.com.cn>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:29:43 +02:00
Wei Yang 4fef0f4913 KVM: x86: move definition PT_MAX_HUGEPAGE_LEVEL and KVM_NR_PAGE_SIZES together
Currently, there are two definitions related to huge page, but a little bit
far from each other and seems loosely connected:

 * KVM_NR_PAGE_SIZES defines the number of different size a page could map
 * PT_MAX_HUGEPAGE_LEVEL means the maximum level of huge page

The number of different size a page could map equals the maximum level
of huge page, which is implied by current definition.

While current implementation may not be kind to readers and further
developers:

 * KVM_NR_PAGE_SIZES looks like a stand alone definition at first sight
 * in case we need to support more level, two places need to change

This patch tries to make these two definition more close, so that reader
and developer would feel more comfortable to manipulate.

Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:29:42 +02:00
Tianyu Lan aaa45da24e KVM/VMX: Remve unused function is_external_interrupt().
is_external_interrupt() is not used now and so remove it.

Signed-off-by: Lan Tianyu <Tianyu.Lan@microsoft.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:29:42 +02:00
Wei Yang daefb7949e KVM: x86: return 0 in case kvm_mmu_memory_cache has min number of objects
The code tries to pre-allocate *min* number of objects, so it is ok to
return 0 when the kvm_mmu_memory_cache meets the requirement.

Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:29:41 +02:00
Krish Sadhukhan 55c1dcd80b nVMX x86: Make nested_vmx_check_pml_controls() concise
Suggested-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Reviewed-by: Mark Kanda <mark.kanda@oracle.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:29:41 +02:00
Wei Yang 3ff519f29d KVM: x86: adjust kvm_mmu_page member to save 8 bytes
On a 64bits machine, struct is naturally aligned with 8 bytes. Since
kvm_mmu_page member *unsync* and *role* are less then 4 bytes, we can
rearrange the sequence to compace the struct.

As the comment shows, *role* and *gfn* are used to key the shadow page. In
order to keep the comment valid, this patch moves the *unsync* up and
exchange the position of *role* and *gfn*.

From /proc/slabinfo, it shows the size of kvm_mmu_page is 8 bytes less and
with one more object per slap after applying this patch.

    # name            <active_objs> <num_objs> <objsize> <objperslab>
    kvm_mmu_page_header      0           0       168         24

    kvm_mmu_page_header      0           0       160         25

Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:29:40 +02:00
Sean Christopherson bd18bffca3 KVM: nVMX: restore host state in nested_vmx_vmexit for VMFail
A VMEnter that VMFails (as opposed to VMExits) does not touch host
state beyond registers that are explicitly noted in the VMFail path,
e.g. EFLAGS.  Host state does not need to be loaded because VMFail
is only signaled for consistency checks that occur before the CPU
starts to load guest state, i.e. there is no need to restore any
state as nothing has been modified.  But in the case where a VMFail
is detected by hardware and not by KVM (due to deferring consistency
checks to hardware), KVM has already loaded some amount of guest
state.  Luckily, "loaded" only means loaded to KVM's software model,
i.e. vmcs01 has not been modified.  So, unwind our software model to
the pre-VMEntry host state.

Not restoring host state in this VMFail path leads to a variety of
failures because we end up with stale data in vcpu->arch, e.g. CR0,
CR4, EFER, etc... will all be out of sync relative to vmcs01.  Any
significant delta in the stale data is all but guaranteed to crash
L1, e.g. emulation of SMEP, SMAP, UMIP, WP, etc... will be wrong.

An alternative to this "soft" reload would be to load host state from
vmcs12 as if we triggered a VMExit (as opposed to VMFail), but that is
wildly inconsistent with respect to the VMX architecture, e.g. an L1
VMM with separate VMExit and VMFail paths would explode.

Note that this approach does not mean KVM is 100% accurate with
respect to VMX hardware behavior, even at an architectural level
(the exact order of consistency checks is microarchitecture specific).
But 100% emulation accuracy isn't the goal (with this patch), rather
the goal is to be consistent in the information delivered to L1, e.g.
a VMExit should not fall-through VMENTER, and a VMFail should not jump
to HOST_RIP.

This technically reverts commit "5af4157388ad (KVM: nVMX: Fix mmu
context after VMLAUNCH/VMRESUME failure)", but retains the core
aspects of that patch, just in an open coded form due to the need to
pull state from vmcs01 instead of vmcs12.  Restoring host state
resolves a variety of issues introduced by commit "4f350c6dbcb9
(kvm: nVMX: Handle deferred early VMLAUNCH/VMRESUME failure properly)",
which remedied the incorrect behavior of treating VMFail like VMExit
but in doing so neglected to restore arch state that had been modified
prior to attempting nested VMEnter.

A sample failure that occurs due to stale vcpu.arch state is a fault
of some form while emulating an LGDT (due to emulated UMIP) from L1
after a failed VMEntry to L3, in this case when running the KVM unit
test test_tpr_threshold_values in L1.  L0 also hits a WARN in this
case due to a stale arch.cr4.UMIP.

L1:
  BUG: unable to handle kernel paging request at ffffc90000663b9e
  PGD 276512067 P4D 276512067 PUD 276513067 PMD 274efa067 PTE 8000000271de2163
  Oops: 0009 [#1] SMP
  CPU: 5 PID: 12495 Comm: qemu-system-x86 Tainted: G        W         4.18.0-rc2+ #2
  Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
  RIP: 0010:native_load_gdt+0x0/0x10

  ...

  Call Trace:
   load_fixmap_gdt+0x22/0x30
   __vmx_load_host_state+0x10e/0x1c0 [kvm_intel]
   vmx_switch_vmcs+0x2d/0x50 [kvm_intel]
   nested_vmx_vmexit+0x222/0x9c0 [kvm_intel]
   vmx_handle_exit+0x246/0x15a0 [kvm_intel]
   kvm_arch_vcpu_ioctl_run+0x850/0x1830 [kvm]
   kvm_vcpu_ioctl+0x3a1/0x5c0 [kvm]
   do_vfs_ioctl+0x9f/0x600
   ksys_ioctl+0x66/0x70
   __x64_sys_ioctl+0x16/0x20
   do_syscall_64+0x4f/0x100
   entry_SYSCALL_64_after_hwframe+0x44/0xa9

L0:
  WARNING: CPU: 2 PID: 3529 at arch/x86/kvm/vmx.c:6618 handle_desc+0x28/0x30 [kvm_intel]
  ...
  CPU: 2 PID: 3529 Comm: qemu-system-x86 Not tainted 4.17.2-coffee+ #76
  Hardware name: Intel Corporation Kabylake Client platform/KBL S
  RIP: 0010:handle_desc+0x28/0x30 [kvm_intel]

  ...

  Call Trace:
   kvm_arch_vcpu_ioctl_run+0x863/0x1840 [kvm]
   kvm_vcpu_ioctl+0x3a1/0x5c0 [kvm]
   do_vfs_ioctl+0x9f/0x5e0
   ksys_ioctl+0x66/0x70
   __x64_sys_ioctl+0x16/0x20
   do_syscall_64+0x49/0xf0
   entry_SYSCALL_64_after_hwframe+0x44/0xa9

Fixes: 5af4157388 (KVM: nVMX: Fix mmu context after VMLAUNCH/VMRESUME failure)
Fixes: 4f350c6dbc (kvm: nVMX: Handle deferred early VMLAUNCH/VMRESUME failure properly)
Cc: Jim Mattson <jmattson@google.com>
Cc: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim KrÄmář <rkrcmar@redhat.com>
Cc: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:29:39 +02:00
Jim Mattson cfb634fe30 KVM: nVMX: Clear reserved bits of #DB exit qualification
According to volume 3 of the SDM, bits 63:15 and 12:4 of the exit
qualification field for debug exceptions are reserved (cleared to
0). However, the SDM is incorrect about bit 16 (corresponding to
DR6.RTM). This bit should be set if a debug exception (#DB) or a
breakpoint exception (#BP) occurred inside an RTM region while
advanced debugging of RTM transactional regions was enabled. Note that
this is the opposite of DR6.RTM, which "indicates (when clear) that a
debug exception (#DB) or breakpoint exception (#BP) occurred inside an
RTM region while advanced debugging of RTM transactional regions was
enabled."

There is still an issue with stale DR6 bits potentially being
misreported for the current debug exception.  DR6 should not have been
modified before vectoring the #DB exception, and the "new DR6 bits"
should be available somewhere, but it was and they aren't.

Fixes: b96fb43977 ("KVM: nVMX: fixes to nested virt interrupt injection")
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:29:39 +02:00
Andrew Jones 5b8ee8792f kvm: selftests: support high GPAs in dirty_log_test
Signed-off-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:29:38 +02:00
Andrew Jones e28934e661 kvm: selftests: stop lying to aarch64 tests about PA-bits
Let's add the 40 PA-bit versions of the VM modes, that AArch64
should have been using, so we can extend the dirty log test without
breaking things.

Signed-off-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:29:38 +02:00
Andrew Jones e1b376f140 kvm: selftests: dirty_log_test: also test 64K pages on aarch64
Signed-off-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:29:37 +02:00
Andrew Jones fff8dcd7b4 kvm: selftests: port dirty_log_test to aarch64
While we're messing with the code for the port and to support guest
page sizes that are less than the host page size, we also make some
code formatting cleanups and apply sync_global_to_guest().

Signed-off-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:29:36 +02:00
Andrew Jones 81d1cca0c0 kvm: selftests: introduce new VM mode for 64K pages
Rename VM_MODE_FLAT48PG to be more descriptive of its config and add a
new config that has the same parameters, except with 64K pages.

Signed-off-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:29:35 +02:00
Andrew Jones 0bec140fb6 kvm: selftests: add vcpu support for aarch64
This code adds VM and VCPU setup code for the VM_MODE_FLAT48PG mode.
The VM_MODE_FLAT48PG isn't yet fully supportable, as it defines the
guest physical address limit as 52-bits, and KVM currently only
supports guests with up to 40-bit physical addresses (see
KVM_PHYS_SHIFT). VM_MODE_FLAT48PG will work fine, though, as long as
no >= 40-bit physical addresses are used.

Signed-off-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:26:56 +02:00
Andrew Jones 7a6629ef74 kvm: selftests: add virt mem support for aarch64
Signed-off-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:26:51 +02:00
Andrew Jones d5106539cf kvm: selftests: add vm_phy_pages_alloc
Signed-off-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:26:47 +02:00
Andrew Jones eabe7881d2 kvm: selftests: tidy up kvm_util
Tidy up kvm-util code: code/comment formatting, remove unused code,
and move x86 specific code out. We also move vcpu_dump() out of
common code, because not all arches (AArch64) have KVM_GET_REGS.

Signed-off-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:26:44 +02:00
Andrew Jones eea192bfd9 kvm: selftests: add cscope make target
Signed-off-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:26:30 +02:00
Andrew Jones cc68765d41 kvm: selftests: move arch-specific files to arch-specific locations
Signed-off-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:26:16 +02:00
Andrew Jones 14c47b7530 kvm: selftests: introduce ucall
Rework the guest exit to userspace code to generalize the concept
into what it is, a "hypercall to userspace", and provide two
implementations of it: the PortIO version currently used, but only
useable by x86, and an MMIO version that other architectures (except
s390) can use.

Signed-off-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:26:14 +02:00
Andrew Jones 6c930268bc kvm: selftests: vcpu_setup: set cr4.osfxsr
Guest code may want to call functions that have variable arguments.
To do so, we either need to compile with -mno-sse or enable SSE in
the VCPUs. As it should be pretty safe to turn on the feature, and
-mno-sse would make linking test code with standard libraries
difficult, we choose the feature enabling.

Signed-off-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:26:02 +02:00
Wanpeng Li 3b8a5df6c4 KVM: LAPIC: Tune lapic_timer_advance_ns automatically
In cloud environment, lapic_timer_advance_ns is needed to be tuned for every CPU
generations, and every host kernel versions(the kvm-unit-tests/tscdeadline_latency.flat
is 5700 cycles for upstream kernel and 9600 cycles for our 3.10 product kernel,
both preemption_timer=N, Skylake server).

This patch adds the capability to automatically tune lapic_timer_advance_ns
step by step, the initial value is 1000ns as 'commit d0659d946b ("KVM: x86:
add option to advance tscdeadline hrtimer expiration")' recommended, it will be
reduced when it is too early, and increased when it is too late. The guest_tsc
and tsc_deadline are hard to equal, so we assume we are done when the delta
is within a small scope e.g. 100 cycles. This patch reduces latency
(kvm-unit-tests/tscdeadline_latency, busy waits, preemption_timer enabled)
from ~2600 cyles to ~1200 cyles on our Skylake server.

Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:25:54 +02:00
Liran Alon efebf0aaec KVM: nVMX: Do not flush TLB on L1<->L2 transitions if L1 uses VPID and EPT
If L1 uses VPID, it expects TLB to not be flushed on L1<->L2
transitions. However, code currently flushes TLB nonetheless if we
didn't allocate a vpid02 for L2. As in this case,
vmcs02->vpid == vmcs01->vpid == vmx->vpid.

But, if L1 uses EPT, TLB entires populated by L2 are tagged with EPTP02
while TLB entries populated by L1 are tagged with EPTP01.
Therefore, we can also avoid TLB flush if L1 uses VPID and EPT.

Reviewed-by: Mihai Carabas <mihai.carabas@oracle.com>
Reviewed-by: Darren Kenny <darren.kenny@oracle.com>
Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-13 12:00:55 +02:00
Liran Alon 327c072187 KVM: nVMX: Flush linear and combined mappings on VPID02 related flushes
All VPID12s used on a given L1 vCPU is translated to a single
VPID02 (vmx->nested.vpid02 or vmx->vpid). Therefore, on L1->L2 VMEntry,
we need to invalidate linear and combined mappings tagged by
VPID02 in case L1 uses VPID and vmcs12->vpid was changed since
last L1->L2 VMEntry.

However, current code invalidates the wrong mappings as it calls
__vmx_flush_tlb() with invalidate_gpa parameter set to true which will
result in invalidating combined and guest-physical mappings tagged with
active EPTP which is EPTP01.

Similarly, INVVPID emulation have the exact same issue.

Fix both issues by just setting invalidate_gpa parameter to false which
will result in invalidating linear and combined mappings tagged with
given VPID02 as required.

Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Reviewed-by: Mark Kanda <mark.kanda@oracle.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-13 12:00:54 +02:00
Liran Alon 3d5bdae8b1 KVM: nVMX: Use correct VPID02 when emulating L1 INVVPID
In case L0 didn't allocate vmx->nested.vpid02 for L2,
vmcs02->vpid is set to vmx->vpid.
Consider this case when emulating L1 INVVPID in L0.

Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Reviewed-by: Mark Kanda <mark.kanda@oracle.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-13 12:00:54 +02:00
Liran Alon 1438921c6d KVM: nVMX: Flush TLB entries tagged by dest EPTP on L1<->L2 transitions
If L1 and L2 share VPID (because L1 don't use VPID or we haven't allocated
a vpid02), we need to flush TLB on L1<->L2 transitions.

Before this patch, this TLB flushing was done by vmx_flush_tlb().
If L0 use EPT, this will translate into INVEPT(active_eptp);
However, if L1 use EPT, in L1->L2 VMEntry, active EPTP is EPTP01 but
TLB entries populated by L2 are tagged with EPTP02.
Therefore we should delay vmx_flush_tlb() until active_eptp is EPTP02.

To achieve this, instead of directly calling vmx_flush_tlb() we request
it to be called by KVM_REQ_TLB_FLUSH which is evaluated after
KVM_REQ_LOAD_CR3 which sets the active_eptp to EPTP02 as required.

Similarly, on L2->L1 VMExit, active EPTP is EPTP02 but TLB entries
populated by L1 are tagged with EPTP01 and therefore we should delay
vmx_flush_tlb() until active_eptp is EPTP01.

Reviewed-by: Mihai Carabas <mihai.carabas@oracle.com>
Reviewed-by: Darren Kenny <darren.kenny@oracle.com>
Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-13 12:00:53 +02:00
Sean Christopherson 3de6347bf9 KVM: vmx: rename KVM_GUEST_CR0_MASK tp KVM_VM_CR0_ALWAYS_OFF
The KVM_GUEST_CR0_MASK macro tracks CR0 bits that are forced to zero
by the VMX architecture, i.e. CR0.{NW,CD} must always be zero in the
hardware CR0 post-VMXON.  Rename the macro to clarify its purpose,
be consistent with KVM_VM_CR0_ALWAYS_ON and avoid confusion with the
CR0_GUEST_HOST_MASK field.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-13 12:00:53 +02:00
Paolo Bonzini 3d0d0d9b1d KVM: s390/vfio-ap: Fixes and enhancements for vfio-ap
- add tracing
 - fix a locking bug
 - make local functions and data static
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.22 (GNU/Linux)
 
 iQIcBAABAgAGBQJbwKzMAAoJEBF7vIC1phx8DR0QALWLdmVtMioQeeoas9LYurI0
 VuFjM5QsH9hVkjDZIP7Y0titQz1L4WWqIwZVffHmQGL8saRr+fd/7gBwAReKgZVU
 OrZDtUpqS1PBsrKQx36MjWrZ5n4R5tzvW38xiPevEIBLq+rtQ1GbiCs3rtRwKlur
 uABquv9uYr8GHrmYa9bUvUpbVvHQvWz/h8T4cjgwAuN0NER6PzqMUzcZBt2Q9s29
 26ZQ+r7CZ2qklJvoB8UOsrWdsZhM58BaY+CJzrAsxD3OAnPJGILpTFW2dXIoVfkh
 LMuuuzl8Tl0ntwJKjifhut7/f9VX9ipTvmA53e2moq52UEA2mJoOzu1Ku/KAivLe
 4efycTIvYRV1UKE1JLWlS/5z6fNg9eG2CykSqRlrznEPiGNTPMY5JemtvrPINkcZ
 QrdbI6ou+grFXlfaG+KcS2iFOgrMqL1UWABiq1jJVW2RAK1ZeUBFHKVeJwKVKSeW
 p9xbh7jl7yIvQ8bfsO8P3LVFWK0EmxJt6oA7ln4X7O1Pbx1QBeH5ZMBsdqLJZFsT
 AQIT/p51JjIF6H4V8/jBCRYuR91IcD9CQlRR96y8zfHiaEYlvS1YFHuZdLZCJ7Ef
 LFLVIHXGfQLHoSN2r/8us7OmmVDJctKwPGLQuh2RcMFJPySm/iBBX9m57S7VWjAb
 87wLYmntUMcFHIWFgixT
 =hZdt
 -----END PGP SIGNATURE-----

Merge tag 'kvm-s390-next-4.20-2' of git://git.kernel.org/pub/scm/linux/kernel/git/kvms390/linux into HEAD

KVM: s390/vfio-ap: Fixes and enhancements for vfio-ap

- add tracing
- fix a locking bug
- make local functions and data static
2018-10-13 12:00:26 +02:00
Paolo Bonzini 7dd2157cb6 PPC KVM update for 4.20.
The major new feature here is nested HV KVM support.  This allows the
 HV KVM module to load inside a radix guest on POWER9 and run radix
 guests underneath it.  These nested guests can run in supervisor mode
 and don't require any additional instructions to be emulated, unlike
 with PR KVM, and so performance is much better than with PR KVM, and
 is very close to the performance of a non-nested guest.  A nested
 hypervisor (a guest with nested guests) can be migrated to another
 host and will bring all its nested guests along with it.  A nested
 guest can also itself run guests, and so on down to any desired depth
 of nesting.
 
 Apart from that there are a series of updates for IOMMU handling from
 Alexey Kardashevskiy, a "one VM per core" mode for HV KVM for
 security-paranoid applications, and a small fix for PR KVM.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2
 
 iQEcBAABCAAGBQJbvY8iAAoJEJ2a6ncsY3GfMVAH/0t1nKifIr3KTKm+zR4peOU/
 DMOTp/BomPCAlIJfp/C+j56GJ9H5me+i/ykTG6ZvHFhIInaM6OvavU7xQ7LBRvl1
 ltjSr21IRO5BUWhnuDCYQXPFasJ0nX+LrKIRr7vNoUioUJHk6W1e4Mfep7CNs6fD
 Q1p4Yg0BFCxN+ijhIOlQ49/ymbbaPFArOPh0mhipOEeY51NvCXYiUHiygu8RWnV9
 sHuVFW3zQac0geUaWMAscVJ4dcvEw7GLXeY4FwWQtBPMq01LjJrECZcqy/c3Ut/2
 06k7MpjZqPRneLp7aGznZCUjfQUMuP80ZRPQ8QLC/q1TODl+wPvB+hby1Q2tKvg=
 =zAPd
 -----END PGP SIGNATURE-----

Merge tag 'kvm-ppc-next-4.20-1' of git://git.kernel.org/pub/scm/linux/kernel/git/paulus/powerpc into HEAD

PPC KVM update for 4.20.

The major new feature here is nested HV KVM support.  This allows the
HV KVM module to load inside a radix guest on POWER9 and run radix
guests underneath it.  These nested guests can run in supervisor mode
and don't require any additional instructions to be emulated, unlike
with PR KVM, and so performance is much better than with PR KVM, and
is very close to the performance of a non-nested guest.  A nested
hypervisor (a guest with nested guests) can be migrated to another
host and will bring all its nested guests along with it.  A nested
guest can also itself run guests, and so on down to any desired depth
of nesting.

Apart from that there are a series of updates for IOMMU handling from
Alexey Kardashevskiy, a "one VM per core" mode for HV KVM for
security-paranoid applications, and a small fix for PR KVM.
2018-10-10 18:38:32 +02:00
Paul Mackerras 901f8c3f6f KVM: PPC: Book3S HV: Add NO_HASH flag to GET_SMMU_INFO ioctl result
This adds a KVM_PPC_NO_HASH flag to the flags field of the
kvm_ppc_smmu_info struct, and arranges for it to be set when
running as a nested hypervisor, as an unambiguous indication
to userspace that HPT guests are not supported.  Reporting the
KVM_CAP_PPC_MMU_HASH_V3 capability as false could be taken as
indicating only that the new HPT features in ISA V3.0 are not
supported, leaving it ambiguous whether pre-V3.0 HPT features
are supported.

Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2018-10-09 16:14:54 +11:00
Paul Mackerras aa069a9969 KVM: PPC: Book3S HV: Add a VM capability to enable nested virtualization
With this, userspace can enable a KVM-HV guest to run nested guests
under it.

The administrator can control whether any nested guests can be run;
setting the "nested" module parameter to false prevents any guests
becoming nested hypervisors (that is, any attempt to enable the nested
capability on a guest will fail).  Guests which are already nested
hypervisors will continue to be so.

Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2018-10-09 16:14:47 +11:00
Paul Mackerras 9d67121a4f Merge remote-tracking branch 'remotes/powerpc/topic/ppc-kvm' into kvm-ppc-next
This merges in the "ppc-kvm" topic branch of the powerpc tree to get a
series of commits that touch both general arch/powerpc code and KVM
code.  These commits will be merged both via the KVM tree and the
powerpc tree.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2018-10-09 16:13:20 +11:00
Paul Mackerras 83a055104e KVM: PPC: Book3S HV: Add nested shadow page tables to debugfs
This adds a list of valid shadow PTEs for each nested guest to
the 'radix' file for the guest in debugfs.  This can be useful for
debugging.

Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-10-09 16:04:27 +11:00
Paul Mackerras de760db4d9 KVM: PPC: Book3S HV: Allow HV module to load without hypervisor mode
With this, the KVM-HV module can be loaded in a guest running under
KVM-HV, and if the hypervisor supports nested virtualization, this
guest can now act as a nested hypervisor and run nested guests.

This also adds some checks to inform userspace that HPT guests are not
supported by nested hypervisors (by returning false for the
KVM_CAP_PPC_MMU_HASH_V3 capability), and to prevent userspace from
configuring a guest to use HPT mode.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-10-09 16:04:27 +11:00
Suraj Jitindar Singh 10b5022db7 KVM: PPC: Book3S HV: Handle differing endianness for H_ENTER_NESTED
The hcall H_ENTER_NESTED takes two parameters: the address in L1 guest
memory of a hv_regs struct and the address of a pt_regs struct.  The
hcall requests the L0 hypervisor to use the register values in these
structs to run a L2 guest and to return the exit state of the L2 guest
in these structs.  These are in the endianness of the L1 guest, rather
than being always big-endian as is usually the case for PAPR
hypercalls.

This is convenient because it means that the L1 guest can pass the
address of the regs field in its kvm_vcpu_arch struct.  This also
improves performance slightly by avoiding the need for two copies of
the pt_regs struct.

When reading/writing these structures, this patch handles the case
where the endianness of the L1 guest differs from that of the L0
hypervisor, by byteswapping the structures after reading and before
writing them back.

Since all the fields of the pt_regs are of the same type, i.e.,
unsigned long, we treat it as an array of unsigned longs.  The fields
of struct hv_guest_state are not all the same, so its fields are
byteswapped individually.

Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-10-09 16:04:27 +11:00