In order to control the GICv4 view of virtual CPUs, we rely
on an irqdomain allocated for that purpose. Let's add a couple
of helpers to that effect.
At the same time, the vgic data structures gain new fields to
track all this... erm... wonderful stuff.
The way we hook into the vgic init is slightly convoluted. We
need the vgic to be initialized (in order to guarantee that
the number of vcpus is now fixed), and we must have a vITS
(otherwise this is all very pointless). So we end-up calling
the init from both vgic_init and vgic_its_create.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
This patch selects IRQ_BYPASS_MANAGER and HAVE_KVM_IRQ_BYPASS
configs for ARM/ARM64.
kvm_arch_has_irq_bypass() now is implemented and returns true.
As a consequence the irq bypass consumer will be registered for
ARM/ARM64 with the forwarding callbacks:
- stop/start: halt/resume guest execution
- add/del_producer: set/unset forwarding at vgic/irqchip level
We don't have any actual support yet, so nothing gets actually
forwarded.
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Eric Auger <eric.auger@redhat.com>
[maz: dropped the DEOI stuff for the time being in order to
reduce the dependency chain, amended commit message]
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Both arm and arm64 implementations are capable of injecting
faults, and yet have completely divergent implementations,
leading to different bugs and reduced maintainability.
Let's elect the arm64 version as the canonical one
and move it into aarch32.c, which is common to both
architectures.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
When trapping on a guest access to one of the timer registers, we were
messing with the internals of the timer state from the sysregs handling
code, and that logic was about to receive more added complexity when
optimizing the timer handling code.
Therefore, since we already have timer register access functions (to
access registers from userspace), reuse those for the timer register
traps from a VM and let the timer code maintain its own consistency.
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
As we are about to be lazy with saving and restoring the timer
registers, we prepare by moving all possible timer configuration logic
out of the hyp code. All virtual timer registers can be programmed from
EL1 and since the arch timer is always a level triggered interrupt we
can safely do this with interrupts disabled in the host kernel on the
way to the guest without taking vtimer interrupts in the host kernel
(yet).
The downside is that the cntvoff register can only be programmed from
hyp mode, so we jump into hyp mode and back to program it. This is also
safe, because the host kernel doesn't use the virtual timer in the KVM
code. It may add a little performance performance penalty, but only
until following commits where we move this operation to vcpu load/put.
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
x86 KVM guest fix.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJZ/fZuAAoJEL/70l94x66DHVkH/i99gyP/BoFaNfooesXpy89o
VcjuHzp4XYvUmhP1rCGYqYQEVZYrgsqKAsxL5cyN1nF5SWxebpM8cD96yM7lQx2Y
Ap5rxYWldn41ZmRRLQzCRKgwPG+V+yMlVTDM8FG/PKJyRTG7fMUEN6IBlRZF2yZr
DNmy2s//JafEUL3TDq2IXCvfZ1d5VEsCfI2xiYsIzQxwKZ1bHFNqbTqWJZr3Xns1
xL9e0VjMtNaGtyyCs0ZDjco3kAVQp58Q5+BhnL4/P+uqThjFDrpjQ3RmF0mtC95n
TKQuUP7QpLUoq74RwHa8tP4IpWj2EZLjefOw/s1Uv2XtieJrRmNIHT0OOGBj9O8=
=uYvL
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM fixes from Paolo Bonzini:
"Fixes for interrupt controller emulation in ARM/ARM64 and x86, plus a
one-liner x86 KVM guest fix"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
KVM: x86: Update APICv on APIC reset
KVM: VMX: Do not fully reset PI descriptor on vCPU reset
kvm: Return -ENODEV from update_persistent_clock
KVM: arm/arm64: vgic-its: Check GITS_BASER Valid bit before saving tables
KVM: arm/arm64: vgic-its: Check CBASER/BASER validity before enabling the ITS
KVM: arm/arm64: vgic-its: Fix vgic_its_restore_collection_table returned value
KVM: arm/arm64: vgic-its: Fix return value for device table restore
arm/arm64: kvm: Disable branch profiling in HYP code
arm/arm64: kvm: Move initialization completion message
arm/arm64: KVM: set right LR register value for 32 bit guest when inject abort
KVM: arm64: its: Fix missing dynamic allocation check in scan_its_table
KVM guests cannot currently use SVE, because SVE is always
configured to trap to EL2.
However, a guest that sees SVE reported as present in
ID_AA64PFR0_EL1 may legitimately expect that SVE works and try to
use it. Instead of working, the guest will receive an injected
undef exception, which may cause the guest to oops or go into a
spin.
To avoid misleading the guest into believing that SVE will work,
this patch masks out the SVE field from ID_AA64PFR0_EL1 when a
guest attempts to read this register. No support is explicitly
added for ID_AA64ZFR0_EL1 either, so that is still emulated as
reading as zero, which is consistent with SVE not being
implemented.
This is a temporary measure, and will be removed in a later series
when full KVM support for SVE is implemented.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
When trapping forbidden attempts by a guest to use SVE, we want the
guest to see a trap consistent with SVE not being implemented.
This patch injects an undefined instruction exception into the
guest in response to such an exception.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Until KVM has full SVE support, guests must not be allowed to
execute SVE instructions.
This patch enables the necessary traps, and also ensures that the
traps are disabled again on exit from the guest so that the host
can still use SVE if it wants to.
On guest exit, high bits of the SVE Zn registers may have been
clobbered as a side-effect the execution of FPSIMD instructions in
the guest. The existing KVM host FPSIMD restore code is not
sufficient to restore these bits, so this patch explicitly marks
the CPU as not containing cached vector state for any task, thus
forcing a reload on the next return to userspace. This is an
interim measure, in advance of adding full SVE awareness to KVM.
This marking of cached vector state in the CPU as invalid is done
using __this_cpu_write(fpsimd_last_state, NULL) in fpsimd.c. Due
to the repeated use of this rather obscure operation, it makes
sense to factor it out as a separate helper with a clearer name.
This patch factors it out as fpsimd_flush_cpu_state(), and ports
all callers to use it.
As a side effect of this refactoring, a this_cpu_write() in
fpsimd_cpu_pm_notifier() is changed to __this_cpu_write(). This
should be fine, since cpu_pm_enter() is supposed to be called only
with interrupts disabled.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Currently, a guest kernel sees the true CPU feature registers
(ID_*_EL1) when it reads them using MRS instructions. This means
that the guest may observe features that are present in the
hardware but the host doesn't understand or doesn't provide support
for. A guest may legimitately try to use such a feature as per the
architecture, but use of the feature may trap instead of working
normally, triggering undef injection into the guest.
This is not a problem for the host, but the guest may go wrong when
running on newer hardware than the host knows about.
This patch hides from guest VMs any AArch64-specific CPU features
that the host doesn't support, by exposing to the guest the
sanitised versions of the registers computed by the cpufeatures
framework, instead of the true hardware registers. To achieve
this, HCR_EL2.TID3 is now set for AArch64 guests, and emulation
code is added to KVM to report the sanitised versions of the
affected registers in response to MRS and register reads from
userspace.
The affected registers are removed from invariant_sys_regs[] (since
the invariant_sys_regs handling is no longer quite correct for
them) and added to sys_reg_desgs[], with appropriate access(),
get_user() and set_user() methods. No runtime vcpu storage is
allocated for the registers: instead, they are read on demand from
the cpufeatures framework. This may need modification in the
future if there is a need for userspace to customise the features
visible to the guest.
Attempts by userspace to write the registers are handled similarly
to the current invariant_sys_regs handling: writes are permitted,
but only if they don't attempt to change the value. This is
sufficient to support VM snapshot/restore from userspace.
Because of the additional registers, restoring a VM on an older
kernel may not work unless userspace knows how to handle the extra
VM registers exposed to the KVM user ABI by this patch.
Under the principle of least damage, this patch makes no attempt to
handle any of the other registers currently in
invariant_sys_regs[], or to emulate registers for AArch32: however,
these could be handled in a similar way in future, as necessary.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
When HYP code runs into branch profiling code, it attempts to jump to
unmapped memory, causing a HYP Panic.
Disable the branch profiling for code designed to run at HYP mode.
Signed-off-by: Julien Thierry <julien.thierry@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Cc: Christoffer Dall <christoffer.dall@linaro.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: <stable@vger.kernel.org>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
When a exception is trapped to EL2, hardware uses ELR_ELx to hold
the current fault instruction address. If KVM wants to inject a
abort to 32 bit guest, it needs to set the LR register for the
guest to emulate this abort happened in the guest. Because ARM32
architecture is pipelined execution, so the LR value has an offset to
the fault instruction address.
The offsets applied to Link value for exceptions as shown below,
which should be added for the ARM32 link register(LR).
Table taken from ARMv8 ARM DDI0487B-B, table G1-10:
Exception Offset, for PE state of:
A32 T32
Undefined Instruction +4 +2
Prefetch Abort +4 +4
Data Abort +8 +8
IRQ or FIQ +4 +4
[ Removed unused variables in inject_abt to avoid compile warnings.
-- Christoffer ]
Cc: <stable@vger.kernel.org>
Signed-off-by: Dongjiu Geng <gengdongjiu@huawei.com>
Tested-by: Haibin Zhang <zhanghaibin7@huawei.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
SPE is part of the v8.2 architecture, so move its system register and
field definitions into sysreg.h and the new PSB barrier into barrier.h
Finally, move KVM over to using the generic definitions so that it
doesn't have to open-code its own versions.
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Common:
- improve heuristic for boosting preempted spinlocks by ignoring VCPUs
in user mode
ARM:
- fix for decoding external abort types from guests
- added support for migrating the active priority of interrupts when
running a GICv2 guest on a GICv3 host
- minor cleanup
PPC:
- expose storage keys to userspace
- merge powerpc/topic/ppc-kvm branch that contains
find_linux_pte_or_hugepte and POWER9 thread management cleanup
- merge kvm-ppc-fixes with a fix that missed 4.13 because of vacations
- fixes
s390:
- merge of topic branch tlb-flushing from the s390 tree to get the
no-dat base features
- merge of kvm/master to avoid conflicts with additional sthyi fixes
- wire up the no-dat enhancements in KVM
- multiple epoch facility (z14 feature)
- Configuration z/Architecture Mode
- more sthyi fixes
- gdb server range checking fix
- small code cleanups
x86:
- emulate Hyper-V TSC frequency MSRs
- add nested INVPCID
- emulate EPTP switching VMFUNC
- support Virtual GIF
- support 5 level page tables
- speedup nested VM exits by packing byte operations
- speedup MMIO by using hardware provided physical address
- a lot of fixes and cleanups, especially nested
-----BEGIN PGP SIGNATURE-----
iQEcBAABCAAGBQJZspE1AAoJEED/6hsPKofoDcMIALT11n+LKV50QGwQdg2W1GOt
aChbgnj/Kegit3hQlDhVNb8kmdZEOZzSL81Lh0VPEr7zXU8QiWn2snbizDPv8sde
MpHhcZYZZ0YrpoiZKjl8yiwcu88OWGn2qtJ7OpuTS5hvEGAfxMncp0AMZho6fnz/
ySTwJ9GK2MTgBw39OAzCeDOeoYn4NKYMwjJGqBXRhNX8PG/1wmfqv0vPrd6wfg31
KJ58BumavwJjr8YbQ1xELm9rpQrAmaayIsG0R1dEUqCbt5a1+t2gt4h2uY7tWcIv
ACt2bIze7eF3xA+OpRs+eT+yemiH3t9btIVmhCfzUpnQ+V5Z55VMSwASLtTuJRQ=
=R8Ry
-----END PGP SIGNATURE-----
Merge tag 'kvm-4.14-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Radim Krčmář:
"First batch of KVM changes for 4.14
Common:
- improve heuristic for boosting preempted spinlocks by ignoring
VCPUs in user mode
ARM:
- fix for decoding external abort types from guests
- added support for migrating the active priority of interrupts when
running a GICv2 guest on a GICv3 host
- minor cleanup
PPC:
- expose storage keys to userspace
- merge kvm-ppc-fixes with a fix that missed 4.13 because of
vacations
- fixes
s390:
- merge of kvm/master to avoid conflicts with additional sthyi fixes
- wire up the no-dat enhancements in KVM
- multiple epoch facility (z14 feature)
- Configuration z/Architecture Mode
- more sthyi fixes
- gdb server range checking fix
- small code cleanups
x86:
- emulate Hyper-V TSC frequency MSRs
- add nested INVPCID
- emulate EPTP switching VMFUNC
- support Virtual GIF
- support 5 level page tables
- speedup nested VM exits by packing byte operations
- speedup MMIO by using hardware provided physical address
- a lot of fixes and cleanups, especially nested"
* tag 'kvm-4.14-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (67 commits)
KVM: arm/arm64: Support uaccess of GICC_APRn
KVM: arm/arm64: Extract GICv3 max APRn index calculation
KVM: arm/arm64: vITS: Drop its_ite->lpi field
KVM: arm/arm64: vgic: constify seq_operations and file_operations
KVM: arm/arm64: Fix guest external abort matching
KVM: PPC: Book3S HV: Fix memory leak in kvm_vm_ioctl_get_htab_fd
KVM: s390: vsie: cleanup mcck reinjection
KVM: s390: use WARN_ON_ONCE only for checking
KVM: s390: guestdbg: fix range check
KVM: PPC: Book3S HV: Report storage key support to userspace
KVM: PPC: Book3S HV: Fix case where HDEC is treated as 32-bit on POWER9
KVM: PPC: Book3S HV: Fix invalid use of register expression
KVM: PPC: Book3S HV: Fix H_REGISTER_VPA VPA size validation
KVM: PPC: Book3S HV: Fix setting of storage key in H_ENTER
KVM: PPC: e500mc: Fix a NULL dereference
KVM: PPC: e500: Fix some NULL dereferences on error
KVM: PPC: Book3S HV: Protect updates to spapr_tce_tables list
KVM: s390: we are always in czam mode
KVM: s390: expose no-DAT to guest and migration support
KVM: s390: sthyi: remove invalid guest write access
...
As we are about to access the APRs from the GICv2 uaccess interface,
make this logic generally available.
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Since the pte handling for hardware AF/DBM works even when the hardware
feature is not present, make the pte accessors implementation permanent
and remove the corresponding #ifdefs. The Kconfig option is kept as it
can still be used to disable the feature at the hardware level.
Reviewed-by: Will Deacon <will.deacon@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This implements the kvm_arch_vcpu_in_kernel() for ARM, and adjusts
the calls to kvm_vcpu_on_spin().
Signed-off-by: Longpeng(Mike) <longpeng2@huawei.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If a vcpu exits due to request a user mode spinlock, then
the spinlock-holder may be preempted in user mode or kernel mode.
(Note that not all architectures trap spin loops in user mode,
only AMD x86 and ARM/ARM64 currently do).
But if a vcpu exits in kernel mode, then the holder must be
preempted in kernel mode, so we should choose a vcpu in kernel mode
as a more likely candidate for the lock holder.
This introduces kvm_arch_vcpu_in_kernel() to decide whether the
vcpu is in kernel-mode when it's preempted. kvm_vcpu_on_spin's
new argument says the same of the spinning VCPU.
Signed-off-by: Longpeng(Mike) <longpeng2@huawei.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kvm_pmu_overflow_set() is called from perf's interrupt handler,
making the call of kvm_vgic_inject_irq() from it introduced with
"KVM: arm/arm64: PMU: remove request-less vcpu kick" a really bad
idea, as it's quite easy to try and retake a lock that the
interrupted context is already holding. The fix is to use a vcpu
kick, leaving the interrupt injection to kvm_pmu_sync_hwstate(),
like it was doing before the refactoring. We don't just revert,
though, because before the kick was request-less, leaving the vcpu
exposed to the request-less vcpu kick race, and also because the
kick was used unnecessarily from register access handlers.
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
- Added TRACE_DEFINE_SIZEOF() which allows trace events that use
sizeof() it the TP_printk() to be converted to the actual size such
that trace-cmd and perf can parse them correctly.
- Some rework of the TRACE_DEFINE_ENUM() such that the above
TRACE_DEFINE_SIZEOF() could reuse the same code.
- Recording of tgid (Thread Group ID). This is similar to how
task COMMs are recorded (cached at sched_switch), where it is
in a table and used on output of the trace and trace_pipe files.
- Have ":mod:<module>" be cached when written into set_ftrace_filter.
Then the functions of the module will be traced at module load.
- Some random clean ups and small fixes.
-----BEGIN PGP SIGNATURE-----
iQExBAABCAAbBQJZXjYuFBxyb3N0ZWR0QGdvb2RtaXMub3JnAAoJEMm5BfJq2Y3L
fsgIAKUvhpn2igoYCR9tWqu+DovEmwxCIumbCzmCFQcRKlLttRte94yY5+W9hnV0
JPzd9T9zBDVqq1fI7iIop1SuTwEfKW6lJom0usZ8AFpK+YKm6FHnQ28POlvHzre2
lzO41tpRWiehLQsITZ47eByhsvEfhx86mYT/oM1JSR6Pii1OpjyNYmDMw6BaMNBT
kSCQFgIhzAhVuHjwAnB/S++E/ou7M5bCwCb5CNh7MubKubV5upHpoJcgYGO+WWa6
56H/iEhff4EECTGJVefd8e78MtJPL8EsuM0nAcMPlnl8AaiOpP7XCdlgTwdefLvP
b3o+nP15voSHkARGXC6eM6gH0po=
=rvGB
-----END PGP SIGNATURE-----
Merge tag 'trace-v4.13' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace
Pull tracing updates from Steven Rostedt:
"The new features of this release:
- Added TRACE_DEFINE_SIZEOF() which allows trace events that use
sizeof() it the TP_printk() to be converted to the actual size such
that trace-cmd and perf can parse them correctly.
- Some rework of the TRACE_DEFINE_ENUM() such that the above
TRACE_DEFINE_SIZEOF() could reuse the same code.
- Recording of tgid (Thread Group ID). This is similar to how task
COMMs are recorded (cached at sched_switch), where it is in a table
and used on output of the trace and trace_pipe files.
- Have ":mod:<module>" be cached when written into set_ftrace_filter.
Then the functions of the module will be traced at module load.
- Some random clean ups and small fixes"
* tag 'trace-v4.13' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace: (26 commits)
ftrace: Test for NULL iter->tr in regex for stack_trace_filter changes
ftrace: Decrement count for dyn_ftrace_total_info for init functions
ftrace: Unlock hash mutex on failed allocation in process_mod_list()
tracing: Add support for display of tgid in trace output
tracing: Add support for recording tgid of tasks
ftrace: Decrement count for dyn_ftrace_total_info file
ftrace: Remove unused function ftrace_arch_read_dyn_info()
sh/ftrace: Remove only user of ftrace_arch_read_dyn_info()
ftrace: Have cached module filters be an active filter
ftrace: Implement cached modules tracing on module load
ftrace: Have the cached module list show in set_ftrace_filter
ftrace: Add :mod: caching infrastructure to trace_array
tracing: Show address when function names are not found
ftrace: Add missing comment for FTRACE_OPS_FL_RCU
tracing: Rename update the enum_map file
tracing: Add TRACE_DEFINE_SIZEOF() macros
tracing: define TRACE_DEFINE_SIZEOF() macro to map sizeof's to their values
tracing: Rename enum_replace to eval_replace
trace: rename enum_map functions
trace: rename trace.c enum functions
...
Almost all of the arm64 KVM code uses the sysreg mnemonics for AArch64
register descriptions. Move the last straggler over.
To match what we do for SYS_ICH_AP*R*_EL2, the SYS_ICC_AP*R*_EL1
mnemonics are expanded in <asm/sysreg.h>.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: kvmarm@lists.cs.columbia.edu
Acked-by: Christoffer Dall <cdall@linaro.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Per ARM DDI 0487B.a, the registers are named ICC_IGRPEN*_EL1 rather than
ICC_GRPEN*_EL1. Correct our mnemonics and comments to match, before we
add more GICv3 register definitions.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: kvmarm@lists.cs.columbia.edu
Acked-by: Christoffer Dall <cdall@linaro.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
A write-to-read-only GICv3 access should UNDEF at EL1. But since
we're in complete paranoia-land with broken CPUs, let's assume the
worse and gracefully handle the case.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
A read-from-write-only GICv3 access should UNDEF at EL1. But since
we're in complete paranoia-land with broken CPUs, let's assume the
worse and gracefully handle the case.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
In order to start handling guest access to GICv3 system registers,
let's add a hook that will get called when we trap a system register
access. This is gated by a new static key (vgic_v3_cpuif_trap).
Tested-by: Alexander Graf <agraf@suse.de>
Acked-by: David Daney <david.daney@cavium.com>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
There are a few places in the kernel where sizeof() is already
being used. Update those locations with TRACE_DEFINE_SIZEOF.
Link: http://lkml.kernel.org/r/20170531215653.3240-12-jeremy.linton@arm.com
Signed-off-by: Jeremy Linton <jeremy.linton@arm.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
First we define an ABI using the vcpu devices that lets userspace set
the interrupt numbers for the various timers on both the 32-bit and
64-bit KVM/ARM implementations.
Second, we add the definitions for the groups and attributes introduced
by the above ABI. (We add the PMU define on the 32-bit side as well for
symmetry and it may get used some day.)
Third, we set up the arch-specific vcpu device operation handlers to
call into the timer code for anything related to the
KVM_ARM_VCPU_TIMER_CTRL group.
Fourth, we implement support for getting and setting the timer interrupt
numbers using the above defined ABI in the arch timer code.
Fifth, we introduce error checking upon enabling the arch timer (which
is called when first running a VCPU) to check that all VCPUs are
configured to use the same PPI for the timer (as mandated by the
architecture) and that the virtual and physical timers are not
configured to use the same IRQ number.
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
We currently initialize the arch timer IRQ numbers from the reset code,
presumably because we once intended to model multiple CPU or SoC types
from within the kernel and have hard-coded reset values in the reset
code.
As we are moving towards userspace being in charge of more fine-grained
CPU emulation and stitching together the pieces needed to emulate a
particular type of CPU, we should no longer have a tight coupling
between resetting a VCPU and setting IRQ numbers.
Therefore, move the logic to define and use the default IRQ numbers to
the timer code and set the IRQ number immediately when creating the
VCPU.
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
We currently have the SCTLR_EL2.A bit set, trapping unaligned accesses
at EL2, but we're not really prepared to deal with it. So far, this
has been unnoticed, until GCC 7 started emitting those (in particular
64bit writes on a 32bit boundary).
Since the rest of the kernel is pretty happy about that, let's follow
its example and set SCTLR_EL2.A to zero. Modern CPUs don't really
care.
Cc: stable@vger.kernel.org
Reported-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
__do_hyp_init has the rather bad habit of ignoring RES1 bits and
writing them back as zero. On a v8.0-8.2 CPU, this doesn't do anything
bad, but may end-up being pretty nasty on future revisions of the
architecture.
Let's preserve those bits so that we don't have to fix this later on.
Cc: stable@vger.kernel.org
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
arm/arm64 already has one VCPU request used when setting pause,
but it doesn't properly check requests in VCPU RUN. Check it
and also make sure we set vcpu->mode at the appropriate time
(before the check) and with the appropriate barriers. See
Documentation/virtual/kvm/vcpu-requests.rst. Also make sure we
don't leave any vcpu requests we don't intend to handle later
set in the request bitmap. If we don't clear them, then
kvm_request_pending() may return true when it shouldn't.
Using VCPU requests properly fixes a small race where pause
could get set just as a VCPU was entering guest mode.
Signed-off-by: Andrew Jones <drjones@redhat.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
We have been a little loose with our intermediate VMCR representation
where we had a 'ctlr' field, but we failed to differentiate between the
GICv2 GICC_CTLR and ICC_CTLR_EL1 layouts, and therefore ended up mapping
the wrong bits into the individual fields of the ICH_VMCR_EL2 when
emulating a GICv2 on a GICv3 system.
Fix this by using explicit fields for the VMCR bits instead.
Cc: Eric Auger <eric.auger@redhat.com>
Reported-by: wanghaibin <wanghaibin.wang@huawei.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Marc Zyngier <marc.zyngier@arm.com>
When KVM panics, it hurridly restores the host context and parachutes
into the host's panic() code. At some point panic() touches the physical
timer/counter. Unless we are an arm64 system with VHE, this traps back
to EL2. If we're lucky, we panic again.
Add a __timer_save_state() call to KVMs hyp_panic() path, this saves the
guest registers and disables the traps for the host.
Fixes: 53fd5b6487 ("arm64: KVM: Add panic handling")
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
We like living dangerously. Nothing explicitely forbids stack-protector
to be used in the EL2 code, while distributions routinely compile their
kernel with it. We're just lucky that no code actually triggers the
instrumentation.
Let's not try our luck for much longer, and disable stack-protector
for code living at EL2.
Cc: stable@vger.kernel.org
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Changes include:
- A fix related to the 32-bit idmap stub
- A fix to the bitmask used to deode the operands of an AArch32 CP
instruction
- We have moved the files shared between arch/arm/kvm and
arch/arm64/kvm to virt/kvm/arm
- We add support for saving/restoring the virtual ITS state to
userspace
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJZEZihAAoJEEtpOizt6ddyGDYH/jmGjDMnryORn2P2o10dUQKJ
RnHTQYnpOYqnprlkFtZFpmK+mjl/a8R1Btb7GK2EwmovTR95pMYPRqtrCTOL0aQA
4OToh7+vFGatwxsGCS6utazdhmx0UT/LhO/GEF4G1zOb7eVa4ZtS1NKLP2WjPD1E
RU3Qn8wa0pESv3tJScv8qo2+PWVX4krbFllhY2Hk0AkVQcI66ExkdVq4ikm1eUXn
rxzIayLG2bv3KEPNCzozdwoY9tDL+b40q6vN/RHGJmM05SZbbSx2/Bkw2RbslSpD
2hvhHWX7xeuEBcd5mZO7sP4WS3hM/BI8eX7q+uMeNJ9B+nM82yjGfOTtglVi2cc=
=JfvQ
-----END PGP SIGNATURE-----
Merge tag 'kvm-arm-for-v4.12-round2' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
Second round of KVM/ARM Changes for v4.12.
Changes include:
- A fix related to the 32-bit idmap stub
- A fix to the bitmask used to deode the operands of an AArch32 CP
instruction
- We have moved the files shared between arch/arm/kvm and
arch/arm64/kvm to virt/kvm/arm
- We add support for saving/restoring the virtual ITS state to
userspace
support; virtual interrupt controller performance improvements; support
for userspace virtual interrupt controller (slower, but necessary for
KVM on the weird Broadcom SoCs used by the Raspberry Pi 3)
* MIPS: basic support for hardware virtualization (ImgTec
P5600/P6600/I6400 and Cavium Octeon III)
* PPC: in-kernel acceleration for VFIO
* s390: support for guests without storage keys; adapter interruption
suppression
* x86: usual range of nVMX improvements, notably nested EPT support for
accessed and dirty bits; emulation of CPL3 CPUID faulting
* generic: first part of VCPU thread request API; kvm_stat improvements
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJZEHUkAAoJEL/70l94x66DBeYH/09wrpJ2FjU4Rqv7FxmqgWfH
9WGi4wvn/Z+XzQSyfMJiu2SfZVzU69/Y67OMHudy7vBT6knB+ziM7Ntoiu/hUfbG
0g5KsDX79FW15HuvuuGh9kSjUsj7qsQdyPZwP4FW/6ZoDArV9mibSvdjSmiUSMV/
2wxaoLzjoShdOuCe9EABaPhKK0XCrOYkygT6Paz1pItDxaSn8iW3ulaCuWMprUfG
Niq+dFemK464E4yn6HVD88xg5j2eUM6bfuXB3qR3eTR76mHLgtwejBzZdDjLG9fk
32PNYKhJNomBxHVqtksJ9/7cSR6iNPs7neQ1XHemKWTuYqwYQMlPj1NDy0aslQU=
=IsiZ
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"ARM:
- HYP mode stub supports kexec/kdump on 32-bit
- improved PMU support
- virtual interrupt controller performance improvements
- support for userspace virtual interrupt controller (slower, but
necessary for KVM on the weird Broadcom SoCs used by the Raspberry
Pi 3)
MIPS:
- basic support for hardware virtualization (ImgTec P5600/P6600/I6400
and Cavium Octeon III)
PPC:
- in-kernel acceleration for VFIO
s390:
- support for guests without storage keys
- adapter interruption suppression
x86:
- usual range of nVMX improvements, notably nested EPT support for
accessed and dirty bits
- emulation of CPL3 CPUID faulting
generic:
- first part of VCPU thread request API
- kvm_stat improvements"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (227 commits)
kvm: nVMX: Don't validate disabled secondary controls
KVM: put back #ifndef CONFIG_S390 around kvm_vcpu_kick
Revert "KVM: Support vCPU-based gfn->hva cache"
tools/kvm: fix top level makefile
KVM: x86: don't hold kvm->lock in KVM_SET_GSI_ROUTING
KVM: Documentation: remove VM mmap documentation
kvm: nVMX: Remove superfluous VMX instruction fault checks
KVM: x86: fix emulation of RSM and IRET instructions
KVM: mark requests that need synchronization
KVM: return if kvm_vcpu_wake_up() did wake up the VCPU
KVM: add explicit barrier to kvm_vcpu_kick
KVM: perform a wake_up in kvm_make_all_cpus_request
KVM: mark requests that do not need a wakeup
KVM: remove #ifndef CONFIG_S390 around kvm_vcpu_wake_up
KVM: x86: always use kvm_make_request instead of set_bit
KVM: add kvm_{test,clear}_request to replace {test,clear}_bit
s390: kvm: Cpu model support for msa6, msa7 and msa8
KVM: x86: remove irq disablement around KVM_SET_CLOCK/KVM_GET_CLOCK
kvm: better MWAIT emulation for guests
KVM: x86: virtualize cpuid faulting
...
For some time now we have been having a lot of shared functionality
between the arm and arm64 KVM support in arch/arm, which not only
required a horrible inter-arch reference from the Makefile in
arch/arm64/kvm, but also created confusion for newcomers to the code
base, as was recently seen on the mailing list.
Further, it causes confusion for things like cscope, which needs special
attention to index specific shared files for arm64 from the arm tree.
Move the shared files into virt/kvm/arm and move the trace points along
with it. When moving the tracepoints we have to modify the way the vgic
creates definitions of the trace points, so we take the chance to
include the VGIC tracepoints in its very own special vgic trace.h file.
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Our 32bit CP14/15 handling inherited some of the ARMv7 code for handling
the trapped system registers, completely missing the fact that the
fields for Rt and Rt2 are now 5 bit wide, and not 4...
Let's fix it, and provide an accessor for the most common Rt case.
Cc: stable@vger.kernel.org
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
We now return HVC_STUB_ERR when a stub hypercall fails, but we
leave whatever was in x0 on success. Zeroing it on return seems
like a good idea.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Nobody is using __hyp_get_vectors anymore, so let's remove both
implementations (hyp-stub and KVM).
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Another missing stub hypercall is HVC_SOFT_RESTART. It turns out
that it is pretty easy to implement in terms of HVC_RESET_VECTORS
(since it needs to turn the MMU off).
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
We are now able to use the hyp stub to reset HYP mode. Time to
kiss __kvm_hyp_reset goodbye, and use __hyp_reset_vectors.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: James Morse <james.morse@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
We now have a full hyp-stub implementation in the KVM init code,
but the main KVM code only supports HVC_GET_VECTORS, which is not
enough.
Instead of reinventing the wheel, let's reuse the init implementation
by branching to the idmap page when called with a hyp-stub hypercall.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: James Morse <james.morse@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Now that we have an infrastructure to handle hypercalls in the KVM
init code, let's implement HVC_GET_VECTORS there.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: James Morse <james.morse@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
In order to restore HYP mode to its original condition, KVM currently
implements __kvm_hyp_reset(). As we're moving towards a hyp-stub
defined API, it becomes necessary to implement HVC_RESET_VECTORS.
This patch adds the HVC_RESET_VECTORS hypercall to the KVM init
code, which so far lacked any form of hypercall support.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: James Morse <james.morse@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
At the moment, we only save/restore lr if on VHE, as we rely only
the EL1 code to have preserved it in the non-VHE case.
As we're about to get rid of the latter, let's move the save/restore
code to the do_el2_call macro, unifying both code paths.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
If we fail to emulate a mrrc instruction, we:
1) deliver an exception,
2) spit a nastygram on the console,
3) write back some garbage to Rt/Rt2
While 1) and 2) are perfectly acceptable, 3) is out of the scope of
the architecture... Let's mimick the code in kvm_handle_cp_32 and
be more cautious.
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Instead of considering that a sysreg accessor has failed when
returning false, let's consider that it is *always* successful
(after all, we won't stand for an incomplete emulation).
The return value now simply indicates whether we should skip
the instruction (because it has now been emulated), or if we
should leave the PC alone if the emulation has injected an
exception.
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
PMSWINC_EL0 is a WO register, so let's UNDEF when reading from it
(in the highly hypothetical case where this doesn't UNDEF at EL1).
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Reads from write-only system registers are generally confined to
EL1 and not propagated to EL2 (that's what the architecture
mantates). In order to be sure that we have a sane behaviour
even in the unlikely event that we have a broken system, we still
handle it in KVM.
In that case, let's inject an undef into the guest.
Let's also remove write_to_read_only which isn't used anywhere.
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
access_pminten() and access_pmuserenr() can only be accessed when
the CPU is in a priviledged mode. If it is not, let's inject an
UNDEF exception.
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Both pmu_*_el0_disabled() and pmu_counter_idx_valid() perform checks
on the validity of an access, but only return a boolean indicating
if the access is valid or not.
Let's allow these functions to also inject an UNDEF exception if
the access was illegal.
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
There is a lot of duplication in the pmu_*_el0_disabled helpers,
and as we're going to modify them shortly, let's move all the
common stuff in a single function.
No functional change.
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
read_system_reg() can readily be confused with read_sysreg(),
whereas these are really quite different in their meaning.
This patches attempts to reduce the ambiguity be reserving "sysreg"
for the actual system register accessors.
read_system_reg() is instead renamed to read_sanitised_ftr_reg(),
to make it more obvious that the Linux-defined sanitised feature
register cache is being accessed here, not the underlying
architectural system registers.
cpufeature.c's internal __raw_read_system_reg() function is renamed
in line with its actual purpose: a form of read_sysreg() that
indexes on (non-compiletime-constant) encoding rather than symbolic
register name.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Now that we have common definitions for the encoding of Set/Way cache
maintenance operations, make the KVM code use these, simplifying the
sys_reg_descs table.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: kvmarm@lists.cs.columbia.edu
Now that we have common definitions for the remaining register encodings
required by KVM, make the KVM code use these, simplifying the
sys_reg_descs table and the genericv8_sys_regs table.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: kvmarm@lists.cs.columbia.edu
Now that we have common definitions for the register encodings used by
KVM, make the KVM code uses thse for invariant sysreg definitions. This
makes said definitions a reasonable amount shorter, especially as many
comments are rendered redundant and can be removed.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: kvmarm@lists.cs.columbia.edu
Now that we have common definitions for the physical timer control
registers, make the KVM code use these, simplifying the sys_reg_descs
table.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: kvmarm@lists.cs.columbia.edu
Now that we have common definitions for the GICv3 register encodings,
make the KVM code use these, simplifying the sys_reg_descs table.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: kvmarm@lists.cs.columbia.edu
Now that we have common definitions for the performance monitor register
encodings, make the KVM code use these, simplifying the sys_reg_descs
table.
The comments for PMUSERENR_EL0 and PMCCFILTR_EL0 are kept, as these
describe non-obvious details regarding the registers. However, a slight
fixup is applied to bring these into line with the usual comment style.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: kvmarm@lists.cs.columbia.edu
Now that we have common definitions for the debug register encodings,
make the KVM code use these, simplifying the sys_reg_descs table.
The table previously erroneously referred to MDCCSR_EL0 as MDCCSR_EL1.
This is corrected (as is necessary in order to use the common sysreg
definition).
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: kvmarm@lists.cs.columbia.edu
This patch adds a macro enabling us to initialise sys_reg_desc
structures based on common sysreg encoding definitions in
<asm/sysreg.h>. Subsequent patches will use this to simplify the KVM
code.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: kvmarm@lists.cs.columbia.edu
A VPIPT I-cache has two main properties:
1. Lines allocated into the cache are tagged by VMID and a lookup can
only hit lines that were allocated with the current VMID.
2. I-cache invalidation from EL1/0 only invalidates lines that match the
current VMID of the CPU doing the invalidation.
This can cause issues with non-VHE configurations, where the host runs
at EL1 and wants to invalidate I-cache entries for a guest running with
a different VMID. VHE is not affected, because the host runs at EL2 and
I-cache invalidation applies as expected.
This patch solves the problem by invalidating the I-cache when unmapping
a page at stage 2 on a system with a VPIPT I-cache but not running with
VHE enabled. Hopefully this is an obscure enough configuration that the
overhead isn't anything to worry about, although it does mean that the
by-range I-cache invalidation currently performed when mapping at stage
2 can be elided on such systems, because the I-cache will be clean for
the guest VMID following a rollover event.
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Currently we BUG() if we see an ESR_EL2.EC value we don't recognise. As
configurable disables/enables are added to the architecture (controlled
by RES1/RES0 bits respectively), with associated synchronous exceptions,
it may be possible for a guest to trigger exceptions with classes that
we don't recognise.
While we can't service these exceptions in a manner useful to the guest,
we can avoid bringing down the host. Per ARM DDI 0487A.k_iss10775, page
D7-1937, EC values within the range 0x00 - 0x2c are reserved for future
use with synchronous exceptions, and EC values within the range 0x2d -
0x3f may be used for either synchronous or asynchronous exceptions.
The patch makes KVM handle any unknown EC by injecting an UNDEFINED
exception into the guest, with a corresponding (ratelimited) warning in
the host dmesg. We could later improve on this with with a new (opt-in)
exit to the host userspace.
Cc: Dave Martin <dave.martin@arm.com>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
When invalidating guest TLBs, special care must be taken to
actually shoot the guest TLBs and not the host ones if we're
running on a VHE system. This is controlled by the HCR_EL2.TGE
bit, which we forget to clear before invalidating TLBs.
Address the issue by introducing two wrappers (__tlb_switch_to_guest
and __tlb_switch_to_host) that take care of both the VTTBR_EL2
and HCR_EL2.TGE switching.
Reported-by: Tomasz Nowicki <tnowicki@caviumnetworks.com>
Tested-by: Tomasz Nowicki <tnowicki@caviumnetworks.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Cc: stable@vger.kernel.org
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
200 commits and noteworthy changes for most architectures.
* ARM:
- GICv3 save/restore
- cache flushing fixes
- working MSI injection for GICv3 ITS
- physical timer emulation
* MIPS:
- various improvements under the hood
- support for SMP guests
- a large rewrite of MMU emulation. KVM MIPS can now use MMU notifiers
to support copy-on-write, KSM, idle page tracking, swapping, ballooning
and everything else. KVM_CAP_READONLY_MEM is also supported, so that
writes to some memory regions can be treated as MMIO. The new MMU also
paves the way for hardware virtualization support.
* PPC:
- support for POWER9 using the radix-tree MMU for host and guest
- resizable hashed page table
- bugfixes.
* s390: expose more features to the guest
- more SIMD extensions
- instruction execution protection
- ESOP2
* x86:
- improved hashing in the MMU
- faster PageLRU tracking for Intel CPUs without EPT A/D bits
- some refactoring of nested VMX entry/exit code, preparing for live
migration support of nested hypervisors
- expose yet another AVX512 CPUID bit
- host-to-guest PTP support
- refactoring of interrupt injection, with some optimizations thrown in
and some duct tape removed.
- remove lazy FPU handling
- optimizations of user-mode exits
- optimizations of vcpu_is_preempted() for KVM guests
* generic:
- alternative signaling mechanism that doesn't pound on tsk->sighand->siglock
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJYral1AAoJEL/70l94x66DbNgH/Rx8YXuidFq2fe3RWOvld3RK
85OM/D5g38cTLpBE0/sJpcvX34iYN8U/l5foCZwpxB+83GHEk2Cr57JyfTogdaAJ
x8dBhHKQCA/HxSQUQLN6nFqRV+yT8WUR92Fhqx82+80BSen5Yzcfee/TDoW6T1IW
g8CYgX9FrRaGOX066ImAuUfdAdUVjyssfs9VttDTX+HiusPeuBPx/wsRe1ZEEPlH
vnltIJQb1ETV2GOZLUojKjzH6aZkjIl29XxjkYii9JTUornClG0DfW+5QT3uLrB5
gJ+G+Zmpsq8ZBx9jNDtAi7sFsoPY1Mzf+JPNCGXBra2sP2GrBAuXcxmgznRYltQ=
=8IIp
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"4.11 is going to be a relatively large release for KVM, with a little
over 200 commits and noteworthy changes for most architectures.
ARM:
- GICv3 save/restore
- cache flushing fixes
- working MSI injection for GICv3 ITS
- physical timer emulation
MIPS:
- various improvements under the hood
- support for SMP guests
- a large rewrite of MMU emulation. KVM MIPS can now use MMU
notifiers to support copy-on-write, KSM, idle page tracking,
swapping, ballooning and everything else. KVM_CAP_READONLY_MEM is
also supported, so that writes to some memory regions can be
treated as MMIO. The new MMU also paves the way for hardware
virtualization support.
PPC:
- support for POWER9 using the radix-tree MMU for host and guest
- resizable hashed page table
- bugfixes.
s390:
- expose more features to the guest
- more SIMD extensions
- instruction execution protection
- ESOP2
x86:
- improved hashing in the MMU
- faster PageLRU tracking for Intel CPUs without EPT A/D bits
- some refactoring of nested VMX entry/exit code, preparing for live
migration support of nested hypervisors
- expose yet another AVX512 CPUID bit
- host-to-guest PTP support
- refactoring of interrupt injection, with some optimizations thrown
in and some duct tape removed.
- remove lazy FPU handling
- optimizations of user-mode exits
- optimizations of vcpu_is_preempted() for KVM guests
generic:
- alternative signaling mechanism that doesn't pound on
tsk->sighand->siglock"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (195 commits)
x86/kvm: Provide optimized version of vcpu_is_preempted() for x86-64
x86/paravirt: Change vcp_is_preempted() arg type to long
KVM: VMX: use correct vmcs_read/write for guest segment selector/base
x86/kvm/vmx: Defer TR reload after VM exit
x86/asm/64: Drop __cacheline_aligned from struct x86_hw_tss
x86/kvm/vmx: Simplify segment_base()
x86/kvm/vmx: Get rid of segment_base() on 64-bit kernels
x86/kvm/vmx: Don't fetch the TSS base from the GDT
x86/asm: Define the kernel TSS limit in a macro
kvm: fix page struct leak in handle_vmon
KVM: PPC: Book3S HV: Disable HPT resizing on POWER9 for now
KVM: Return an error code only as a constant in kvm_get_dirty_log()
KVM: Return an error code only as a constant in kvm_get_dirty_log_protect()
KVM: Return directly after a failed copy_from_user() in kvm_vm_compat_ioctl()
KVM: x86: remove code for lazy FPU handling
KVM: race-free exit from KVM_RUN without POSIX signals
KVM: PPC: Book3S HV: Turn "KVM guest htab" message into a debug message
KVM: PPC: Book3S PR: Ratelimit copy data failure error messages
KVM: Support vCPU-based gfn->hva cache
KVM: use separate generations for each address space
...
Emulate read and write operations to CNTP_TVAL, CNTP_CVAL and CNTP_CTL.
Now VMs are able to use the EL1 physical timer.
Signed-off-by: Jintack Lim <jintack@cs.columbia.edu>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
KVM traps on the EL1 phys timer accesses from VMs, but it doesn't handle
those traps. This results in terminating VMs. Instead, set a handler for
the EL1 phys timer access, and inject an undefined exception as an
intermediate step.
Signed-off-by: Jintack Lim <jintack@cs.columbia.edu>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Initialize the emulated EL1 physical timer with the default irq number.
Signed-off-by: Jintack Lim <jintack@cs.columbia.edu>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
The SPE buffer is virtually addressed, using the page tables of the CPU
MMU. Unusually, this means that the EL0/1 page table may be live whilst
we're executing at EL2 on non-VHE configurations. When VHE is in use,
we can use the same property to profile the guest behind its back.
This patch adds the relevant disabling and flushing code to KVM so that
the host can make use of SPE without corrupting guest memory, and any
attempts by a guest to use SPE will result in a trap.
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Cc: Alex Bennée <alex.bennee@linaro.org>
Cc: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
VGICv3 CPU interface registers are accessed using
KVM_DEV_ARM_VGIC_CPU_SYSREGS ioctl. These registers are accessed
as 64-bit. The cpu MPIDR value is passed along with register id.
It is used to identify the cpu for registers access.
The VM that supports SEIs expect it on destination machine to handle
guest aborts and hence checked for ICC_CTLR_EL1.SEIS compatibility.
Similarly, VM that supports Affinity Level 3 that is required for AArch64
mode, is required to be supported on destination machine. Hence checked
for ICC_CTLR_EL1.A3V compatibility.
The arch/arm64/kvm/vgic-sys-reg-v3.c handles read and write of VGIC
CPU registers for AArch64.
For AArch32 mode, arch/arm/kvm/vgic-v3-coproc.c file is created but
APIs are not implemented.
Updated arch/arm/include/uapi/asm/kvm.h with new definitions
required to compile for AArch32.
The version of VGIC v3 specification is defined here
Documentation/virtual/kvm/devices/arm-vgic-v3.txt
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Pavel Fedin <p.fedin@samsung.com>
Signed-off-by: Vijaya Kumar K <Vijaya.Kumar@cavium.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
In order to implement vGICv3 CPU interface access, we will need to perform
table lookup of system registers. We would need both index_to_params() and
find_reg() exported for that purpose, but instead we export a single
function which combines them both.
Signed-off-by: Pavel Fedin <p.fedin@samsung.com>
Signed-off-by: Vijaya Kumar K <Vijaya.Kumar@cavium.com>
Reviewed-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Refactor the KVM code to use the __tlbi macros, which will allow an errata
workaround that repeats tlbi dsb sequences to only change one location.
This is not intended to change the generated assembly and comparing before
and after vmlinux objdump shows no functional changes.
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Christopher Covington <cov@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Add a file to debugfs to read the in-kernel state of the vgic. We don't
do any locking of the entire VGIC state while traversing all the IRQs,
so if the VM is running the user/developer may not see a quiesced state,
but should take care to pause the VM using facilities in user space for
that purpose.
We also don't support LPIs yet, but they can be added easily if needed.
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Tested-by: Eric Auger <eric.auger@redhat.com>
Tested-by: Andre Przywara <andre.przywara@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
This was entirely automated, using the script by Al:
PATT='^[[:blank:]]*#[[:blank:]]*include[[:blank:]]*<asm/uaccess.h>'
sed -i -e "s!$PATT!#include <linux/uaccess.h>!" \
$(git grep -l "$PATT"|grep -v ^include/linux/uaccess.h)
to do the replacement at the end of the merge window.
Requested-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- struct thread_info moved off-stack (also touching
include/linux/thread_info.h and include/linux/restart_block.h)
- cpus_have_cap() reworked to avoid __builtin_constant_p() for static
key use (also touching drivers/irqchip/irq-gic-v3.c)
- Uprobes support (currently only for native 64-bit tasks)
- Emulation of kernel Privileged Access Never (PAN) using TTBR0_EL1
switching to a reserved page table
- CPU capacity information passing via DT or sysfs (used by the
scheduler)
- Support for systems without FP/SIMD (IOW, kernel avoids touching these
registers; there is no soft-float ABI, nor kernel emulation for
AArch64 FP/SIMD)
- Handling of hardware watchpoint with unaligned addresses, varied
lengths and offsets from base
- Use of the page table contiguous hint for kernel mappings
- Hugetlb fixes for sizes involving the contiguous hint
- Remove unnecessary I-cache invalidation in flush_cache_range()
- CNTHCTL_EL2 access fix for CPUs with VHE support (ARMv8.1)
- Boot-time checks for writable+executable kernel mappings
- Simplify asm/opcodes.h and avoid including the 32-bit ARM counterpart
and make the arm64 kernel headers self-consistent (Xen headers patch
merged separately)
- Workaround for broken .inst support in certain binutils versions
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJYUEd0AAoJEGvWsS0AyF7xLpIP/AvSZgtz6/N+UcJ70r1oPwZ/
wIZl5OJ1hpfIEs+9XPU71TJbfETOusyOYwDUQmp8lXFDICk3snB4PvXFpLHOSytL
N05eYnV2de+gyKstC3ysg0mZdpIrazjKQbmHPc1KeNHuf6ZPSuIqRFINr3rnpziY
TeOVmFplgKnbDYcF4ejqcaEFEn5BkkpNNfqhX4mOHJIC4BMmglT/KefzHtK/39AT
EdZWrsA9UTEA+ccgolYtq55YcZD9kQFmEy2BRhZLbOamH5UrsUOVl9sS6fRvA3Qs
eSbnHBsdJ7n/ym6w/CK+KXKo3M/02H0JNXqhPlHaAqb+djlp7N74wyiERISR6GL9
s+7Fh/uNhfMg7vYtWkN3TlXth9HmNXdpaouNe/m8seBvwdKH+KfC0IBhXCl0NziB
hxwMI+OtV4wxzPgXTSkYlbqVEC49dAq9GnRtR+Bi5tY4a9+jeNwG/uIRcFMaRHJe
Wq48050mHMlmOjnmr3N+0l7dNhda8/ZO03ZlPfqrccBccX0idqVypkG6Wj75ZK1b
TTBvQ2A2Hqi7YtSqZNrUnTDx5O4IlywQpXLzIsDJPph8mrZ4h06lRr2fkh4FcKgH
NQrr9tjTD9XLOJfl3u0VwSbWYucWrgMHYI1r5SA5xl1Xqp6YJ8Kfod3sdA+uxS3P
SK03zJP1LM+e1HidQhKN
=8Uk9
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
- struct thread_info moved off-stack (also touching
include/linux/thread_info.h and include/linux/restart_block.h)
- cpus_have_cap() reworked to avoid __builtin_constant_p() for static
key use (also touching drivers/irqchip/irq-gic-v3.c)
- uprobes support (currently only for native 64-bit tasks)
- Emulation of kernel Privileged Access Never (PAN) using TTBR0_EL1
switching to a reserved page table
- CPU capacity information passing via DT or sysfs (used by the
scheduler)
- support for systems without FP/SIMD (IOW, kernel avoids touching
these registers; there is no soft-float ABI, nor kernel emulation for
AArch64 FP/SIMD)
- handling of hardware watchpoint with unaligned addresses, varied
lengths and offsets from base
- use of the page table contiguous hint for kernel mappings
- hugetlb fixes for sizes involving the contiguous hint
- remove unnecessary I-cache invalidation in flush_cache_range()
- CNTHCTL_EL2 access fix for CPUs with VHE support (ARMv8.1)
- boot-time checks for writable+executable kernel mappings
- simplify asm/opcodes.h and avoid including the 32-bit ARM counterpart
and make the arm64 kernel headers self-consistent (Xen headers patch
merged separately)
- Workaround for broken .inst support in certain binutils versions
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (60 commits)
arm64: Disable PAN on uaccess_enable()
arm64: Work around broken .inst when defective gas is detected
arm64: Add detection code for broken .inst support in binutils
arm64: Remove reference to asm/opcodes.h
arm64: Get rid of asm/opcodes.h
arm64: smp: Prevent raw_smp_processor_id() recursion
arm64: head.S: Fix CNTHCTL_EL2 access on VHE system
arm64: Remove I-cache invalidation from flush_cache_range()
arm64: Enable HIBERNATION in defconfig
arm64: Enable CONFIG_ARM64_SW_TTBR0_PAN
arm64: xen: Enable user access before a privcmd hvc call
arm64: Handle faults caused by inadvertent user access with PAN enabled
arm64: Disable TTBR0_EL1 during normal kernel execution
arm64: Introduce uaccess_{disable,enable} functionality based on TTBR0_EL1
arm64: Factor out TTBR0_EL1 post-update workaround into a specific asm macro
arm64: Factor out PAN enabling/disabling into separate uaccess_* macros
arm64: Update the synchronous external abort fault description
selftests: arm64: add test for unaligned/inexact watchpoint handling
arm64: Allow hw watchpoint of length 3,5,6 and 7
arm64: hw_breakpoint: Handle inexact watchpoint addresses
...
x86: userspace can now hide nested VMX features from guests; nested
VMX can now run Hyper-V in a guest; support for AVX512_4VNNIW and
AVX512_FMAPS in KVM; infrastructure support for virtual Intel GPUs.
PPC: support for KVM guests on POWER9; improved support for interrupt
polling; optimizations and cleanups.
s390: two small optimizations, more stuff is in flight and will be
in 4.11.
ARM: support for the GICv3 ITS on 32bit platforms.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQExBAABCAAbBQJYTkP0FBxwYm9uemluaUByZWRoYXQuY29tAAoJEL/70l94x66D
lZIH/iT1n9OQXcuTpYYnQhuCenzI3GZZOIMTbCvK2i5bo0FIJKxVn0EiAAqZSXvO
nO185FqjOgLuJ1AD1kJuxzye5suuQp4HIPWWgNHcexLuy43WXWKZe0IQlJ4zM2Xf
u31HakpFmVDD+Cd1qN3yDXtDrRQ79/xQn2kw7CWb8olp+pVqwbceN3IVie9QYU+3
gCz0qU6As0aQIwq2PyalOe03sO10PZlm4XhsoXgWPG7P18BMRhNLTDqhLhu7A/ry
qElVMANT7LSNLzlwNdpzdK8rVuKxETwjlc1UP8vSuhrwad4zM2JJ1Exk26nC2NaG
D0j4tRSyGFIdx6lukZm7HmiSHZ0=
=mkoB
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"Small release, the most interesting stuff is x86 nested virt
improvements.
x86:
- userspace can now hide nested VMX features from guests
- nested VMX can now run Hyper-V in a guest
- support for AVX512_4VNNIW and AVX512_FMAPS in KVM
- infrastructure support for virtual Intel GPUs.
PPC:
- support for KVM guests on POWER9
- improved support for interrupt polling
- optimizations and cleanups.
s390:
- two small optimizations, more stuff is in flight and will be in
4.11.
ARM:
- support for the GICv3 ITS on 32bit platforms"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (94 commits)
arm64: KVM: pmu: Reset PMSELR_EL0.SEL to a sane value before entering the guest
KVM: arm/arm64: timer: Check for properly initialized timer on init
KVM: arm/arm64: vgic-v2: Limit ITARGETSR bits to number of VCPUs
KVM: x86: Handle the kthread worker using the new API
KVM: nVMX: invvpid handling improvements
KVM: nVMX: check host CR3 on vmentry and vmexit
KVM: nVMX: introduce nested_vmx_load_cr3 and call it on vmentry
KVM: nVMX: propagate errors from prepare_vmcs02
KVM: nVMX: fix CR3 load if L2 uses PAE paging and EPT
KVM: nVMX: load GUEST_EFER after GUEST_CR0 during emulated VM-entry
KVM: nVMX: generate MSR_IA32_CR{0,4}_FIXED1 from guest CPUID
KVM: nVMX: fix checks on CR{0,4} during virtual VMX operation
KVM: nVMX: support restore of VMX capability MSRs
KVM: nVMX: generate non-true VMX MSRs based on true versions
KVM: x86: Do not clear RFLAGS.TF when a singlestep trap occurs.
KVM: x86: Add kvm_skip_emulated_instruction and use it.
KVM: VMX: Move skip_emulated_instruction out of nested_vmx_check_vmcs12
KVM: VMX: Reorder some skip_emulated_instruction calls
KVM: x86: Add a return value to kvm_emulate_cpuid
KVM: PPC: Book3S: Move prototypes for KVM functions into kvm_ppc.h
...
The ARMv8 architecture allows the cycle counter to be configured
by setting PMSELR_EL0.SEL==0x1f and then accessing PMXEVTYPER_EL0,
hence accessing PMCCFILTR_EL0. But it disallows the use of
PMSELR_EL0.SEL==0x1f to access the cycle counter itself through
PMXEVCNTR_EL0.
Linux itself doesn't violate this rule, but we may end up with
PMSELR_EL0.SEL being set to 0x1f when we enter a guest. If that
guest accesses PMXEVCNTR_EL0, the access may UNDEF at EL1,
despite the guest not having done anything wrong.
In order to avoid this unfortunate course of events (haha!), let's
sanitize PMSELR_EL0 on guest entry. This ensures that the guest
won't explode unexpectedly.
Cc: stable@vger.kernel.org #4.6+
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
We're missing the handling code for the cycle counter accessed
from a 32bit guest, leading to unexpected results.
Cc: stable@vger.kernel.org # 4.6+
Signed-off-by: Wei Huang <wei@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
The arm64 kernel assumes that FP/ASIMD units are always present
and accesses the FP/ASIMD specific registers unconditionally. This
could cause problems when they are absent. This patch adds the
support for kernel handling systems without FP/ASIMD by skipping the
register access within the kernel. For kvm, we trap the accesses
to FP/ASIMD and inject an undefined instruction exception to the VM.
The callers of the exported kernel_neon_begin_partial() should
make sure that the FP/ASIMD is supported.
Cc: Will Deacon <will.deacon@arm.com>
Cc: Christoffer Dall <christoffer.dall@linaro.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
[catalin.marinas@arm.com: add comment on the ARM64_HAS_NO_FPSIMD conflict and the new location]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This patch allows to build and use vGICv3 ITS in 32-bit mode.
Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
Reviewed-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Architecturally, TLBs are private to the (physical) CPU they're
associated with. But when multiple vcpus from the same VM are
being multiplexed on the same CPU, the TLBs are not private
to the vcpus (and are actually shared across the VMID).
Let's consider the following scenario:
- vcpu-0 maps PA to VA
- vcpu-1 maps PA' to VA
If run on the same physical CPU, vcpu-1 can hit TLB entries generated
by vcpu-0 accesses, and access the wrong physical page.
The solution to this is to keep a per-VM map of which vcpu ran last
on each given physical CPU, and invalidate local TLBs when switching
to a different vcpu from the same VM.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
All architectures:
Move `make kvmconfig` stubs from x86; use 64 bits for debugfs stats.
ARM:
Important fixes for not using an in-kernel irqchip; handle SError
exceptions and present them to guests if appropriate; proxying of GICV
access at EL2 if guest mappings are unsafe; GICv3 on AArch32 on ARMv8;
preparations for GICv3 save/restore, including ABI docs; cleanups and
a bit of optimizations.
MIPS:
A couple of fixes in preparation for supporting MIPS EVA host kernels;
MIPS SMP host & TLB invalidation fixes.
PPC:
Fix the bug which caused guests to falsely report lockups; other minor
fixes; a small optimization.
s390:
Lazy enablement of runtime instrumentation; up to 255 CPUs for nested
guests; rework of machine check deliver; cleanups and fixes.
x86:
IOMMU part of AMD's AVIC for vmexit-less interrupt delivery; Hyper-V
TSC page; per-vcpu tsc_offset in debugfs; accelerated INS/OUTS in
nVMX; cleanups and fixes.
-----BEGIN PGP SIGNATURE-----
iQEcBAABCAAGBQJX9iDrAAoJEED/6hsPKofoOPoIAIUlgojkb9l2l1XVDgsXdgQL
sRVhYSVv7/c8sk9vFImrD5ElOPZd+CEAIqFOu45+NM3cNi7gxip9yftUVs7wI5aC
eDZRWm1E4trDZLe54ZM9ThcqZzZZiELVGMfR1+ZndUycybwyWzafpXYsYyaXp3BW
hyHM3qVkoWO3dxBWFwHIoO/AUJrWYkRHEByKyvlC6KPxSdBPSa5c1AQwMCoE0Mo4
K/xUj4gBn9eMelNhg4Oqu/uh49/q+dtdoP2C+sVM8bSdquD+PmIeOhPFIcuGbGFI
B+oRpUhIuntN39gz8wInJ4/GRSeTuR2faNPxMn4E1i1u4LiuJvipcsOjPfe0a18=
=fZRB
-----END PGP SIGNATURE-----
Merge tag 'kvm-4.9-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Radim Krčmář:
"All architectures:
- move `make kvmconfig` stubs from x86
- use 64 bits for debugfs stats
ARM:
- Important fixes for not using an in-kernel irqchip
- handle SError exceptions and present them to guests if appropriate
- proxying of GICV access at EL2 if guest mappings are unsafe
- GICv3 on AArch32 on ARMv8
- preparations for GICv3 save/restore, including ABI docs
- cleanups and a bit of optimizations
MIPS:
- A couple of fixes in preparation for supporting MIPS EVA host
kernels
- MIPS SMP host & TLB invalidation fixes
PPC:
- Fix the bug which caused guests to falsely report lockups
- other minor fixes
- a small optimization
s390:
- Lazy enablement of runtime instrumentation
- up to 255 CPUs for nested guests
- rework of machine check deliver
- cleanups and fixes
x86:
- IOMMU part of AMD's AVIC for vmexit-less interrupt delivery
- Hyper-V TSC page
- per-vcpu tsc_offset in debugfs
- accelerated INS/OUTS in nVMX
- cleanups and fixes"
* tag 'kvm-4.9-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (140 commits)
KVM: MIPS: Drop dubious EntryHi optimisation
KVM: MIPS: Invalidate TLB by regenerating ASIDs
KVM: MIPS: Split kernel/user ASID regeneration
KVM: MIPS: Drop other CPU ASIDs on guest MMU changes
KVM: arm/arm64: vgic: Don't flush/sync without a working vgic
KVM: arm64: Require in-kernel irqchip for PMU support
KVM: PPC: Book3s PR: Allow access to unprivileged MMCR2 register
KVM: PPC: Book3S PR: Support 64kB page size on POWER8E and POWER8NVL
KVM: PPC: Book3S: Remove duplicate setting of the B field in tlbie
KVM: PPC: BookE: Fix a sanity check
KVM: PPC: Book3S HV: Take out virtual core piggybacking code
KVM: PPC: Book3S: Treat VTB as a per-subcore register, not per-thread
ARM: gic-v3: Work around definition of gic_write_bpr1
KVM: nVMX: Fix the NMI IDT-vectoring handling
KVM: VMX: Enable MSR-BASED TPR shadow even if APICv is inactive
KVM: nVMX: Fix reload apic access page warning
kvmconfig: add virtio-gpu to config fragment
config: move x86 kvm_guest.config to a common location
arm64: KVM: Remove duplicating init code for setting VMID
ARM: KVM: Support vgic-v3
...
- Support for execute-only page permissions
- Support for hibernate and DEBUG_PAGEALLOC
- Support for heterogeneous systems with mismatches cache line sizes
- Errata workarounds (A53 843419 update and QorIQ A-008585 timer bug)
- arm64 PMU perf updates, including cpumasks for heterogeneous systems
- Set UTS_MACHINE for building rpm packages
- Yet another head.S tidy-up
- Some cleanups and refactoring, particularly in the NUMA code
- Lots of random, non-critical fixes across the board
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABCgAGBQJX7k31AAoJELescNyEwWM0XX0H/iOaWCfKlWOhvBsStGUCsLrK
XryTzQT2KjdnLKf3jwP+1ateCuBR5ROurYxoDCX5/7mD63c5KiI338Vbv61a1lE1
AAwjt1stmQVUg/j+kqnuQwB/0DYg+2C8se3D3q5Iyn7zc19cDZJEGcBHNrvLMufc
XgHrgHgl/rzBDDlHJXleknDFge/MfhU5/Q1vJMRRb4JYrpAtmIokzCO75CYMRcCT
ND2QbmppKtsyuFPGUTVbAFzJlP6dGKb3eruYta7/ct5d0pJQxav3u98D2yWGfjdM
YaYq1EmX5Pol7rWumqLtk0+mA9yCFcKLLc+PrJu20Vx0UkvOq8G8Xt70sHNvZU8=
=gdPM
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Will Deacon:
"It's a bit all over the place this time with no "killer feature" to
speak of. Support for mismatched cache line sizes should help people
seeing whacky JIT failures on some SoCs, and the big.LITTLE perf
updates have been a long time coming, but a lot of the changes here
are cleanups.
We stray outside arch/arm64 in a few areas: the arch/arm/ arch_timer
workaround is acked by Russell, the DT/OF bits are acked by Rob, the
arch_timer clocksource changes acked by Marc, CPU hotplug by tglx and
jump_label by Peter (all CC'd).
Summary:
- Support for execute-only page permissions
- Support for hibernate and DEBUG_PAGEALLOC
- Support for heterogeneous systems with mismatches cache line sizes
- Errata workarounds (A53 843419 update and QorIQ A-008585 timer bug)
- arm64 PMU perf updates, including cpumasks for heterogeneous systems
- Set UTS_MACHINE for building rpm packages
- Yet another head.S tidy-up
- Some cleanups and refactoring, particularly in the NUMA code
- Lots of random, non-critical fixes across the board"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (100 commits)
arm64: tlbflush.h: add __tlbi() macro
arm64: Kconfig: remove SMP dependence for NUMA
arm64: Kconfig: select OF/ACPI_NUMA under NUMA config
arm64: fix dump_backtrace/unwind_frame with NULL tsk
arm/arm64: arch_timer: Use archdata to indicate vdso suitability
arm64: arch_timer: Work around QorIQ Erratum A-008585
arm64: arch_timer: Add device tree binding for A-008585 erratum
arm64: Correctly bounds check virt_addr_valid
arm64: migrate exception table users off module.h and onto extable.h
arm64: pmu: Hoist pmu platform device name
arm64: pmu: Probe default hw/cache counters
arm64: pmu: add fallback probe table
MAINTAINERS: Update ARM PMU PROFILING AND DEBUGGING entry
arm64: Improve kprobes test for atomic sequence
arm64/kvm: use alternative auto-nop
arm64: use alternative auto-nop
arm64: alternative: add auto-nop infrastructure
arm64: lse: convert lse alternatives NOP padding to use __nops
arm64: barriers: introduce nops and __nops macros for NOP sequences
arm64: sysreg: replace open-coded mrs_s/msr_s with {read,write}_sysreg_s
...
This patch allows to build and use vgic-v3 in 32-bit mode.
Unfortunately, it can not be split in several steps without extra
stubs to keep patches independent and bisectable. For instance,
virt/kvm/arm/vgic/vgic-v3.c uses function from vgic-v3-sr.c, handling
access to GICv3 cpu interface from the guest requires vgic_v3.vgic_sre
to be already defined.
It is how support has been done:
* handle SGI requests from the guest
* report configured SRE on access to GICv3 cpu interface from the guest
* required vgic-v3 macros are provided via uapi.h
* static keys are used to select GIC backend
* to make vgic-v3 build KVM_ARM_VGIC_V3 guard is removed along with
the static inlines
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
By now ITS code guarded with KVM_ARM_VGIC_V3 config option which was
introduced to hide everything specific to vgic-v3 from 32-bit world.
We are going to support vgic-v3 in 32-bit world and KVM_ARM_VGIC_V3
will gone, but we don't have support for ITS there yet and we need to
continue keeping ITS away.
Introduce the new config option to prevent ITS code being build in
32-bit mode when support for vgic-v3 is done.
Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
So we can reuse the code under arch/arm
Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Since we are going to share vgic-v3 save/restore code with ARM keep
arch specific accessors separately.
Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Currently GIC backend is selected via alternative framework and this
is fine. We are going to introduce vgic-v3 to 32-bit world and there
we don't have patching framework in hand, so we can either check
support for GICv3 every time we need to choose which backend to use or
try to optimise it by using static keys. The later looks quite
promising because we can share logic involved in selecting GIC backend
between architectures if both uses static keys.
This patch moves arm64 from alternative to static keys framework for
selecting GIC backend. For that we embed static key into vgic_global
and enable the key during vgic initialisation based on what has
already been exposed by the host GIC driver.
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Make use of the new alternative_if and alternative_else_nop_endif and
get rid of our open-coded NOP sleds, making the code simpler to read.
Note that for __kvm_call_hyp the branch to __vhe_hyp_call has been moved
out of the alternative sequence, and in the default case there will be
four additional NOPs executed.
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: kvmarm@lists.cs.columbia.edu
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
A while back we added {read,write}_sysreg accessors to handle accesses
to system registers, without the usual boilerplate asm volatile,
temporary variable, etc.
This patch makes use of these in the arm64 KVM code to make the code
shorter and clearer.
At the same time, a comment style violation next to a system register
access is fixed up in reset_pmcr, and comments describing whether
operations are reads or writes are removed as this is now painfully
obvious.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
If, when proxying a GICV access at EL2, we detect that the guest is
doing something silly, report an EL1 SError instead ofgnoring the
access.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
If EL1 generates an asynchronous abort and then traps into EL2
before the abort has been delivered, we may end-up with the
abort firing at the worse possible place: on the host.
In order to avoid this, it is necessary to take the abort at EL2,
by clearing the PSTATE.A bit. In order to survive this abort,
we do it at a point where we're in a known state with respect
to the world switch, and handle the resulting exception,
overloading the exit code in the process.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
If we have caught an SError whilst exiting, we've tagged the
exit code with the pending information. In that case, let's
re-inject the error into the guest, after having adjusted
the PC if required.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
As we now have some basic handling to EL1-triggered aborts, we can
actually report them to KVM.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
If we've exited the guest because it has triggered an asynchronous
abort from EL1, a possible course of action is to let it know it
screwed up by giving it a Virtual Abort to chew on.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Now that we're able to context switch the HCR_EL2.VA bit, let's
introduce a helper that injects an Abort into a vcpu.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
The HCR_EL2.VSE bit is used to signal an SError to a guest, and has
the peculiar feature of getting cleared when the guest has taken
the abort (this is the only bit that behaves as such in this register).
This means that if we signal such an abort, we must leave it
in the guest context until it disappears from HCR_EL2, and at which
point it must be cleared from the context. This is achieved by
reading back from HCR_EL2 until the guest takes the fault.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
In order to efficiently perform the GICV access on behalf of the
guest, we need to be able to avoid going back all the way to
the host kernel.
For this, we introduce a new hook in the world switch code,
conveniently placed just after populating the fault info.
At that point, we only have saved/restored the GP registers,
and we can quickly perform all the required checks (data abort,
translation fault, valid faulting syndrome, not an external
abort, not a PTW).
Coming back from the emulation code, we need to skip the emulated
instruction. This involves an additional bit of save/restore in
order to be able to access the guest's PC (and possibly CPSR if
this is a 32bit guest).
At this stage, no emulation code is provided.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
It would make some sense to share the conditional execution code
between 32 and 64bit. In order to achieve this, let's move that
code to virt/kvm/arm/aarch32.c. While we're at it, drop a
superfluous BUG_ON() that wasn't that useful.
Following patches will migrate the 32bit port to that code base.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
In order to make emulate.c more generic, move the arch-specific
manupulation bits out of emulate.c.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
SCTLR_EL2.SPAN bit controls what happens with the PSTATE.PAN bit on an
exception. However, this bit has no effect on the PSTATE.PAN when
HCR_EL2.E2H or HCR_EL2.TGE is unset. Thus when VHE is used and
exception taken from a guest PSTATE.PAN bit left unchanged and we
continue with a value guest has set.
To address that always reset PSTATE.PAN on entry from EL1.
Fixes: 1f364c8c48 ("arm64: VHE: Add support for running Linux in EL2 mode")
Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
Reviewed-by: James Morse <james.morse@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Cc: <stable@vger.kernel.org> # v4.6+
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
When rewriting the assembly code to C code, it was useful to have
exported aliases or static functions so that we could keep the existing
common C code unmodified and at the same time rewrite arm64 from
assembly to C code, and later do the arm part.
Now when both are done, we really don't need this level of indirection
anymore, and it's time to save a few lines and brain cells.
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
We are doing an unnecessary stack push/pop operation when restoring
the guest registers x0-x18 in __guest_enter(). This patch saves the
two instructions by using x18 as a base register. No need to store
the vcpu context pointer in stack because it is redundant, the same
information is available in tpidr_el2. The function __guest_exit()
calling convention is slightly modified, caller only pushes the regs
x0-x1 to stack instead of regs x0-x3.
Signed-off-by: Shanker Donthineni <shankerd@codeaurora.org>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
After commit b34f2bc ("arm64: KVM: Make ICC_SRE_EL1 access return the
configured SRE value") we report SRE value to 64-bit guest, but 32-bit
one still handled as RAZ/WI what leads to funny promise we do not keep:
"GICv3: GIC: unable to set SRE (disabled at EL2), panic ahead"
Instead, return the actual value of the ICC_SRE_EL1 register that the
guest should see.
[ Tweaked commit message - Christoffer ]
Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Comment about how PMU access is handled is not relavant since v4.6
where proper PMU support was added in.
Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
We already have a workaround for Cortex-A57 erratum #852523,
but Cortex-A72 r0p0 to r0p2 do suffer from the same issue
(known as erratum #853709).
Let's document the fact that we already handle this.
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Includes GSI routing support to go along with the new VGIC and a small fix that
has been cooking in -next for a while.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJXoydqAAoJEEtpOizt6ddyM3oH/1A4VeG/J9q4fBPXqY2tVWXs
c3P7UgNcrEgUNs/F9ykQY/lb31deecUzaBt1OyTf+RlsNbihq3dQdYcBhxtUODw/
Faok582ya3UFgLW+IRHcID0EbkVOpIzMhOStYsnU/Dz7HG1JL9HdPzwkid7iu9LT
fI6yrrBnJFjdWAAQ4BkcEKBENRsY8NTs7jX5vnFA92MkUBby7BmariPDD3FtrB+f
Ob9B7CxM30pNqsN7OA/QvFOHMJHxf3s1TBKwmPHe5TLIfSzV1YxcEGiMc0lWqF4v
BT8ZeMGCtjDw94tND1DskfQQRPaMqPmGuRTrAW/IuE2n92bFtbqIqs7Cbw0fzLE=
=Vm6Q
-----END PGP SIGNATURE-----
Merge tag 'kvm-arm-for-4.8-take2' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/ARM Changes for v4.8 - Take 2
Includes GSI routing support to go along with the new VGIC and a small fix that
has been cooking in -next for a while.
VGIC implementation.
- s390: support for trapping software breakpoints, nested virtualization
(vSIE), the STHYI opcode, initial extensions for CPU model support.
- MIPS: support for MIPS64 hosts (32-bit guests only) and lots of cleanups,
preliminary to this and the upcoming support for hardware virtualization
extensions.
- x86: support for execute-only mappings in nested EPT; reduced vmexit
latency for TSC deadline timer (by about 30%) on Intel hosts; support for
more than 255 vCPUs.
- PPC: bugfixes.
The ugly bit is the conflicts. A couple of them are simple conflicts due
to 4.7 fixes, but most of them are with other trees. There was definitely
too much reliance on Acked-by here. Some conflicts are for KVM patches
where _I_ gave my Acked-by, but the worst are for this pull request's
patches that touch files outside arch/*/kvm. KVM submaintainers should
probably learn to synchronize better with arch maintainers, with the
latter providing topic branches whenever possible instead of Acked-by.
This is what we do with arch/x86. And I should learn to refuse pull
requests when linux-next sends scary signals, even if that means that
submaintainers have to rebase their branches.
Anyhow, here's the list:
- arch/x86/kvm/vmx.c: handle_pcommit and EXIT_REASON_PCOMMIT was removed
by the nvdimm tree. This tree adds handle_preemption_timer and
EXIT_REASON_PREEMPTION_TIMER at the same place. In general all mentions
of pcommit have to go.
There is also a conflict between a stable fix and this patch, where the
stable fix removed the vmx_create_pml_buffer function and its call.
- virt/kvm/kvm_main.c: kvm_cpu_notifier was removed by the hotplug tree.
This tree adds kvm_io_bus_get_dev at the same place.
- virt/kvm/arm/vgic.c: a few final bugfixes went into 4.7 before the
file was completely removed for 4.8.
- include/linux/irqchip/arm-gic-v3.h: this one is entirely our fault;
this is a change that should have gone in through the irqchip tree and
pulled by kvm-arm. I think I would have rejected this kvm-arm pull
request. The KVM version is the right one, except that it lacks
GITS_BASER_PAGES_SHIFT.
- arch/powerpc: what a mess. For the idle_book3s.S conflict, the KVM
tree is the right one; everything else is trivial. In this case I am
not quite sure what went wrong. The commit that is causing the mess
(fd7bacbca4, "KVM: PPC: Book3S HV: Fix TB corruption in guest exit
path on HMI interrupt", 2016-05-15) touches both arch/powerpc/kernel/
and arch/powerpc/kvm/. It's large, but at 396 insertions/5 deletions
I guessed that it wasn't really possible to split it and that the 5
deletions wouldn't conflict. That wasn't the case.
- arch/s390: also messy. First is hypfs_diag.c where the KVM tree
moved some code and the s390 tree patched it. You have to reapply the
relevant part of commits 6c22c98637, plus all of e030c1125e, to
arch/s390/kernel/diag.c. Or pick the linux-next conflict
resolution from http://marc.info/?l=kvm&m=146717549531603&w=2.
Second, there is a conflict in gmap.c between a stable fix and 4.8.
The KVM version here is the correct one.
I have pushed my resolution at refs/heads/merge-20160802 (commit
3d1f53419842) at git://git.kernel.org/pub/scm/virt/kvm/kvm.git.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJXoGm7AAoJEL/70l94x66DugQIAIj703ePAFepB/fCrKHkZZia
SGrsBdvAtNsOhr7FQ5qvvjLxiv/cv7CymeuJivX8H+4kuUHUllDzey+RPHYHD9X7
U6n1PdCH9F15a3IXc8tDjlDdOMNIKJixYuq1UyNZMU6NFwl00+TZf9JF8A2US65b
x/41W98ilL6nNBAsoDVmCLtPNWAqQ3lajaZELGfcqRQ9ZGKcAYOaLFXHv2YHf2XC
qIDMf+slBGSQ66UoATnYV2gAopNlWbZ7n0vO6tE2KyvhHZ1m399aBX1+k8la/0JI
69r+Tz7ZHUSFtmlmyByi5IAB87myy2WQHyAPwj+4vwJkDGPcl0TrupzbG7+T05Y=
=42ti
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
- ARM: GICv3 ITS emulation and various fixes. Removal of the
old VGIC implementation.
- s390: support for trapping software breakpoints, nested
virtualization (vSIE), the STHYI opcode, initial extensions
for CPU model support.
- MIPS: support for MIPS64 hosts (32-bit guests only) and lots
of cleanups, preliminary to this and the upcoming support for
hardware virtualization extensions.
- x86: support for execute-only mappings in nested EPT; reduced
vmexit latency for TSC deadline timer (by about 30%) on Intel
hosts; support for more than 255 vCPUs.
- PPC: bugfixes.
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (302 commits)
KVM: PPC: Introduce KVM_CAP_PPC_HTM
MIPS: Select HAVE_KVM for MIPS64_R{2,6}
MIPS: KVM: Reset CP0_PageMask during host TLB flush
MIPS: KVM: Fix ptr->int cast via KVM_GUEST_KSEGX()
MIPS: KVM: Sign extend MFC0/RDHWR results
MIPS: KVM: Fix 64-bit big endian dynamic translation
MIPS: KVM: Fail if ebase doesn't fit in CP0_EBase
MIPS: KVM: Use 64-bit CP0_EBase when appropriate
MIPS: KVM: Set CP0_Status.KX on MIPS64
MIPS: KVM: Make entry code MIPS64 friendly
MIPS: KVM: Use kmap instead of CKSEG0ADDR()
MIPS: KVM: Use virt_to_phys() to get commpage PFN
MIPS: Fix definition of KSEGX() for 64-bit
KVM: VMX: Add VMCS to CPU's loaded VMCSs before VMPTRLD
kvm: x86: nVMX: maintain internal copy of current VMCS
KVM: PPC: Book3S HV: Save/restore TM state in H_CEDE
KVM: PPC: Book3S HV: Pull out TM state save/restore into separate procedures
KVM: arm64: vgic-its: Simplify MAPI error handling
KVM: arm64: vgic-its: Make vgic_its_cmd_handle_mapi similar to other handlers
KVM: arm64: vgic-its: Turn device_id validation into generic ID validation
...
We need to set cpsr before determining the spsr bank, as the bank
depends on the target exception level of the injection, not the
current mode of the vcpu. Normally this is one in the same (EL1),
but not when we manage to trap an EL0 fault. It still doesn't really
matter for the 64-bit EL0 case though, as vcpu_spsr() unconditionally
uses the EL1 bank for that. However the 32-bit EL0 case gets fun, as
that path will lead to the BUG() in vcpu_spsr32().
This patch fixes the assignment order and also modifies some white
space in order to better group pairs of lines that have strict order.
Cc: stable@vger.kernel.org # v4.5
Signed-off-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
- Kexec support for arm64
- Kprobes support
- Expose MIDR_EL1 and REVIDR_EL1 CPU identification registers to sysfs
- Trapping of user space cache maintenance operations and emulation in
the kernel (CPU errata workaround)
- Clean-up of the early page tables creation (kernel linear mapping, EFI
run-time maps) to avoid splitting larger blocks (e.g. pmds) into
smaller ones (e.g. ptes)
- VDSO support for CLOCK_MONOTONIC_RAW in clock_gettime()
- ARCH_HAS_KCOV enabled for arm64
- Optimise IP checksum helpers
- SWIOTLB optimisation to only allocate/initialise the buffer if the
available RAM is beyond the 32-bit mask
- Properly handle the "nosmp" command line argument
- Fix for the initialisation of the CPU debug state during early boot
- vdso-offsets.h build dependency workaround
- Build fix when RANDOMIZE_BASE is enabled with MODULES off
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJXmF/UAAoJEGvWsS0AyF7x+jwP/2fErtX6FTXmdG0c3HBkTpuy
gEuzN2ByWbP6Io+unLC6NvbQQb1q6c73PTqjsoeMHUx2o8YK3jgWEBcC+7AuepoZ
YGl3r08e75a/fGrgNwEQQC1lNlgjpog4kzVDh5ji6oRXNq+OkjJGUtRPe3gBoqxv
NAjviciID/MegQaq4SaMd26AmnjuUGKogo5vlIaXK0SemX9it+ytW7eLAXuVY+gW
EvO3Nxk0Y5oZKJF8qRw6oLSmw1bwn2dD26OgfXfCiI30QBookRyWIoXRedUOZmJq
D0+Tipd7muO4PbjlxS8aY/wd/alfnM5+TJ6HpGDo+Y1BDauXfiXMf3ktDFE5QvJB
KgtICmC0stWwbDT35dHvz8sETsrCMA2Q/IMrnyxG+nj9BxVQU7rbNrxfCXesJy7Q
4EsQbcTyJwu+ECildBezfoei99XbFZyWk2vKSkTCFKzgwXpftGFaffgZ3DIzBAHH
IjecDqIFENC8ymrjyAgrGjeFG+2WB/DBgoSS3Baiz6xwQqC4wFMnI3jPECtJjb/U
6e13f+onXu5lF1YFKAiRjGmqa/G1ZMr+uKZFsembuGqsZdAPkzzUHyAE9g4JVO8p
t3gc3/M3T7oLSHuw4xi1/Ow5VGb2UvbslFrp7OpuFZ7CJAvhKlHL5rPe385utsFE
7++5WHXHAegeJCDNAKY2
=iJOY
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
- Kexec support for arm64
- Kprobes support
- Expose MIDR_EL1 and REVIDR_EL1 CPU identification registers to sysfs
- Trapping of user space cache maintenance operations and emulation in
the kernel (CPU errata workaround)
- Clean-up of the early page tables creation (kernel linear mapping,
EFI run-time maps) to avoid splitting larger blocks (e.g. pmds) into
smaller ones (e.g. ptes)
- VDSO support for CLOCK_MONOTONIC_RAW in clock_gettime()
- ARCH_HAS_KCOV enabled for arm64
- Optimise IP checksum helpers
- SWIOTLB optimisation to only allocate/initialise the buffer if the
available RAM is beyond the 32-bit mask
- Properly handle the "nosmp" command line argument
- Fix for the initialisation of the CPU debug state during early boot
- vdso-offsets.h build dependency workaround
- Build fix when RANDOMIZE_BASE is enabled with MODULES off
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (64 commits)
arm64: arm: Fix-up the removal of the arm64 regs_query_register_name() prototype
arm64: Only select ARM64_MODULE_PLTS if MODULES=y
arm64: mm: run pgtable_page_ctor() on non-swapper translation table pages
arm64: mm: make create_mapping_late() non-allocating
arm64: Honor nosmp kernel command line option
arm64: Fix incorrect per-cpu usage for boot CPU
arm64: kprobes: Add KASAN instrumentation around stack accesses
arm64: kprobes: Cleanup jprobe_return
arm64: kprobes: Fix overflow when saving stack
arm64: kprobes: WARN if attempting to step with PSTATE.D=1
arm64: debug: remove unused local_dbg_{enable, disable} macros
arm64: debug: remove redundant spsr manipulation
arm64: debug: unmask PSTATE.D earlier
arm64: localise Image objcopy flags
arm64: ptrace: remove extra define for CPSR's E bit
kprobes: Add arm64 case in kprobe example module
arm64: Add kernel return probes support (kretprobes)
arm64: Add trampoline code for kretprobes
arm64: kprobes instruction simulation support
arm64: Treat all entry code as non-kprobe-able
...
The kprobe enablement work has uncovered that changes made by
a guest to MDSCR_EL1 were propagated to the host when VHE was
enabled, leading to unexpected exception being delivered.
Moving this register to the list of registers that are always
context-switched fixes the issue.
Fixes: 9c6c356832 ("arm64: KVM: VHE: Split save/restore of registers shared between guest and host")
Cc: stable@vger.kernel.org #4.6
Reported-by: Tirumalesh Chalamarla <Tirumalesh.Chalamarla@cavium.com>
Tested-by: Tirumalesh Chalamarla <Tirumalesh.Chalamarla@cavium.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
This patch adds compilation and link against irqchip.
Main motivation behind using irqchip code is to enable MSI
routing code. In the future irqchip routing may also be useful
when targeting multiple irqchips.
Routing standard callbacks now are implemented in vgic-irqfd:
- kvm_set_routing_entry
- kvm_set_irq
- kvm_set_msi
They only are supported with new_vgic code.
Both HAVE_KVM_IRQCHIP and HAVE_KVM_IRQ_ROUTING are defined.
KVM_CAP_IRQ_ROUTING is advertised and KVM_SET_GSI_ROUTING is allowed.
So from now on IRQCHIP routing is enabled and a routing table entry
must exist for irqfd injection to succeed for a given SPI. This patch
builds a default flat irqchip routing table (gsi=irqchip.pin) covering
all the VGIC SPI indexes. This routing table is overwritten by the
first first user-space call to KVM_SET_GSI_ROUTING ioctl.
MSI routing setup is not yet allowed.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Now that all ITS emulation functionality is in place, we advertise
MSI functionality to userland and also the ITS device to the guest - if
userland has configured that.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
KVM capabilities can be a per-VM property, though ARM/ARM64 currently
does not pass on the VM pointer to the architecture specific
capability handlers.
Add a "struct kvm*" parameter to those function to later allow proper
per-VM capability reporting.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Eric Auger <eric.auger@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Tested-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
My static checker complains that this condition looks like it should be
== instead of =. This isn't a fast path, so we don't need to be fancy.
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Now that we only have the "merged page tables" case to deal with,
there is a bunch of things we can simplify in the HYP code (both
at init and teardown time).
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
We're in a position where we can now always have "merged" page
tables, where both the runtime mapping and the idmap coexist.
This results in some code being removed, but there is more to come.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
__hyp_panic_string is passed via the HYP panic code to the panic
function, and is being "upgraded" to a kernel address, as it is
referenced by the HYP code (in a PC-relative way).
This is a bit silly, and we'd be better off obtaining the kernel
address and not mess with it at all. This patch implements this
with a tiny bit of asm glue, by forcing the string pointer to be
read from the literal pool.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
I don't think any single piece of the KVM/ARM code ever generated
as much hatred as the GIC emulation.
It was written by someone who had zero experience in modeling
hardware (me), was riddled with design flaws, should have been
scrapped and rewritten from scratch long before having a remote
chance of reaching mainline, and yet we supported it for a good
three years. No need to mention the names of those who suffered,
the git log is singing their praises.
Thankfully, we now have a much more maintainable implementation,
and we can safely put the grumpy old GIC to rest.
Fellow hackers, please raise your glass in memory of the GIC:
The GIC is dead, long live the GIC!
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Now that we have a helper to extract the EC from an ESR_ELx value, make
use of this in the arm64 KVM code for simplicity and consistency. There
should be no functional changes as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Dave P Martin <dave.martin@arm.com>
Cc: Huang Shijie <shijie.huang@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: kvmarm@lists.cs.columbia.edu
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Add ARCH_HAS_KCOV to ARM64 config. To avoid potential crashes, disable
instrumentation of the files in arch/arm64/kvm/hyp/*.
Signed-off-by: Alexander Potapenko <glider@google.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: James Morse <james.morse@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The GICv3 backend of the vgic is quite barrier heavy, in order
to ensure synchronization of the system registers and the
memory mapped view for a potential GICv2 guest.
But when the guest is using a GICv3 model, there is absolutely
no need to execute all these heavy barriers, and it is actually
beneficial to avoid them altogether.
This patch makes the synchonization conditional, and ensures
that we do not change the EL1 SRE settings if we do not need to.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Both our GIC emulations are "strict", in the sense that we either
emulate a GICv2 or a GICv3, and not a GICv3 with GICv2 legacy
support.
But when running on a GICv3 host, we still allow the guest to
tinker with the ICC_SRE_EL1 register during its time slice:
it can switch SRE off, observe that it is off, and yet on the
next world switch, find the SRE bit to be set again. Not very
nice.
An obvious solution is to always trap accesses to ICC_SRE_EL1
(by clearing ICC_SRE_EL2.Enable), and to let the handler return
the programmed value on a read, or ignore the write.
That way, the guest can always observe that our GICv3 is SRE==1
only.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
When we trap ICC_SRE_EL1, we handle it as RAZ/WI. It would be
more correct to actual make it RO, and return the configured
value when read.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
When saving the state of the list registers, it is critical to
reset them zero, as we could otherwise leave unexpected EOI
interrupts pending for virtual level interrupts.
Cc: stable@vger.kernel.org # v4.6+
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
(kvm_stat had nothing to do with QEMU in the first place -- the tool
only interprets debugfs)
- expose per-vm statistics in debugfs and support them in kvm_stat
(KVM always collected per-vm statistics, but they were summarised into
global statistics)
x86:
- fix dynamic APICv (VMX was improperly configured and a guest could
access host's APIC MSRs, CVE-2016-4440)
- minor fixes
ARM changes from Christoffer Dall:
"This set of changes include the new vgic, which is a reimplementation
of our horribly broken legacy vgic implementation. The two
implementations will live side-by-side (with the new being the
configured default) for one kernel release and then we'll remove the
legacy one.
Also fixes a non-critical issue with virtual abort injection to
guests."
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABCAAGBQJXRz0KAAoJEED/6hsPKofosiMIAIHmRI+9I6VMNmQe5vrZKz9/
vt89QGxDJrFQwhEuZovenLEDaY6rMIJNguyvIbPhNuXNHIIPWbe6cO6OPwByqkdo
WI/IIqcAJN/Bpwt4/Y2977A5RwDOwWLkaDs0LrZCEKPCgeh9GWQf+EfyxkDJClhG
uIgbSAU+t+7b05K3c6NbiQT/qCzDTCdl6In6PI/DFSRRkXDaTcopjjp1PmMUSSsR
AM8LGhEzMer+hGKOH7H5TIbN+HFzAPjBuDGcoZt0/w9IpmmS5OMd3ZrZ320cohz8
zZQooRcFrT0ulAe+TilckmRMJdMZ69fyw3nzfqgAKEx+3PaqjKSY/tiEgqqDJHY=
=EEBK
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull second batch of KVM updates from Radim Krčmář:
"General:
- move kvm_stat tool from QEMU repo into tools/kvm/kvm_stat (kvm_stat
had nothing to do with QEMU in the first place -- the tool only
interprets debugfs)
- expose per-vm statistics in debugfs and support them in kvm_stat
(KVM always collected per-vm statistics, but they were summarised
into global statistics)
x86:
- fix dynamic APICv (VMX was improperly configured and a guest could
access host's APIC MSRs, CVE-2016-4440)
- minor fixes
ARM changes from Christoffer Dall:
- new vgic reimplementation of our horribly broken legacy vgic
implementation. The two implementations will live side-by-side
(with the new being the configured default) for one kernel release
and then we'll remove the legacy one.
- fix for a non-critical issue with virtual abort injection to guests"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (70 commits)
tools: kvm_stat: Add comments
tools: kvm_stat: Introduce pid monitoring
KVM: Create debugfs dir and stat files for each VM
MAINTAINERS: Add kvm tools
tools: kvm_stat: Powerpc related fixes
tools: Add kvm_stat man page
tools: Add kvm_stat vm monitor script
kvm:vmx: more complete state update on APICv on/off
KVM: SVM: Add more SVM_EXIT_REASONS
KVM: Unify traced vector format
svm: bitwise vs logical op typo
KVM: arm/arm64: vgic-new: Synchronize changes to active state
KVM: arm/arm64: vgic-new: enable build
KVM: arm/arm64: vgic-new: implement mapped IRQ handling
KVM: arm/arm64: vgic-new: Wire up irqfd injection
KVM: arm/arm64: vgic-new: Add vgic_v2/v3_enable
KVM: arm/arm64: vgic-new: vgic_init: implement map_resources
KVM: arm/arm64: vgic-new: vgic_init: implement vgic_init
KVM: arm/arm64: vgic-new: vgic_init: implement vgic_create
KVM: arm/arm64: vgic-new: vgic_init: implement kvm_vgic_hyp_init
...
Now that the new VGIC implementation has reached feature parity with
the old one, add the new files to the build system and add a Kconfig
option to switch between the two versions.
We set the default to the new version to get maximum test coverage,
in case people experience problems they can switch back to the old
behaviour if needed.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
The EC field of the constructed ESR is conditionally modified by ORing in
ESR_ELx_EC_DABT_LOW for a data abort. However, ESR_ELx_EC_SHIFT is missing
from this condition.
Signed-off-by: Matt Evans <matt.evans@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
- x86: miscellaneous fixes, AVIC support (local APIC virtualization,
AMD version)
- s390: polling for interrupts after a VCPU goes to halted state is
now enabled for s390; use hardware provided information about facility
bits that do not need any hypervisor activity, and other fixes for
cpu models and facilities; improve perf output; floating interrupt
controller improvements.
- MIPS: miscellaneous fixes
- PPC: bugfixes only
- ARM: 16K page size support, generic firmware probing layer for
timer and GIC
Christoffer Dall (KVM-ARM maintainer) says:
"There are a few changes in this pull request touching things outside
KVM, but they should all carry the necessary acks and it made the
merge process much easier to do it this way."
though actually the irqchip maintainers' acks didn't make it into the
patches. Marc Zyngier, who is both irqchip and KVM-ARM maintainer,
later acked at http://mid.gmane.org/573351D1.4060303@arm.com
"more formally and for documentation purposes".
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJXPJjyAAoJEL/70l94x66DhioH/j4fwQ0FmfPSM9PArzaFHQdx
LNE3tU4+bobbsy1BJr4DiAaOUQn3DAgwUvGLWXdeLiOXtoWXBiFHKaxlqEsCA6iQ
xcTH1TgfxsVoqGQ6bT9X/2GCx70heYpcWG3f+zqBy7ZfFmQykLAC/HwOr52VQL8f
hUFi3YmTHcnorp0n5Xg+9r3+RBS4D/kTbtdn6+KCLnPJ0RcgNkI3/NcafTemoofw
Tkv8+YYFNvKV13qlIfVqxMa0GwWI3pP6YaNKhaS5XO8Pu16HuuF1JthJsUBDzwBa
RInp8R9MoXgsBYhLpz3jc9vWG7G9yDl5LehsD9KOUGOaFYJ7sQN+QZOusa6jFgA=
=llO5
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"Small release overall.
x86:
- miscellaneous fixes
- AVIC support (local APIC virtualization, AMD version)
s390:
- polling for interrupts after a VCPU goes to halted state is now
enabled for s390
- use hardware provided information about facility bits that do not
need any hypervisor activity, and other fixes for cpu models and
facilities
- improve perf output
- floating interrupt controller improvements.
MIPS:
- miscellaneous fixes
PPC:
- bugfixes only
ARM:
- 16K page size support
- generic firmware probing layer for timer and GIC
Christoffer Dall (KVM-ARM maintainer) says:
"There are a few changes in this pull request touching things
outside KVM, but they should all carry the necessary acks and it
made the merge process much easier to do it this way."
though actually the irqchip maintainers' acks didn't make it into the
patches. Marc Zyngier, who is both irqchip and KVM-ARM maintainer,
later acked at http://mid.gmane.org/573351D1.4060303@arm.com ('more
formally and for documentation purposes')"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (82 commits)
KVM: MTRR: remove MSR 0x2f8
KVM: x86: make hwapic_isr_update and hwapic_irr_update look the same
svm: Manage vcpu load/unload when enable AVIC
svm: Do not intercept CR8 when enable AVIC
svm: Do not expose x2APIC when enable AVIC
KVM: x86: Introducing kvm_x86_ops.apicv_post_state_restore
svm: Add VMEXIT handlers for AVIC
svm: Add interrupt injection via AVIC
KVM: x86: Detect and Initialize AVIC support
svm: Introduce new AVIC VMCB registers
KVM: split kvm_vcpu_wake_up from kvm_vcpu_kick
KVM: x86: Introducing kvm_x86_ops VCPU blocking/unblocking hooks
KVM: x86: Introducing kvm_x86_ops VM init/destroy hooks
KVM: x86: Rename kvm_apic_get_reg to kvm_lapic_get_reg
KVM: x86: Misc LAPIC changes to expose helper functions
KVM: shrink halt polling even more for invalid wakeups
KVM: s390: set halt polling to 80 microseconds
KVM: halt_polling: provide a way to qualify wakeups during poll
KVM: PPC: Book3S HV: Re-enable XICS fast path for irqfd-generated interrupts
kvm: Conditionally register IRQ bypass consumer
...
- virt_to_page/page_address optimisations
- Support for NUMA systems described using device-tree
- Support for hibernate/suspend-to-disk
- Proper support for maxcpus= command line parameter
- Detection and graceful handling of AArch64-only CPUs
- Miscellaneous cleanups and non-critical fixes
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABCgAGBQJXNbgkAAoJELescNyEwWM0PtcIAK11xaOMmSqXz8fcTeNLw4dS
taaPWhjCYus8EhJyvTetfwk74+qVApdvKXKNKgODJXQEjeQx2brdUfbQZb31DTGT
798UYCAyEYCWkXspqi+/dpZEgUGPYH7uGOu2eDd19+PhTeX/EQSRX3fC9k0BNhvh
PN9pOgRcKAlIExZ6QYmT0g56VLtbCfFShN41mQ8HdpShl6pPJuhQ+kDDzudmRjuD
11/oYuOaVTnwbPuXn+sjOrWvMkfINHI70BAQnnBs0v+5c45mzpqEMsy0dYo2Pl2m
ar5lUFVIZggQkiqcOzqBzEgF+4gNw4LUu1DgK6cNKNMtL6k8E9zeOZMWeSVr0lg=
=bT5E
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Will Deacon:
- virt_to_page/page_address optimisations
- support for NUMA systems described using device-tree
- support for hibernate/suspend-to-disk
- proper support for maxcpus= command line parameter
- detection and graceful handling of AArch64-only CPUs
- miscellaneous cleanups and non-critical fixes
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (92 commits)
arm64: do not enforce strict 16 byte alignment to stack pointer
arm64: kernel: Fix incorrect brk randomization
arm64: cpuinfo: Missing NULL terminator in compat_hwcap_str
arm64: secondary_start_kernel: Remove unnecessary barrier
arm64: Ensure pmd_present() returns false after pmd_mknotpresent()
arm64: Replace hard-coded values in the pmd/pud_bad() macros
arm64: Implement pmdp_set_access_flags() for hardware AF/DBM
arm64: Fix typo in the pmdp_huge_get_and_clear() definition
arm64: mm: remove unnecessary EXPORT_SYMBOL_GPL
arm64: always use STRICT_MM_TYPECHECKS
arm64: kvm: Fix kvm teardown for systems using the extended idmap
arm64: kaslr: increase randomization granularity
arm64: kconfig: drop CONFIG_RTC_LIB dependency
arm64: make ARCH_SUPPORTS_DEBUG_PAGEALLOC depend on !HIBERNATION
arm64: hibernate: Refuse to hibernate if the boot cpu is offline
arm64: kernel: Add support for hibernate/suspend-to-disk
PM / Hibernate: Call flush_icache_range() on pages restored in-place
arm64: Add new asm macro copy_page
arm64: Promote KERNEL_START/KERNEL_END definitions to a header file
arm64: kernel: Include _AC definition in page.h
...
The ARMv8.1 architecture extensions introduce support for hardware
updates of the access and dirty information in page table entries. With
VTCR_EL2.HA enabled (bit 21), when the CPU accesses an IPA with the
PTE_AF bit cleared in the stage 2 page table, instead of raising an
Access Flag fault to EL2 the CPU sets the actual page table entry bit
(10). To ensure that kernel modifications to the page table do not
inadvertently revert a bit set by hardware updates, certain Stage 2
software pte/pmd operations must be performed atomically.
The main user of the AF bit is the kvm_age_hva() mechanism. The
kvm_age_hva_handler() function performs a "test and clear young" action
on the pte/pmd. This needs to be atomic in respect of automatic hardware
updates of the AF bit. Since the AF bit is in the same position for both
Stage 1 and Stage 2, the patch reuses the existing
ptep_test_and_clear_young() functionality if
__HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG is defined. Otherwise, the
existing pte_young/pte_mkold mechanism is preserved.
The kvm_set_s2pte_readonly() (and the corresponding pmd equivalent) have
to perform atomic modifications in order to avoid a race with updates of
the AF bit. The arm64 implementation has been re-written using
exclusives.
Currently, kvm_set_s2pte_writable() (and pmd equivalent) take a pointer
argument and modify the pte/pmd in place. However, these functions are
only used on local variables rather than actual page table entries, so
it makes more sense to follow the pte_mkwrite() approach for stage 1
attributes. The change to kvm_s2pte_mkwrite() makes it clear that these
functions do not modify the actual page table entries.
The (pte|pmd)_mkyoung() uses on Stage 2 entries (setting the AF bit
explicitly) do not need to be modified since hardware updates of the
dirty status are not supported by KVM, so there is no possibility of
losing such information.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
If memory is located above 1<<VA_BITS, kvm adds an extra level to its page
tables, merging the runtime tables and boot tables that contain the idmap.
This lets us avoid the trampoline dance during initialisation.
This also means there is no trampoline page mapped, so
__cpu_reset_hyp_mode() can't call __kvm_hyp_reset() in this page. The good
news is the idmap is still mapped, so we don't need the trampoline page.
The bad news is we can't call it directly as the idmap is above
HYP_PAGE_OFFSET, so its address is masked by kvm_call_hyp.
Add a function __extended_idmap_trampoline which will branch into
__kvm_hyp_reset in the idmap, change kvm_hyp_reset_entry() to return
this address if __kvm_cpu_uses_extended_idmap(). In this case
__kvm_hyp_reset() will still switch to the boot tables (which are the
merged tables that were already in use), and branch into the idmap (where
it already was).
This fixes boot failures on these systems, where we fail to execute the
missing trampoline page when tearing down kvm in init_subsystems():
[ 2.508922] kvm [1]: 8-bit VMID
[ 2.512057] kvm [1]: Hyp mode initialized successfully
[ 2.517242] kvm [1]: interrupt-controller@e1140000 IRQ13
[ 2.522622] kvm [1]: timer IRQ3
[ 2.525783] Kernel panic - not syncing: HYP panic:
[ 2.525783] PS:200003c9 PC:0000007ffffff820 ESR:86000005
[ 2.525783] FAR:0000007ffffff820 HPFAR:00000000003ffff0 PAR:0000000000000000
[ 2.525783] VCPU: (null)
[ 2.525783]
[ 2.547667] CPU: 0 PID: 0 Comm: swapper/0 Tainted: G W 4.6.0-rc5+ #1
[ 2.555137] Hardware name: Default string Default string/Default string, BIOS ROD0084E 09/03/2015
[ 2.563994] Call trace:
[ 2.566432] [<ffffff80080888d0>] dump_backtrace+0x0/0x240
[ 2.571818] [<ffffff8008088b24>] show_stack+0x14/0x20
[ 2.576858] [<ffffff80083423ac>] dump_stack+0x94/0xb8
[ 2.581899] [<ffffff8008152130>] panic+0x10c/0x250
[ 2.586677] [<ffffff8008152024>] panic+0x0/0x250
[ 2.591281] SMP: stopping secondary CPUs
[ 3.649692] SMP: failed to stop secondary CPUs 0-2,4-7
[ 3.654818] Kernel Offset: disabled
[ 3.658293] Memory Limit: none
[ 3.661337] ---[ end Kernel panic - not syncing: HYP panic:
[ 3.661337] PS:200003c9 PC:0000007ffffff820 ESR:86000005
[ 3.661337] FAR:0000007ffffff820 HPFAR:00000000003ffff0 PAR:0000000000000000
[ 3.661337] VCPU: (null)
[ 3.661337]
Reported-by: Will Deacon <will.deacon@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The current kvm implementation on arm64 does cpu-specific initialization
at system boot, and has no way to gracefully shutdown a core in terms of
kvm. This prevents kexec from rebooting the system at EL2.
This patch adds a cpu tear-down function and also puts an existing cpu-init
code into a separate function, kvm_arch_hardware_disable() and
kvm_arch_hardware_enable() respectively.
We don't need the arm64 specific cpu hotplug hook any more.
Since this patch modifies common code between arm and arm64, one stub
definition, __cpu_reset_hyp_mode(), is added on arm side to avoid
compilation errors.
Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
[Rebase, added separate VHE init/exit path, changed resets use of
kvm_call_hyp() to the __version, en/disabled hardware in init_subsystems(),
added icache maintenance to __kvm_hyp_reset() and removed lr restore, removed
guest-enter after teardown handling]
Signed-off-by: James Morse <james.morse@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
A later patch implements kvm_arch_hardware_disable(), to remove kvm
from el2, and re-instate the hyp-stub.
This can happen while guests are running, particularly when kvm_reboot()
calls kvm_arch_hardware_disable() on each cpu. This can interrupt a guest,
remove kvm, then allow the guest to be scheduled again. This causes
kvm_call_hyp() to be run against the hyp-stub.
Change the hyp-stub to return a new exception type when this happens,
and add code to kvm's handle_exit() to tell userspace we failed to
enter the guest.
Signed-off-by: James Morse <james.morse@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The existing arm64 hcall implementations are limited in that they only
allow for two distinct hcalls; with the x0 register either zero or not
zero. Also, the API of the hyp-stub exception vector routines and the
KVM exception vector routines differ; hyp-stub uses a non-zero value in
x0 to implement __hyp_set_vectors, whereas KVM uses it to implement
kvm_call_hyp.
To allow for additional hcalls to be defined and to make the arm64 hcall
API more consistent across exception vector routines, change the hcall
implementations to reserve all x0 values below 0xfff for hcalls such
as {s,g}et_vectors().
Define two new preprocessor macros HVC_GET_VECTORS, and HVC_SET_VECTORS
to be used as hcall type specifiers and convert the existing
__hyp_get_vectors() and __hyp_set_vectors() routines to use these new
macros when executing an HVC call. Also, change the corresponding
hyp-stub and KVM el1_sync exception vector routines to use these new
macros.
Signed-off-by: Geoff Levand <geoff@infradead.org>
[Merged two hcall patches, moved immediate value from esr to x0, use lr
as a scratch register, changed limit to 0xfff]
Signed-off-by: James Morse <james.morse@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Today the 'hvc' calling KVM or the hyp-stub is expected to preserve all
registers. KVM saves/restores the registers it needs on the EL2 stack using
do_el2_call(). The hyp-stub has no stack, later patches need to be able to
be able to clobber the link register.
Move the link register save/restore to the the call sites.
Signed-off-by: James Morse <james.morse@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
We currently have macros defining flags for the arm64 sctlr registers in
both kvm_arm.h and sysreg.h. To clean things up and simplify move the
definitions of the SCTLR_EL2 flags from kvm_arm.h to sysreg.h, rename any
SCTLR_EL1 or SCTLR_EL2 flags that are common to both registers to be
SCTLR_ELx, with 'x' indicating a common flag, and fixup all files to
include the proper header or to use the new macro names.
Signed-off-by: Geoff Levand <geoff@infradead.org>
[Restored pgtable-hwdef.h include]
Signed-off-by: James Morse <james.morse@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Now that we can handle stage-2 page tables independent
of the host page table levels, wire up the 16K page
support.
Cc: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
We always thought that 40bits of PA range would be the minimum people
would actually build. Anything less is terrifyingly small.
Turns out that we were both right and wrong. Nobody has ever built
such a system, but the ARM Foundation Model has a PARange set to 36bits.
Just because we can. Oh well. Now, the KVM API explicitely says that
we offer a 40bit PA space to the VM, so we shouldn't run KVM on
the Foundation Model at all.
That being said, this patch offers a less agressive alternative, and
loudly warns about the configuration being unsupported. You'll still
be able to run VMs (at your own risks, though).
This is just a workaround until we have a proper userspace API where
we report the PARange to userspace.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
When we detect support for 16bit VMID in ID_AA64MMFR1, we set the
VTCR_EL2_VS field to 1 to make use of 16bit vmids. But, with
commit 3a3604bc5e ("arm64: KVM: Switch to C-based stage2 init")
this is broken and we corrupt VTCR_EL2:T0SZ instead of updating the VS
field. VTCR_EL2_VS was actually defined to the field shift (19) and
not the real value for VS. This patch fixes the issue.
Fixes: commit 3a3604bc5e ("arm64: KVM: Switch to C-based stage2 init")
Cc: Christoffer Dall <christoffer.dall@linaro.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
With the recent rewrite of the arm64 KVM hypervisor code in C, enabling
certain options like KASAN would allow the compiler to generate memory
accesses or function calls to addresses not mapped at EL2. This patch
disables the compiler instrumentation on the arm64 hypervisor code for
gcov-based profiling (GCOV_KERNEL), undefined behaviour sanity checker
(UBSAN) and kernel address sanitizer (KASAN).
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christoffer Dall <christoffer.dall@linaro.org>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: <stable@vger.kernel.org> # 4.5+
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
- Initial page table creation reworked to avoid breaking large block
mappings (huge pages) into smaller ones. The ARM architecture requires
break-before-make in such cases to avoid TLB conflicts but that's not
always possible on live page tables
- Kernel virtual memory layout: the kernel image is no longer linked to
the bottom of the linear mapping (PAGE_OFFSET) but at the bottom of
the vmalloc space, allowing the kernel to be loaded (nearly) anywhere
in physical RAM
- Kernel ASLR: position independent kernel Image and modules being
randomly mapped in the vmalloc space with the randomness is provided
by UEFI (efi_get_random_bytes() patches merged via the arm64 tree,
acked by Matt Fleming)
- Implement relative exception tables for arm64, required by KASLR
(initial code for ARCH_HAS_RELATIVE_EXTABLE added to lib/extable.c but
actual x86 conversion to deferred to 4.7 because of the merge
dependencies)
- Support for the User Access Override feature of ARMv8.2: this allows
uaccess functions (get_user etc.) to be implemented using LDTR/STTR
instructions. Such instructions, when run by the kernel, perform
unprivileged accesses adding an extra level of protection. The
set_fs() macro is used to "upgrade" such instruction to privileged
accesses via the UAO bit
- Half-precision floating point support (part of ARMv8.2)
- Optimisations for CPUs with or without a hardware prefetcher (using
run-time code patching)
- copy_page performance improvement to deal with 128 bytes at a time
- Sanity checks on the CPU capabilities (via CPUID) to prevent
incompatible secondary CPUs from being brought up (e.g. weird
big.LITTLE configurations)
- valid_user_regs() reworked for better sanity check of the sigcontext
information (restored pstate information)
- ACPI parking protocol implementation
- CONFIG_DEBUG_RODATA enabled by default
- VDSO code marked as read-only
- DEBUG_PAGEALLOC support
- ARCH_HAS_UBSAN_SANITIZE_ALL enabled
- Erratum workaround Cavium ThunderX SoC
- set_pte_at() fix for PROT_NONE mappings
- Code clean-ups
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJW6u95AAoJEGvWsS0AyF7xMyoP/3x2O6bgreSQ84BdO4JChN4+
RQ9OVdX8u2ItO9sgaCY2AA6KoiBuEjGmPl/XRuK0I7DpODTtRjEXQHuNNhz8AelC
hn4AEVqamY6Z5BzHFIjs8G9ydEbq+OXcKWEdwSsBhP/cMvI7ss3dps1f5iNPT5Vv
50E/kUz+aWYy7pKlB18VDV7TUOA3SuYuGknWV8+bOY5uPb8hNT3Y3fHOg/EuNNN3
DIuYH1V7XQkXtF+oNVIGxzzJCXULBE7egMcWAm1ydSOHK0JwkZAiL7OhI7ceVD0x
YlDxBnqmi4cgzfBzTxITAhn3OParwN6udQprdF1WGtFF6fuY2eRDSH/L/iZoE4DY
OulL951OsBtF8YC3+RKLk908/0bA2Uw8ftjCOFJTYbSnZBj1gWK41VkCYMEXiHQk
EaN8+2Iw206iYIoyvdjGCLw7Y0oakDoVD9vmv12SOaHeQljTkjoN8oIlfjjKTeP7
3AXj5v9BDMDVh40nkVayysRNvqe48Kwt9Wn0rhVTLxwdJEiFG/OIU6HLuTkretdN
dcCNFSQrRieSFHpBK9G0vKIpIss1ZwLm8gjocVXH7VK4Mo/TNQe4p2/wAF29mq4r
xu1UiXmtU3uWxiqZnt72LOYFCarQ0sFA5+pMEvF5W+NrVB0wGpXhcwm+pGsIi4IM
LepccTgykiUBqW5TRzPz
=/oS+
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
"Here are the main arm64 updates for 4.6. There are some relatively
intrusive changes to support KASLR, the reworking of the kernel
virtual memory layout and initial page table creation.
Summary:
- Initial page table creation reworked to avoid breaking large block
mappings (huge pages) into smaller ones. The ARM architecture
requires break-before-make in such cases to avoid TLB conflicts but
that's not always possible on live page tables
- Kernel virtual memory layout: the kernel image is no longer linked
to the bottom of the linear mapping (PAGE_OFFSET) but at the bottom
of the vmalloc space, allowing the kernel to be loaded (nearly)
anywhere in physical RAM
- Kernel ASLR: position independent kernel Image and modules being
randomly mapped in the vmalloc space with the randomness is
provided by UEFI (efi_get_random_bytes() patches merged via the
arm64 tree, acked by Matt Fleming)
- Implement relative exception tables for arm64, required by KASLR
(initial code for ARCH_HAS_RELATIVE_EXTABLE added to lib/extable.c
but actual x86 conversion to deferred to 4.7 because of the merge
dependencies)
- Support for the User Access Override feature of ARMv8.2: this
allows uaccess functions (get_user etc.) to be implemented using
LDTR/STTR instructions. Such instructions, when run by the kernel,
perform unprivileged accesses adding an extra level of protection.
The set_fs() macro is used to "upgrade" such instruction to
privileged accesses via the UAO bit
- Half-precision floating point support (part of ARMv8.2)
- Optimisations for CPUs with or without a hardware prefetcher (using
run-time code patching)
- copy_page performance improvement to deal with 128 bytes at a time
- Sanity checks on the CPU capabilities (via CPUID) to prevent
incompatible secondary CPUs from being brought up (e.g. weird
big.LITTLE configurations)
- valid_user_regs() reworked for better sanity check of the
sigcontext information (restored pstate information)
- ACPI parking protocol implementation
- CONFIG_DEBUG_RODATA enabled by default
- VDSO code marked as read-only
- DEBUG_PAGEALLOC support
- ARCH_HAS_UBSAN_SANITIZE_ALL enabled
- Erratum workaround Cavium ThunderX SoC
- set_pte_at() fix for PROT_NONE mappings
- Code clean-ups"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (99 commits)
arm64: kasan: Fix zero shadow mapping overriding kernel image shadow
arm64: kasan: Use actual memory node when populating the kernel image shadow
arm64: Update PTE_RDONLY in set_pte_at() for PROT_NONE permission
arm64: Fix misspellings in comments.
arm64: efi: add missing frame pointer assignment
arm64: make mrs_s prefixing implicit in read_cpuid
arm64: enable CONFIG_DEBUG_RODATA by default
arm64: Rework valid_user_regs
arm64: mm: check at build time that PAGE_OFFSET divides the VA space evenly
arm64: KVM: Move kvm_call_hyp back to its original localtion
arm64: mm: treat memstart_addr as a signed quantity
arm64: mm: list kernel sections in order
arm64: lse: deal with clobbered IP registers after branch via PLT
arm64: mm: dump: Use VA_START directly instead of private LOWEST_ADDR
arm64: kconfig: add submenu for 8.2 architectural features
arm64: kernel: acpi: fix ioremap in ACPI parking protocol cpu_postboot
arm64: Add support for Half precision floating point
arm64: Remove fixmap include fragility
arm64: Add workaround for Cavium erratum 27456
arm64: mm: Mark .rodata as RO
...
but lots of architecture-specific changes.
* ARM:
- VHE support so that we can run the kernel at EL2 on ARMv8.1 systems
- PMU support for guests
- 32bit world switch rewritten in C
- various optimizations to the vgic save/restore code.
* PPC:
- enabled KVM-VFIO integration ("VFIO device")
- optimizations to speed up IPIs between vcpus
- in-kernel handling of IOMMU hypercalls
- support for dynamic DMA windows (DDW).
* s390:
- provide the floating point registers via sync regs;
- separated instruction vs. data accesses
- dirty log improvements for huge guests
- bugfixes and documentation improvements.
* x86:
- Hyper-V VMBus hypercall userspace exit
- alternative implementation of lowest-priority interrupts using vector
hashing (for better VT-d posted interrupt support)
- fixed guest debugging with nested virtualizations
- improved interrupt tracking in the in-kernel IOAPIC
- generic infrastructure for tracking writes to guest memory---currently
its only use is to speedup the legacy shadow paging (pre-EPT) case, but
in the future it will be used for virtual GPUs as well
- much cleanup (LAPIC, kvmclock, MMU, PIT), including ubsan fixes.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJW5r3BAAoJEL/70l94x66D2pMH/jTSWWwdTUJMctrDjPVzKzG0
yOzHW5vSLFoFlwEOY2VpslnXzn5TUVmCAfrdmFNmQcSw6hGb3K/xA/ZX/KLwWhyb
oZpr123ycahga+3q/ht/dFUBCCyWeIVMdsLSFwpobEBzPL0pMgc9joLgdUC6UpWX
tmN0LoCAeS7spC4TTiTTpw3gZ/L+aB0B6CXhOMjldb9q/2CsgaGyoVvKA199nk9o
Ngu7ImDt7l/x1VJX4/6E/17VHuwqAdUrrnbqerB/2oJ5ixsZsHMGzxQ3sHCmvyJx
WG5L00ubB1oAJAs9fBg58Y/MdiWX99XqFhdEfxq4foZEiQuCyxygVvq3JwZTxII=
=OUZZ
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"One of the largest releases for KVM... Hardly any generic
changes, but lots of architecture-specific updates.
ARM:
- VHE support so that we can run the kernel at EL2 on ARMv8.1 systems
- PMU support for guests
- 32bit world switch rewritten in C
- various optimizations to the vgic save/restore code.
PPC:
- enabled KVM-VFIO integration ("VFIO device")
- optimizations to speed up IPIs between vcpus
- in-kernel handling of IOMMU hypercalls
- support for dynamic DMA windows (DDW).
s390:
- provide the floating point registers via sync regs;
- separated instruction vs. data accesses
- dirty log improvements for huge guests
- bugfixes and documentation improvements.
x86:
- Hyper-V VMBus hypercall userspace exit
- alternative implementation of lowest-priority interrupts using
vector hashing (for better VT-d posted interrupt support)
- fixed guest debugging with nested virtualizations
- improved interrupt tracking in the in-kernel IOAPIC
- generic infrastructure for tracking writes to guest
memory - currently its only use is to speedup the legacy shadow
paging (pre-EPT) case, but in the future it will be used for
virtual GPUs as well
- much cleanup (LAPIC, kvmclock, MMU, PIT), including ubsan fixes"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (217 commits)
KVM: x86: remove eager_fpu field of struct kvm_vcpu_arch
KVM: x86: disable MPX if host did not enable MPX XSAVE features
arm64: KVM: vgic-v3: Only wipe LRs on vcpu exit
arm64: KVM: vgic-v3: Reset LRs at boot time
arm64: KVM: vgic-v3: Do not save an LR known to be empty
arm64: KVM: vgic-v3: Save maintenance interrupt state only if required
arm64: KVM: vgic-v3: Avoid accessing ICH registers
KVM: arm/arm64: vgic-v2: Make GICD_SGIR quicker to hit
KVM: arm/arm64: vgic-v2: Only wipe LRs on vcpu exit
KVM: arm/arm64: vgic-v2: Reset LRs at boot time
KVM: arm/arm64: vgic-v2: Do not save an LR known to be empty
KVM: arm/arm64: vgic-v2: Move GICH_ELRSR saving to its own function
KVM: arm/arm64: vgic-v2: Save maintenance interrupt state only if required
KVM: arm/arm64: vgic-v2: Avoid accessing GICH registers
KVM: s390: allocate only one DMA page per VM
KVM: s390: enable STFLE interpretation only if enabled for the guest
KVM: s390: wake up when the VCPU cpu timer expires
KVM: s390: step the VCPU timer while in enabled wait
KVM: s390: protect VCPU cpu timer with a seqcount
KVM: s390: step VCPU cpu timer during kvm_run ioctl
...
So far, we're always writing all possible LRs, setting the empty
ones with a zero value. This is obvious doing a low of work for
nothing, and we're better off clearing those we've actually
dirtied on the exit path (it is very rare to inject more than one
interrupt at a time anyway).
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
In order to let the GICv3 code be more lazy in the way it
accesses the LRs, it is necessary to start with a clean slate.
Let's reset the LRs on each CPU when the vgic is probed (which
includes a round trip to EL2...).
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
On exit, any empty LR will be signaled in ICH_ELRSR_EL2. Which
means that we do not have to save it, and we can just clear
its state in the in-memory copy.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Next on our list of useless accesses is the maintenance interrupt
status registers (ICH_MISR_EL2, ICH_EISR_EL2).
It is pointless to save them if we haven't asked for a maintenance
interrupt the first place, which can only happen for two reasons:
- Underflow: ICH_HCR_UIE will be set,
- EOI: ICH_LR_EOI will be set.
These conditions can be checked on the in-memory copies of the regs.
Should any of these two condition be valid, we must read GICH_MISR.
We can then check for ICH_MISR_EOI, and only when set read
ICH_EISR_EL2.
This means that in most case, we don't have to save them at all.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Just like on GICv2, we're a bit hammer-happy with GICv3, and access
them more often than we should.
Adopt a policy similar to what we do for GICv2, only save/restoring
the minimal set of registers. As we don't access the registers
linearly anymore (we may skip some), the convoluted accessors become
slightly simpler, and we can drop the ugly indexing macro that
tended to confuse the reviewers.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Our 64bit sys_reg table is about 90 entries long (so far, and the
PMU support is likely to increase this). This means that on average,
it takes 45 comparaisons to find the right entry (and actually the
full 90 if we have to search the invariant table).
Not the most efficient thing. Specially when you think that this
table is already sorted. Switching to a binary search effectively
reduces the search to about 7 comparaisons. Slightly better!
As an added bonus, the comparison is done by comparing all the
fields at once, instead of one at a time.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
To configure the virtual PMUv3 overflow interrupt number, we use the
vcpu kvm_device ioctl, encapsulating the KVM_ARM_VCPU_PMU_V3_IRQ
attribute within the KVM_ARM_VCPU_PMU_V3_CTRL group.
After configuring the PMUv3, call the vcpu ioctl with attribute
KVM_ARM_VCPU_PMU_V3_INIT to initialize the PMUv3.
Signed-off-by: Shannon Zhao <shannon.zhao@linaro.org>
Acked-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
In some cases it needs to get/set attributes specific to a vcpu and so
needs something else than ONE_REG.
Let's copy the KVM_DEVICE approach, and define the respective ioctls
for the vcpu file descriptor.
Signed-off-by: Shannon Zhao <shannon.zhao@linaro.org>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Acked-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
To support guest PMUv3, use one bit of the VCPU INIT feature array.
Initialize the PMU when initialzing the vcpu with that bit and PMU
overflow interrupt set.
Signed-off-by: Shannon Zhao <shannon.zhao@linaro.org>
Acked-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
When resetting vcpu, it needs to reset the PMU state to initial status.
Signed-off-by: Shannon Zhao <shannon.zhao@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
This register resets as unknown in 64bit mode while it resets as zero
in 32bit mode. Here we choose to reset it as zero for consistency.
PMUSERENR_EL0 holds some bits which decide whether PMU registers can be
accessed from EL0. Add some check helpers to handle the access from EL0.
When these bits are zero, only reading PMUSERENR will trap to EL2 and
writing PMUSERENR or reading/writing other PMU registers will trap to
EL1 other than EL2 when HCR.TGE==0. To current KVM configuration
(HCR.TGE==0) there is no way to get these traps. Here we write 0xf to
physical PMUSERENR register on VM entry, so that it will trap PMU access
from EL0 to EL2. Within the register access handler we check the real
value of guest PMUSERENR register to decide whether this access is
allowed. If not allowed, return false to inject UND to guest.
Signed-off-by: Shannon Zhao <shannon.zhao@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
According to ARMv8 spec, when writing 1 to PMCR.E, all counters are
enabled by PMCNTENSET, while writing 0 to PMCR.E, all counters are
disabled. When writing 1 to PMCR.P, reset all event counters, not
including PMCCNTR, to zero. When writing 1 to PMCR.C, reset PMCCNTR to
zero.
Signed-off-by: Shannon Zhao <shannon.zhao@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Add access handler which emulates writing and reading PMSWINC
register and add support for creating software increment event.
Signed-off-by: Shannon Zhao <shannon.zhao@linaro.org>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Since the reset value of PMOVSSET and PMOVSCLR is UNKNOWN, use
reset_unknown for its reset handler. Add a handler to emulate writing
PMOVSSET or PMOVSCLR register.
When writing non-zero value to PMOVSSET, the counter and its interrupt
is enabled, kick this vcpu to sync PMU interrupt.
Signed-off-by: Shannon Zhao <shannon.zhao@linaro.org>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Since the reset value of PMINTENSET and PMINTENCLR is UNKNOWN, use
reset_unknown for its reset handler. Add a handler to emulate writing
PMINTENSET or PMINTENCLR register.
Signed-off-by: Shannon Zhao <shannon.zhao@linaro.org>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
These kind of registers include PMEVTYPERn, PMCCFILTR and PMXEVTYPER
which is mapped to PMEVTYPERn or PMCCFILTR.
The access handler translates all aarch32 register offsets to aarch64
ones and uses vcpu_sys_reg() to access their values to avoid taking care
of big endian.
When writing to these registers, create a perf_event for the selected
event type.
Signed-off-by: Shannon Zhao <shannon.zhao@linaro.org>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Since the reset value of PMCNTENSET and PMCNTENCLR is UNKNOWN, use
reset_unknown for its reset handler. Add a handler to emulate writing
PMCNTENSET or PMCNTENCLR register.
When writing to PMCNTENSET, call perf_event_enable to enable the perf
event. When writing to PMCNTENCLR, call perf_event_disable to disable
the perf event.
Signed-off-by: Shannon Zhao <shannon.zhao@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
These kind of registers include PMEVCNTRn, PMCCNTR and PMXEVCNTR which
is mapped to PMEVCNTRn.
The access handler translates all aarch32 register offsets to aarch64
ones and uses vcpu_sys_reg() to access their values to avoid taking care
of big endian.
When reading these registers, return the sum of register value and the
value perf event counts.
Signed-off-by: Shannon Zhao <shannon.zhao@linaro.org>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Add access handler which gets host value of PMCEID0 or PMCEID1 when
guest access these registers. Writing action to PMCEID0 or PMCEID1 is
UNDEFINED.
Signed-off-by: Shannon Zhao <shannon.zhao@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Since the reset value of PMSELR_EL0 is UNKNOWN, use reset_unknown for
its reset handler. When reading PMSELR, return the PMSELR.SEL field to
guest.
Signed-off-by: Shannon Zhao <shannon.zhao@linaro.org>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Add reset handler which gets host value of PMCR_EL0 and make writable
bits architecturally UNKNOWN except PMCR.E which is zero. Add an access
handler for PMCR.
Signed-off-by: Shannon Zhao <shannon.zhao@linaro.org>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Here we plan to support virtual PMU for guest by full software
emulation, so define some basic structs and functions preparing for
futher steps. Define struct kvm_pmc for performance monitor counter and
struct kvm_pmu for performance monitor unit for each vcpu. According to
ARMv8 spec, the PMU contains at most 32(ARMV8_PMU_MAX_COUNTERS)
counters.
Since this only supports ARM64 (or PMUv3), add a separate config symbol
for it.
Signed-off-by: Shannon Zhao <shannon.zhao@linaro.org>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
We already have virt/kvm/arm/ containing timer and vgic stuff.
Add yet another subdirectory to contain the hyp-specific files
(timer and vgic again).
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
In order to be able to move code outside of kvm/hyp, we need to make
the global hyp.h file accessible from a standard location.
include/asm/kvm_hyp.h seems good enough.
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
The fault decoding process (including computing the IPA in the case
of a permission fault) would be much better done in C code, as we
have a reasonable infrastructure to deal with the VHE/non-VHE
differences.
Let's move the whole thing to C, including the workaround for
erratum 834220, and just patch the odd ESR_EL2 access remaining
in hyp-entry.S.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
As the kernel fully runs in HYP when VHE is enabled, we can
directly branch to the kernel's panic() implementation, and
not perform an exception return.
Add the alternative code to deal with this.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Despite the fact that a VHE enabled kernel runs at EL2, it uses
CPACR_EL1 to trap FPSIMD access. Add the required alternative
code to re-enable guest FPSIMD access when it has trapped to
EL2.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Switch the timer code to the unified sysreg accessors.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Running the kernel in HYP mode requires the HCR_E2H bit to be set
at all times, and the HCR_TGE bit to be set when running as a host
(and cleared when running as a guest). At the same time, the vector
must be set to the current role of the kernel (either host or
hypervisor), and a couple of system registers differ between VHE
and non-VHE.
We implement these by using another set of alternate functions
that get dynamically patched.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
As non-VHE and VHE have different ways to express the trapping of
FPSIMD registers to EL2, make __fpsimd_enabled a patchable predicate
and provide a VHE implementation.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
We're now in a position where we can introduce VHE's minimal
save/restore, which is limited to the handful of shared sysregs.
Add the required alternative function calls that result in a
"do nothing" call on VHE, and the normal save/restore for non-VHE.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Use the recently introduced unified system register accessors for
those sysregs that behave differently depending on VHE being in
use or not.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
A handful of system registers are still shared between host and guest,
even while using VHE (tpidr*_el[01] and actlr_el1).
Also, some of the vcpu state (sp_el0, PC and PSTATE) must be
save/restored on entry/exit, as they are used on the host as well.
In order to facilitate the introduction of a VHE-specific sysreg
save/restore, make move the access to these registers to their
own save/restore functions.
No functional change.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
With ARMv8, host and guest share the same system register file,
making the save/restore procedure completely symetrical.
With VHE, host and guest now have different requirements, as they
use different sysregs.
In order to prepare for this, add split sysreg save/restore functions
for both host and guest. No functional changes yet.
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
VHE brings its own bag of new system registers, or rather system
register accessors, as it define new ways to access both guest
and host system registers. For example, from the host:
- The host TCR_EL2 register is accessed using the TCR_EL1 accessor
- The guest TCR_EL1 register is accessed using the TCR_EL12 accessor
Obviously, this is confusing. A way to somehow reduce the complexity
of writing code for both ARMv8 and ARMv8.1 is to use a set of unified
accessors that will generate the right sysreg, depending on the mode
the CPU is running in. For example:
- read_sysreg_el1(tcr) will use TCR_EL1 on ARMv8, and TCR_EL12 on
ARMv8.1 with VHE.
- read_sysreg_el2(tcr) will use TCR_EL2 on ARMv8, and TCR_EL1 on
ARMv8.1 with VHE.
We end up with three sets of accessors ({read,write}_sysreg_el[012])
that can be directly used from C code. We take this opportunity to
also add the definition for the new VHE sysregs.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
The kern_hyp_va macro is pretty meaninless with VHE, as there is
only one mapping - the kernel one.
In order to keep the code readable and efficient, use runtime
patching to replace the 'and' instruction used to compute the VA
with a 'nop'.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
With VHE, the host never issues an HVC instruction to get into the
KVM code, as we can simply branch there.
Use runtime code patching to simplify things a bit.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
There is no real need to leave the stage2 initialization as part
of the early HYP bootstrap, and we can easily postpone it to
the point where we can safely run C code.
This will help VHE, which doesn't need any of this bootstrap.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Calling return copy_to_user(...) in an ioctl will not
do the right thing if there's a pagefault:
copy_to_user returns the number of bytes not copied
in this case.
Fix up kvm to do
return copy_to_user(...)) ? -EFAULT : 0;
everywhere.
Cc: stable@vger.kernel.org
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Now that we have a clear understanding of the sign of a feature,
rename the routines to reflect the sign, so that it is not misused.
The cpuid_feature_extract_field() now accepts a 'sign' parameter.
Signed-off-by: Suzuki K. Poulose <suzuki.poulose@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The GICv3 architecture spec says:
Writing to the active priority registers in any order other than
the following order will result in UNPREDICTABLE behavior:
- ICH_AP0R<n>_EL2.
- ICH_AP1R<n>_EL2.
So let's not pointlessly go against the rule...
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
KVM on arm64 uses a fixed offset between the linear mapping at EL1 and
the HYP mapping at EL2. Before we can move the kernel virtual mapping
out of the linear mapping, we have to make sure that references to kernel
symbols that are accessed via the HYP mapping are translated to their
linear equivalent.
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Currently, using BUG_ON() in header files is cumbersome, due to the fact
that asm/bug.h transitively includes a lot of other header files, resulting
in the actual BUG_ON() invocation appearing before its definition in the
preprocessor input. So let's reverse the #include dependency between
asm/bug.h and asm/debug-monitors.h, by moving the definition of BUG_BRK_IMM
from the latter to the former. Also fix up one user of asm/debug-monitors.h
which relied on a transitive include.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Setting TCR_EL2.PS to 40 bits is wrong on systems with less that
less than 40 bits of physical addresses. and breaks KVM on systems
where the RAM is above 40 bits.
This patch uses ID_AA64MMFR0_EL1.PARange to set TCR_EL2.PS dynamically,
just like we already do for VTCR_EL2.PS.
[Marc: rewrote commit message, patch tidy up]
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Tirumalesh Chalamarla <tchalamarla@caviumnetworks.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Currently emulate_cp will return 0 (Handled) no matter what the accessor
returns. If register accessor returns false, it will not skip current PC
while emulate_cp return handled. Then guest will stuck in a dead loop.
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Shannon Zhao <shannon.zhao@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Make sure the documentation reflects the actual name of the functions.
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Shannon Zhao <shannon.zhao@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Some bits in CPTR are defined as RES1 in the architecture. Setting
these bits to zero may unintentionally enable future architecture
extensions, allowing guests to use them without supervision by the host.
This would be bad: for forwards compatibility, this patch makes
sure the affected bits are always written with 1, not 0.
This patch only addresses CPTR_EL2. Initialisation of other system
registers may still need review.
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
At the moment, our fault injection is pretty limited. We always
generate a SYNC exception into EL1, as if the fault was actually
from EL1h, no matter how it was generated.
This is obviously wrong, as EL0 can generate faults of its own
(not to mention the pretty-much unused EL1t mode).
This patch fixes it by implementing section D1.10.2 of the ARMv8 ARM,
and in particular table D1-7 ("Vector offsets from vector table base
address"), which describes which vector to use depending on the source
exception level and type (synchronous, IRQ, FIQ or SError).
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Tested-by: Shannon Zhao <shannon.zhao@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
The ARMv8.1 architecture extension allows to choose between 8-bit and
16-bit of VMID, so use this capability for KVM.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
The debug trapping code is pretty heavy on the "inline" attribute,
but most functions are actually referenced in the sysreg tables,
making the inlining imposible.
Removing the useless inline qualifier seems the right thing to do,
having verified that the output code is similar.
Cc: Alex Bennée <alex.bennee@linaro.org>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
As we've now switched to the new world switch implementation,
remove the weak attributes, as nobody is supposed to override
it anymore.
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Having the system register numbers as #defines has been a pain
since day one, as the ordering is pretty fragile, and moving
things around leads to renumbering and epic conflict resolutions.
Now that we're mostly acessing the sysreg file in C, an enum is
a much better type to use, and we can clean things up a bit.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>