2023-10-12 21:42:29 +08:00
# LLaMA Factory: Training and Evaluating Large Language Models with Minimal Effort
2023-05-28 18:09:04 +08:00
2023-10-12 21:42:29 +08:00
[![GitHub Repo stars ](https://img.shields.io/github/stars/hiyouga/LLaMA-Factory?style=social )](https://github.com/hiyouga/LLaMA-Factory/stargazers)
[![GitHub Code License ](https://img.shields.io/github/license/hiyouga/LLaMA-Factory )](LICENSE)
[![GitHub last commit ](https://img.shields.io/github/last-commit/hiyouga/LLaMA-Factory )](https://github.com/hiyouga/LLaMA-Factory/commits/main)
2023-07-15 17:20:39 +08:00
[![PyPI ](https://img.shields.io/pypi/v/llmtuner )](https://pypi.org/project/llmtuner/)
2023-09-16 17:33:01 +08:00
[![Downloads ](https://static.pepy.tech/badge/llmtuner )](https://pypi.org/project/llmtuner/)
2023-10-12 21:42:29 +08:00
[![GitHub pull request ](https://img.shields.io/badge/PRs-welcome-blue )](https://github.com/hiyouga/LLaMA-Factory/pulls)
2023-10-12 21:44:28 +08:00
[![Discord ](https://dcbadge.vercel.app/api/server/e73gccsSd?compact=true&style=flat )](https://discord.gg/e73gccsSd)
2023-05-29 21:53:02 +08:00
2023-06-02 21:47:10 +08:00
👋 Join our [WeChat ](assets/wechat.jpg ).
2023-07-21 16:57:58 +08:00
\[ English | [中文 ](README_zh.md ) \]
2023-10-16 00:23:37 +08:00
## LLaMA Board: A One-stop Web UI for Getting Started with LLaMA Factory
2023-10-15 20:28:14 +08:00
2023-10-16 00:23:37 +08:00
Launch **LLaMA Board** via `CUDA_VISIBLE_DEVICES=0 python src/train_web.py` . (multiple GPUs are not supported yet)
Here is an example of altering the self-cognition of an instruction-tuned language model within 10 minutes on a single GPU.
2023-10-15 20:23:22 +08:00
https://github.com/hiyouga/LLaMA-Factory/assets/16256802/6ba60acc-e2e2-4bec-b846-2d88920d5ba1
2023-05-31 16:54:06 +08:00
## Changelog
2023-09-28 14:39:16 +08:00
[23/09/27] We supported ** $S^2$-Attn** proposed by [LongLoRA ](https://github.com/dvlab-research/LongLoRA ) for the LLaMA models. Try `--shift_attn` argument to enable shift short attention.
2023-09-27 21:55:50 +08:00
2023-09-23 21:10:17 +08:00
[23/09/23] We integrated MMLU, C-Eval and CMMLU benchmarks in this repo. See [this example ](#evaluation ) to evaluate your models.
2023-09-10 20:43:56 +08:00
2023-09-28 14:39:16 +08:00
[23/09/10] We supported using ** [FlashAttention-2 ](https://github.com/Dao-AILab/flash-attention )** for the LLaMA models. Try `--flash_attn` argument to enable FlashAttention-2 if you are using RTX4090, A100 or H100 GPUs.
2023-08-18 01:41:17 +08:00
2023-09-23 00:34:17 +08:00
[23/08/12] We supported **RoPE scaling** to extend the context length of the LLaMA models. Try `--rope_scaling linear` argument in training and `--rope_scaling dynamic` argument at inference to extrapolate the position embeddings.
2023-08-11 03:02:53 +08:00
2023-09-23 00:34:17 +08:00
[23/08/11] We supported ** [DPO training ](https://arxiv.org/abs/2305.18290 )** for instruction-tuned models. See [this example ](#dpo-training ) to train your models.
2023-07-31 23:42:32 +08:00
2023-09-23 00:34:17 +08:00
[23/07/31] We supported **dataset streaming** . Try `--streaming` and `--max_steps 10000` arguments to load your dataset in streaming mode.
2023-08-01 10:08:47 +08:00
2023-09-23 00:34:17 +08:00
[23/07/29] We released two instruction-tuned 13B models at Hugging Face. See these Hugging Face Repos ([LLaMA-2](https://huggingface.co/hiyouga/Llama-2-Chinese-13b-chat) / [Baichuan ](https://huggingface.co/hiyouga/Baichuan-13B-sft )) for details.
2023-07-18 00:18:25 +08:00
2023-09-23 00:34:17 +08:00
[23/07/18] We developed an **all-in-one Web UI** for training, evaluation and inference. Try `train_web.py` to fine-tune models in your Web browser. Thank [@KanadeSiina ](https://github.com/KanadeSiina ) and [@codemayq ](https://github.com/codemayq ) for their efforts in the development.
2023-07-09 14:57:13 +08:00
2023-09-23 00:34:17 +08:00
[23/07/09] We released ** [FastEdit ](https://github.com/hiyouga/FastEdit )** ⚡🩹, an easy-to-use package for editing the factual knowledge of large language models efficiently. Please follow [FastEdit ](https://github.com/hiyouga/FastEdit ) if you are interested.
2023-06-29 19:36:22 +08:00
2023-09-23 00:34:17 +08:00
[23/06/29] We provided a **reproducible example** of training a chat model using instruction-following datasets, see [Baichuan-7B-sft ](https://huggingface.co/hiyouga/Baichuan-7B-sft ) for details.
2023-06-23 00:17:05 +08:00
2023-09-23 00:34:17 +08:00
[23/06/22] We aligned the [demo API ](src/api_demo.py ) with the [OpenAI's ](https://platform.openai.com/docs/api-reference/chat ) format where you can insert the fine-tuned model in **arbitrary ChatGPT-based applications** .
[23/06/03] We supported quantized training and inference (aka ** [QLoRA ](https://github.com/artidoro/qlora )**). Try `--quantization_bit 4/8` argument to work with quantized models.
2023-06-04 00:08:56 +08:00
2023-05-31 16:54:06 +08:00
## Supported Models
2023-08-07 15:02:02 +08:00
2023-09-06 21:43:06 +08:00
| Model | Model size | Default module | Template |
| -------------------------------------------------------- | --------------------------- | ----------------- | --------- |
| [LLaMA ](https://github.com/facebookresearch/llama ) | 7B/13B/33B/65B | q_proj,v_proj | - |
| [LLaMA-2 ](https://huggingface.co/meta-llama ) | 7B/13B/70B | q_proj,v_proj | llama2 |
| [BLOOM ](https://huggingface.co/bigscience/bloom ) | 560M/1.1B/1.7B/3B/7.1B/176B | query_key_value | - |
| [BLOOMZ ](https://huggingface.co/bigscience/bloomz ) | 560M/1.1B/1.7B/3B/7.1B/176B | query_key_value | - |
| [Falcon ](https://huggingface.co/tiiuae/falcon-7b ) | 7B/40B | query_key_value | - |
2023-09-07 18:54:14 +08:00
| [Baichuan ](https://github.com/baichuan-inc/Baichuan-13B ) | 7B/13B | W_pack | baichuan |
2023-09-06 21:43:06 +08:00
| [Baichuan2 ](https://github.com/baichuan-inc/Baichuan2 ) | 7B/13B | W_pack | baichuan2 |
2023-09-21 15:25:29 +08:00
| [InternLM ](https://github.com/InternLM/InternLM ) | 7B/20B | q_proj,v_proj | intern |
2023-09-27 21:55:50 +08:00
| [Qwen ](https://github.com/QwenLM/Qwen-7B ) | 7B/14B | c_attn | chatml |
2023-09-06 21:43:06 +08:00
| [ChatGLM2 ](https://github.com/THUDM/ChatGLM2-6B ) | 6B | query_key_value | chatglm2 |
2023-09-22 14:34:13 +08:00
| [Phi-1.5 ](https://huggingface.co/microsoft/phi-1_5 ) | 1.3B | Wqkv | - |
2023-08-07 15:02:02 +08:00
2023-09-10 21:01:20 +08:00
> [!NOTE]
2023-09-10 20:43:56 +08:00
> **Default module** is used for the `--lora_target` argument, you can use `--lora_target all` to specify all the available modules.
>
2023-10-13 13:53:43 +08:00
> For the "base" models, the `--template` argument can be chosen from `default`, `alpaca`, `vicuna` etc. But make sure to use the **corresponding template** for the "chat" models.
2023-10-20 23:28:52 +08:00
>
> Please refer to [template.py](src/llmtuner/extras/template.py) for a full list of models we supported.
2023-05-31 16:54:06 +08:00
2023-05-31 16:57:43 +08:00
## Supported Training Approaches
2023-05-31 16:54:06 +08:00
2023-08-17 11:00:22 +08:00
| Approach | Full-parameter | Partial-parameter | LoRA | QLoRA |
| ---------------------- | ------------------ | ------------------ | ------------------ | ------------------ |
| Pre-Training | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| Supervised Fine-Tuning | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| Reward Modeling | | | :white_check_mark: | :white_check_mark: |
| PPO Training | | | :white_check_mark: | :white_check_mark: |
| DPO Training | :white_check_mark: | | :white_check_mark: | :white_check_mark: |
2023-05-31 16:54:06 +08:00
2023-09-10 21:01:20 +08:00
> [!NOTE]
2023-09-10 20:43:56 +08:00
> Use `--quantization_bit 4/8` argument to enable QLoRA.
2023-08-12 21:23:05 +08:00
2023-05-31 16:54:06 +08:00
## Provided Datasets
- For pre-training:
2023-07-19 20:59:15 +08:00
- [Wiki Demo (en) ](data/wiki_demo.txt )
2023-07-23 20:01:43 +08:00
- [RefinedWeb (en) ](https://huggingface.co/datasets/tiiuae/falcon-refinedweb )
- [StarCoder (en) ](https://huggingface.co/datasets/bigcode/starcoderdata )
- [Wikipedia (en) ](https://huggingface.co/datasets/olm/olm-wikipedia-20221220 )
- [Wikipedia (zh) ](https://huggingface.co/datasets/pleisto/wikipedia-cn-20230720-filtered )
2023-05-31 16:54:06 +08:00
- For supervised fine-tuning:
2023-07-19 20:59:15 +08:00
- [Stanford Alpaca (en) ](https://github.com/tatsu-lab/stanford_alpaca )
- [Stanford Alpaca (zh) ](https://github.com/ymcui/Chinese-LLaMA-Alpaca )
- [GPT-4 Generated Data (en&zh) ](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM )
- [Open Assistant (multilingual) ](https://huggingface.co/datasets/OpenAssistant/oasst1 )
- [Self-cognition (zh) ](data/self_cognition.json )
- [ShareGPT (zh) ](https://huggingface.co/datasets/QingyiSi/Alpaca-CoT/tree/main/Chinese-instruction-collection )
- [Guanaco Dataset (multilingual) ](https://huggingface.co/datasets/JosephusCheung/GuanacoDataset )
- [BELLE 2M (zh) ](https://huggingface.co/datasets/BelleGroup/train_2M_CN )
- [BELLE 1M (zh) ](https://huggingface.co/datasets/BelleGroup/train_1M_CN )
- [BELLE 0.5M (zh) ](https://huggingface.co/datasets/BelleGroup/train_0.5M_CN )
- [BELLE Dialogue 0.4M (zh) ](https://huggingface.co/datasets/BelleGroup/generated_chat_0.4M )
- [BELLE School Math 0.25M (zh) ](https://huggingface.co/datasets/BelleGroup/school_math_0.25M )
- [BELLE Multiturn Chat 0.8M (zh) ](https://huggingface.co/datasets/BelleGroup/multiturn_chat_0.8M )
2023-07-26 17:05:12 +08:00
- [LIMA (en) ](https://huggingface.co/datasets/GAIR/lima )
2023-07-19 20:59:15 +08:00
- [CodeAlpaca 20k (en) ](https://huggingface.co/datasets/sahil2801/CodeAlpaca-20k )
- [Alpaca CoT (multilingual) ](https://huggingface.co/datasets/QingyiSi/Alpaca-CoT )
2023-09-13 22:30:14 +08:00
- [MathInstruct (en) ](https://huggingface.co/datasets/TIGER-Lab/MathInstruct )
- [Firefly 1.1M (zh) ](https://huggingface.co/datasets/YeungNLP/firefly-train-1.1M )
2023-07-19 20:59:15 +08:00
- [Web QA (zh) ](https://huggingface.co/datasets/suolyer/webqa )
- [UltraChat (en) ](https://github.com/thunlp/UltraChat )
- [WebNovel (zh) ](https://huggingface.co/datasets/zxbsmk/webnovel_cn )
2023-09-01 19:00:45 +08:00
- [Ad Gen (zh) ](https://huggingface.co/datasets/HasturOfficial/adgen )
2023-08-14 10:48:47 +08:00
- For reward modeling or DPO training:
2023-07-19 20:59:15 +08:00
- [HH-RLHF (en) ](https://huggingface.co/datasets/Anthropic/hh-rlhf )
- [Open Assistant (multilingual) ](https://huggingface.co/datasets/OpenAssistant/oasst1 )
- [GPT-4 Generated Data (en&zh) ](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM )
2023-05-31 16:54:06 +08:00
Please refer to [data/README.md ](data/README.md ) for details.
2023-07-19 20:59:15 +08:00
Some datasets require confirmation before using them, so we recommend logging in with your Hugging Face account using these commands.
2023-05-31 16:54:06 +08:00
```bash
pip install --upgrade huggingface_hub
huggingface-cli login
```
2023-05-29 21:53:02 +08:00
## Requirement
2023-05-31 16:54:06 +08:00
- Python 3.8+ and PyTorch 1.13.1+
2023-05-29 21:53:02 +08:00
- 🤗Transformers, Datasets, Accelerate, PEFT and TRL
2023-09-11 17:31:34 +08:00
- sentencepiece, protobuf and tiktoken
2023-10-09 20:02:50 +08:00
- fire, jieba, rouge-chinese and nltk (used at evaluation and predict)
2023-07-15 16:54:28 +08:00
- gradio and matplotlib (used in web_demo.py)
2023-07-05 23:03:58 +08:00
- uvicorn, fastapi and sse-starlette (used in api_demo.py)
2023-05-29 21:53:02 +08:00
And **powerful GPUs** !
## Getting Started
### Data Preparation (optional)
Please refer to `data/example_dataset` for checking the details about the format of dataset files. You can either use a single `.json` file or a [dataset loading script ](https://huggingface.co/docs/datasets/dataset_script ) with multiple files to create a custom dataset.
2023-09-10 21:01:20 +08:00
> [!NOTE]
2023-09-10 20:43:56 +08:00
> Please update `data/dataset_info.json` to use your custom dataset. About the format of this file, please refer to `data/README.md`.
2023-05-29 21:53:02 +08:00
### Dependence Installation (optional)
```bash
2023-10-12 21:42:29 +08:00
git clone https://github.com/hiyouga/LLaMA-Factory.git
conda create -n llama_factory python=3.10
conda activate llama_factory
cd LLaMA-Factory
2023-05-29 21:53:02 +08:00
pip install -r requirements.txt
```
2023-07-22 14:29:22 +08:00
If you want to enable the quantized LoRA (QLoRA) on the Windows platform, you will be required to install a pre-built version of `bitsandbytes` library, which supports CUDA 11.1 to 12.1.
```bash
pip install https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-0.39.1-py3-none-win_amd64.whl
```
2023-08-18 01:51:55 +08:00
### Train on a single GPU
2023-09-10 21:01:20 +08:00
> [!IMPORTANT]
2023-09-10 20:52:21 +08:00
> If you want to train models on multiple GPUs, please refer to [Distributed Training](#distributed-training).
2023-09-10 20:43:56 +08:00
2023-08-18 01:51:55 +08:00
#### Pre-Training
2023-05-29 21:53:02 +08:00
```bash
2023-07-15 16:54:28 +08:00
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage pt \
2023-08-18 11:43:10 +08:00
--model_name_or_path path_to_llama_model \
2023-05-29 21:53:02 +08:00
--do_train \
--dataset wiki_demo \
--finetuning_type lora \
2023-08-18 11:43:10 +08:00
--lora_target q_proj,v_proj \
2023-05-29 21:53:02 +08:00
--output_dir path_to_pt_checkpoint \
--overwrite_cache \
--per_device_train_batch_size 4 \
--gradient_accumulation_steps 4 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--save_steps 1000 \
--learning_rate 5e-5 \
--num_train_epochs 3.0 \
--plot_loss \
--fp16
2023-05-28 18:09:04 +08:00
```
2023-08-18 01:51:55 +08:00
#### Supervised Fine-Tuning
2023-05-28 18:09:04 +08:00
```bash
2023-07-15 16:54:28 +08:00
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage sft \
2023-08-18 11:43:10 +08:00
--model_name_or_path path_to_llama_model \
2023-05-28 18:09:04 +08:00
--do_train \
2023-05-29 21:53:02 +08:00
--dataset alpaca_gpt4_en \
2023-07-31 23:33:00 +08:00
--template default \
2023-05-28 18:09:04 +08:00
--finetuning_type lora \
2023-08-18 11:43:10 +08:00
--lora_target q_proj,v_proj \
2023-05-28 18:09:04 +08:00
--output_dir path_to_sft_checkpoint \
--overwrite_cache \
2023-05-29 21:53:02 +08:00
--per_device_train_batch_size 4 \
--gradient_accumulation_steps 4 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--save_steps 1000 \
--learning_rate 5e-5 \
--num_train_epochs 3.0 \
--plot_loss \
--fp16
```
2023-08-18 01:51:55 +08:00
#### Reward Modeling
2023-05-29 21:53:02 +08:00
```bash
2023-07-15 16:54:28 +08:00
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage rm \
2023-08-18 11:43:10 +08:00
--model_name_or_path path_to_llama_model \
2023-05-29 21:53:02 +08:00
--do_train \
--dataset comparison_gpt4_en \
2023-07-31 23:33:00 +08:00
--template default \
2023-05-29 21:53:02 +08:00
--finetuning_type lora \
2023-08-18 11:43:10 +08:00
--lora_target q_proj,v_proj \
2023-07-28 17:36:00 +08:00
--resume_lora_training False \
--checkpoint_dir path_to_sft_checkpoint \
2023-05-29 21:53:02 +08:00
--output_dir path_to_rm_checkpoint \
2023-08-11 03:02:53 +08:00
--per_device_train_batch_size 2 \
2023-05-29 21:53:02 +08:00
--gradient_accumulation_steps 4 \
2023-05-28 18:09:04 +08:00
--lr_scheduler_type cosine \
--logging_steps 10 \
2023-05-29 21:53:02 +08:00
--save_steps 1000 \
2023-08-18 11:43:10 +08:00
--learning_rate 1e-6 \
2023-05-28 18:09:04 +08:00
--num_train_epochs 1.0 \
2023-05-29 21:53:02 +08:00
--plot_loss \
2023-05-28 18:09:04 +08:00
--fp16
```
2023-05-29 21:53:02 +08:00
2023-08-18 01:51:55 +08:00
#### PPO Training
2023-05-29 21:53:02 +08:00
```bash
2023-07-15 16:54:28 +08:00
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage ppo \
2023-08-18 11:43:10 +08:00
--model_name_or_path path_to_llama_model \
2023-05-29 21:53:02 +08:00
--do_train \
--dataset alpaca_gpt4_en \
2023-07-31 23:33:00 +08:00
--template default \
2023-05-29 21:53:02 +08:00
--finetuning_type lora \
2023-08-18 11:43:10 +08:00
--lora_target q_proj,v_proj \
2023-07-28 17:36:00 +08:00
--resume_lora_training False \
2023-06-16 00:02:17 +08:00
--checkpoint_dir path_to_sft_checkpoint \
2023-05-29 21:53:02 +08:00
--reward_model path_to_rm_checkpoint \
--output_dir path_to_ppo_checkpoint \
--per_device_train_batch_size 2 \
--gradient_accumulation_steps 4 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--save_steps 1000 \
--learning_rate 1e-5 \
--num_train_epochs 1.0 \
2023-08-18 01:51:55 +08:00
--plot_loss \
--fp16
2023-05-29 21:53:02 +08:00
```
2023-08-18 01:51:55 +08:00
#### DPO Training
2023-08-11 03:02:53 +08:00
```bash
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage dpo \
2023-08-18 11:43:10 +08:00
--model_name_or_path path_to_llama_model \
2023-08-11 03:02:53 +08:00
--do_train \
--dataset comparison_gpt4_en \
--template default \
--finetuning_type lora \
2023-08-18 11:43:10 +08:00
--lora_target q_proj,v_proj \
2023-08-11 03:02:53 +08:00
--resume_lora_training False \
--checkpoint_dir path_to_sft_checkpoint \
--output_dir path_to_dpo_checkpoint \
--per_device_train_batch_size 2 \
--gradient_accumulation_steps 4 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--save_steps 1000 \
--learning_rate 1e-5 \
--num_train_epochs 1.0 \
--plot_loss \
--fp16
```
2023-05-29 21:53:02 +08:00
### Distributed Training
2023-08-12 21:23:05 +08:00
#### Use Huggingface Accelerate
2023-05-29 21:53:02 +08:00
```bash
accelerate config # configure the environment
2023-07-15 16:54:28 +08:00
accelerate launch src/train_bash.py # arguments (same as above)
2023-05-29 21:53:02 +08:00
```
2023-09-10 20:43:56 +08:00
< details > < summary > Example config for LoRA training< / summary >
2023-06-27 22:50:23 +08:00
```yaml
compute_environment: LOCAL_MACHINE
2023-09-10 20:43:56 +08:00
distributed_type: MULTI_GPU
2023-06-27 22:50:23 +08:00
downcast_bf16: 'no'
2023-09-10 20:43:56 +08:00
gpu_ids: all
2023-06-27 22:50:23 +08:00
machine_rank: 0
main_training_function: main
mixed_precision: fp16
num_machines: 1
num_processes: 4
rdzv_backend: static
same_network: true
tpu_env: []
tpu_use_cluster: false
tpu_use_sudo: false
use_cpu: false
```
< / details >
2023-08-12 21:23:05 +08:00
#### Use DeepSpeed
```bash
deepspeed --num_gpus 8 --master_port=9901 src/train_bash.py \
--deepspeed ds_config.json \
... # arguments (same as above)
```
2023-09-10 20:43:56 +08:00
< details > < summary > Example config for full-parameter training with DeepSpeed ZeRO-2< / summary >
2023-08-12 21:23:05 +08:00
```json
{
2023-09-10 21:01:20 +08:00
"train_batch_size": "auto",
2023-08-12 21:23:05 +08:00
"train_micro_batch_size_per_gpu": "auto",
"gradient_accumulation_steps": "auto",
"gradient_clipping": "auto",
"zero_allow_untested_optimizer": true,
"fp16": {
"enabled": "auto",
"loss_scale": 0,
"initial_scale_power": 16,
"loss_scale_window": 1000,
"hysteresis": 2,
"min_loss_scale": 1
},
"zero_optimization": {
"stage": 2,
"allgather_partitions": true,
"allgather_bucket_size": 5e8,
"reduce_scatter": true,
"reduce_bucket_size": 5e8,
"overlap_comm": false,
"contiguous_gradients": true
}
}
```
< / details >
2023-08-18 01:51:55 +08:00
### Export model
2023-07-20 17:23:16 +08:00
```bash
2023-08-18 01:51:55 +08:00
python src/export_model.py \
2023-08-18 11:43:10 +08:00
--model_name_or_path path_to_llama_model \
2023-07-31 23:33:00 +08:00
--template default \
2023-07-20 17:23:16 +08:00
--finetuning_type lora \
--checkpoint_dir path_to_checkpoint \
2023-10-19 15:52:24 +08:00
--export_dir path_to_export
2023-07-20 17:23:16 +08:00
```
2023-07-18 00:18:25 +08:00
### API Demo
```bash
python src/api_demo.py \
2023-08-18 11:43:10 +08:00
--model_name_or_path path_to_llama_model \
2023-07-31 23:33:00 +08:00
--template default \
2023-07-20 17:23:16 +08:00
--finetuning_type lora \
2023-07-18 00:18:25 +08:00
--checkpoint_dir path_to_checkpoint
```
2023-09-10 21:01:20 +08:00
> [!NOTE]
2023-09-10 20:43:56 +08:00
> Visit `http://localhost:8000/docs` for API documentation.
2023-07-18 00:18:25 +08:00
### CLI Demo
2023-05-29 21:53:02 +08:00
```bash
2023-07-18 00:18:25 +08:00
python src/cli_demo.py \
2023-08-18 11:43:10 +08:00
--model_name_or_path path_to_llama_model \
2023-07-31 23:33:00 +08:00
--template default \
2023-07-20 17:23:16 +08:00
--finetuning_type lora \
2023-05-29 21:53:02 +08:00
--checkpoint_dir path_to_checkpoint
```
2023-07-18 17:21:16 +08:00
### Web Demo
```bash
python src/web_demo.py \
2023-08-18 11:43:10 +08:00
--model_name_or_path path_to_llama_model \
2023-07-31 23:33:00 +08:00
--template default \
2023-07-20 17:23:16 +08:00
--finetuning_type lora \
2023-07-18 17:21:16 +08:00
--checkpoint_dir path_to_checkpoint
```
2023-09-23 21:10:17 +08:00
### Evaluation
```bash
CUDA_VISIBLE_DEVICES=0 python src/evaluate.py \
--model_name_or_path path_to_llama_model \
--finetuning_type lora \
--checkpoint_dir path_to_checkpoint \
--template vanilla \
--task mmlu \
--split test \
--lang en \
--n_shot 5 \
--batch_size 4
```
### Predict
2023-05-29 21:53:02 +08:00
```bash
2023-08-18 01:51:55 +08:00
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage sft \
2023-08-18 11:43:10 +08:00
--model_name_or_path path_to_llama_model \
2023-09-23 00:34:17 +08:00
--do_predict \
2023-08-18 01:51:55 +08:00
--dataset alpaca_gpt4_en \
2023-07-31 23:33:00 +08:00
--template default \
2023-07-20 17:23:16 +08:00
--finetuning_type lora \
2023-05-29 21:53:02 +08:00
--checkpoint_dir path_to_checkpoint \
2023-09-23 00:34:17 +08:00
--output_dir path_to_predict_result \
2023-08-18 01:51:55 +08:00
--per_device_eval_batch_size 8 \
--max_samples 100 \
--predict_with_generate
```
2023-09-10 21:01:20 +08:00
> [!NOTE]
2023-09-23 21:10:17 +08:00
> We recommend using `--per_device_eval_batch_size=1` and `--max_target_length 128` at 4/8-bit predict.
2023-05-29 21:53:02 +08:00
## License
2023-05-31 16:54:06 +08:00
This repository is licensed under the [Apache-2.0 License ](LICENSE ).
2023-10-20 23:28:52 +08:00
Please follow the model licenses to use the corresponding model weights: [LLaMA ](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md ) / [LLaMA-2 ](https://ai.meta.com/llama/license/ ) / [BLOOM ](https://huggingface.co/spaces/bigscience/license ) / [Falcon ](LICENSE ) / [Baichuan ](https://huggingface.co/baichuan-inc/baichuan-7B/resolve/main/baichuan-7B%20%E6%A8%A1%E5%9E%8B%E8%AE%B8%E5%8F%AF%E5%8D%8F%E8%AE%AE.pdf ) / [Baichuan2 ](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/resolve/main/Baichuan%202%E6%A8%A1%E5%9E%8B%E7%A4%BE%E5%8C%BA%E8%AE%B8%E5%8F%AF%E5%8D%8F%E8%AE%AE.pdf ) / [InternLM ](https://github.com/InternLM/InternLM#open-source-license ) / [Qwen ](https://huggingface.co/Qwen/Qwen-7B-Chat/blob/main/LICENSE ) / [ChatGLM2 ](https://github.com/THUDM/ChatGLM2-6B/blob/main/MODEL_LICENSE ) / [Phi-1.5 ](https://huggingface.co/microsoft/phi-1_5/resolve/main/Research%20License.docx )
2023-06-16 00:02:17 +08:00
2023-05-29 21:53:02 +08:00
## Citation
2023-07-07 12:06:28 +08:00
If this work is helpful, please kindly cite as:
2023-05-29 21:53:02 +08:00
```bibtex
2023-10-12 21:42:29 +08:00
@Misc {llama-factory,
title = {LLaMA Factory},
2023-05-29 21:53:02 +08:00
author = {hiyouga},
2023-10-12 21:42:29 +08:00
howpublished = {\url{https://github.com/hiyouga/LLaMA-Factory}},
2023-05-29 21:53:02 +08:00
year = {2023}
}
```
## Acknowledgement
2023-10-09 20:02:50 +08:00
This repo benefits from [PEFT ](https://github.com/huggingface/peft ), [QLoRA ](https://github.com/artidoro/qlora ) and [FastChat ](https://github.com/lm-sys/FastChat ). Thanks for their wonderful works.
2023-06-27 23:56:29 +08:00
## Star History
2023-10-12 21:42:29 +08:00
![Star History Chart ](https://api.star-history.com/svg?repos=hiyouga/LLaMA-Factory&type=Date )