carla/PythonAPI/util/raycast_sensor_testing.py

579 lines
21 KiB
Python

#!/usr/bin/env python
# Copyright (c) 2020 Computer Vision Center (CVC) at the Universitat Autonoma de
# Barcelona (UAB).
#
# This work is licensed under the terms of the MIT license.
# For a copy, see <https://opensource.org/licenses/MIT>.
"""
Raycast sensor profiler
This script can be used to test, visualize and profile the raycast sensors,
LiDARs and Radar (radar visualization not available, sorry).
By default, the script render one RGB Camera and three LiDARS whose output
can be visualized in a window just running:
python raycast_sensor_testing.py
For profiling, you can choose the number of LiDARs and Radars and then use
the profiling option to run a series of simulations for points from 100k
to 1.5M per second. In this mode we do not render anything but processing
of the data is done.
For example for profiling one lidar:
python raycast_sensor_testing.py -ln 1 --profiling
For example for profiling one semantic lidar:
python raycast_sensor_testing.py -sln 1 --profiling
And for profiling one radar:
python raycast_sensor_testing.py -rn 1 --profiling
"""
import glob
import os
import sys
try:
sys.path.append(glob.glob('../carla/dist/carla-*%d.%d-%s.egg' % (
sys.version_info.major,
sys.version_info.minor,
'win-amd64' if os.name == 'nt' else 'linux-x86_64'))[0])
except IndexError:
pass
import carla
import argparse
import random
import time
import numpy as np
try:
import pygame
from pygame.locals import K_ESCAPE
from pygame.locals import K_q
except ImportError:
raise RuntimeError('cannot import pygame, make sure pygame package is installed')
class CustomTimer:
def __init__(self):
try:
self.timer = time.perf_counter
except AttributeError:
self.timer = time.time
def time(self):
return self.timer()
class DisplayManager:
def __init__(self, grid_size, window_size, show_window=True):
if show_window:
pygame.init()
pygame.font.init()
self.display = pygame.display.set_mode(window_size, pygame.HWSURFACE | pygame.DOUBLEBUF)
else:
self.display = None
self.grid_size = grid_size
self.window_size = window_size
self.sensor_list = []
def get_window_size(self):
return [int(self.window_size[0]), int(self.window_size[1])]
def get_display_size(self):
return [int(self.window_size[0]/self.grid_size[0]), int(self.window_size[1]/self.grid_size[1])]
def get_display_offset(self, gridPos):
dis_size = self.get_display_size()
return [int(gridPos[0] * dis_size[0]), int(gridPos[1] * dis_size[1])]
def add_sensor(self, sensor):
self.sensor_list.append(sensor)
def get_sensor_list(self):
return self.sensor_list
def render(self):
if not self.render_enabled():
return
for s in self.sensor_list:
s.render()
pygame.display.flip()
def destroy(self):
for s in self.sensor_list:
s.destroy()
def render_enabled(self):
return self.display != None
class SensorManager:
def __init__(self, world, display_man, sensor_type, transform, attached, sensor_options, display_pos):
self.surface = None
self.world = world
self.display_man = display_man
self.display_pos = display_pos
self.sensor = self.init_sensor(sensor_type, transform, attached, sensor_options)
self.sensor_options = sensor_options
self.timer = CustomTimer()
self.time_processing = 0.0
self.tics_processing = 0
self.display_man.add_sensor(self)
def init_sensor(self, sensor_type, transform, attached, sensor_options):
if sensor_type == 'RGBCamera':
camera_bp = self.world.get_blueprint_library().find('sensor.camera.rgb')
disp_size = self.display_man.get_display_size()
camera_bp.set_attribute('image_size_x', str(disp_size[0]))
camera_bp.set_attribute('image_size_y', str(disp_size[1]))
for key in sensor_options:
camera_bp.set_attribute(key, sensor_options[key])
camera = self.world.spawn_actor(camera_bp, transform, attach_to=attached)
camera.listen(self.save_rgb_image)
return camera
elif sensor_type == 'LiDAR':
lidar_bp = self.world.get_blueprint_library().find('sensor.lidar.ray_cast')
lidar_bp.set_attribute('range', '100')
lidar_bp.set_attribute('dropoff_general_rate', lidar_bp.get_attribute('dropoff_general_rate').recommended_values[0])
lidar_bp.set_attribute('dropoff_intensity_limit', lidar_bp.get_attribute('dropoff_intensity_limit').recommended_values[0])
lidar_bp.set_attribute('dropoff_zero_intensity', lidar_bp.get_attribute('dropoff_zero_intensity').recommended_values[0])
for key in sensor_options:
lidar_bp.set_attribute(key, sensor_options[key])
lidar = self.world.spawn_actor(lidar_bp, transform, attach_to=attached)
lidar.listen(self.save_lidar_image)
return lidar
elif sensor_type == 'SemanticLiDAR':
lidar_bp = self.world.get_blueprint_library().find('sensor.lidar.ray_cast_semantic')
lidar_bp.set_attribute('range', '100')
for key in sensor_options:
lidar_bp.set_attribute(key, sensor_options[key])
lidar = self.world.spawn_actor(lidar_bp, transform, attach_to=attached)
lidar.listen(self.save_semanticlidar_image)
return lidar
elif sensor_type == "Radar":
radar_bp = self.world.get_blueprint_library().find('sensor.other.radar')
for key in sensor_options:
radar_bp.set_attribute(key, sensor_options[key])
radar = self.world.spawn_actor(radar_bp, transform, attach_to=attached)
radar.listen(self.save_radar_image)
return radar
else:
return None
def get_sensor(self):
return self.sensor
def save_rgb_image(self, image):
t_start = self.timer.time()
image.convert(carla.ColorConverter.Raw)
array = np.frombuffer(image.raw_data, dtype=np.dtype("uint8"))
array = np.reshape(array, (image.height, image.width, 4))
array = array[:, :, :3]
array = array[:, :, ::-1]
if self.display_man.render_enabled():
self.surface = pygame.surfarray.make_surface(array.swapaxes(0, 1))
t_end = self.timer.time()
self.time_processing += (t_end-t_start)
self.tics_processing += 1
def save_lidar_image(self, image):
t_start = self.timer.time()
disp_size = self.display_man.get_display_size()
lidar_range = 2.0*float(self.sensor_options['range'])
points = np.frombuffer(image.raw_data, dtype=np.dtype('f4'))
points = np.reshape(points, (int(points.shape[0] / 4), 4))
lidar_data = np.array(points[:, :2])
lidar_data *= min(disp_size) / lidar_range
lidar_data += (0.5 * disp_size[0], 0.5 * disp_size[1])
lidar_data = np.fabs(lidar_data) # pylint: disable=E1111
lidar_data = lidar_data.astype(np.int32)
lidar_data = np.reshape(lidar_data, (-1, 2))
lidar_img_size = (disp_size[0], disp_size[1], 3)
lidar_img = np.zeros((lidar_img_size), dtype=np.uint8)
lidar_img[tuple(lidar_data.T)] = (255, 255, 255)
if self.display_man.render_enabled():
self.surface = pygame.surfarray.make_surface(lidar_img)
t_end = self.timer.time()
self.time_processing += (t_end-t_start)
self.tics_processing += 1
def save_semanticlidar_image(self, image):
t_start = self.timer.time()
disp_size = self.display_man.get_display_size()
lidar_range = 2.0*float(self.sensor_options['range'])
points = np.frombuffer(image.raw_data, dtype=np.dtype('f4'))
points = np.reshape(points, (int(points.shape[0] / 6), 6))
lidar_data = np.array(points[:, :2])
lidar_data *= min(disp_size) / lidar_range
lidar_data += (0.5 * disp_size[0], 0.5 * disp_size[1])
lidar_data = np.fabs(lidar_data) # pylint: disable=E1111
lidar_data = lidar_data.astype(np.int32)
lidar_data = np.reshape(lidar_data, (-1, 2))
lidar_img_size = (disp_size[0], disp_size[1], 3)
lidar_img = np.zeros((lidar_img_size), dtype=np.uint8)
lidar_img[tuple(lidar_data.T)] = (255, 255, 255)
if self.display_man.render_enabled():
self.surface = pygame.surfarray.make_surface(lidar_img)
t_end = self.timer.time()
self.time_processing += (t_end-t_start)
self.tics_processing += 1
def save_radar_image(self, radar_data):
t_start = self.timer.time()
#print("Hola, saving Radar data!!")
# To get a numpy [[vel, altitude, azimuth, depth],...[,,,]]:
points = np.frombuffer(radar_data.raw_data, dtype=np.dtype('f4'))
points = np.reshape(points, (len(radar_data), 4))
t_end = self.timer.time()
self.time_processing += (t_end-t_start)
self.tics_processing += 1
def render(self):
if self.surface is not None:
offset = self.display_man.get_display_offset(self.display_pos)
self.display_man.display.blit(self.surface, offset)
def destroy(self):
self.sensor.destroy()
def one_run(args, client):
"""This function performed one test run using the args parameters
and connecting to the carla client passed.
"""
display_manager = None
vehicle = None
vehicle_list = []
prof_str = ""
timer = CustomTimer()
try:
# Getting the world and
world = client.get_world()
if args.sync:
traffic_manager = client.get_trafficmanager(8000)
settings = world.get_settings()
traffic_manager.set_synchronous_mode(True)
settings.synchronous_mode = True
settings.fixed_delta_seconds = 0.05
world.apply_settings(settings)
if args.profiling:
settings.no_rendering_mode = True
world.apply_settings(settings)
# Instanciating the vehicle to which we attached the sensors
bp = world.get_blueprint_library().filter('vehicle')[0]
if bp.has_attribute('color'):
color = random.choice(bp.get_attribute('color').recommended_values)
bp.set_attribute('color', color)
vehicle = world.spawn_actor(bp, world.get_map().get_spawn_points()[0])
vehicle_list.append(vehicle)
vehicle.set_autopilot(True)
# Display Manager organize all the sensors an its display in a window
display_manager = DisplayManager(grid_size=[2, 2], window_size=[args.width, args.height], show_window=args.render_window)
# If require, we instanciate the RGB camera
if args.render_cam:
SensorManager(world, display_manager, 'RGBCamera', carla.Transform(carla.Location(x=1.5, z=2.4)), vehicle, {}, [0, 0])
# If any, we instanciate the required lidars
lidar_points_per_second = args.lidar_points
if args.lidar_number >= 3:
SensorManager(world, display_manager, 'LiDAR', carla.Transform(carla.Location(x=0, z=2.4)), vehicle, {'channels' : '64', 'range' : '50', 'points_per_second': lidar_points_per_second, 'rotation_frequency': '20'}, [1, 0])
if args.lidar_number >= 2:
SensorManager(world, display_manager, 'LiDAR', carla.Transform(carla.Location(x=0, z=2.4)), vehicle, {'channels' : '64', 'range' : '100', 'points_per_second': lidar_points_per_second, 'rotation_frequency': '20'}, [0, 1])
if args.lidar_number >= 1:
SensorManager(world, display_manager, 'LiDAR', carla.Transform(carla.Location(x=0, z=2.4)), vehicle, {'channels' : '64', 'range' : '200', 'points_per_second': lidar_points_per_second, 'rotation_frequency': '20'}, [1, 1])
# If any, we instanciate the required semantic lidars
semanticlidar_points_per_second = args.semanticlidar_points
if args.semanticlidar_number >= 3:
SensorManager(world, display_manager, 'SemanticLiDAR', carla.Transform(carla.Location(x=0, z=2.4)), vehicle, {'channels' : '64', 'range' : '50', 'points_per_second': semanticlidar_points_per_second, 'rotation_frequency': '20'}, [1, 0])
if args.semanticlidar_number >= 2:
SensorManager(world, display_manager, 'SemanticLiDAR', carla.Transform(carla.Location(x=0, z=2.4)), vehicle, {'channels' : '64', 'range' : '100', 'points_per_second': semanticlidar_points_per_second, 'rotation_frequency': '20'}, [0, 1])
if args.semanticlidar_number >= 1:
SensorManager(world, display_manager, 'SemanticLiDAR', carla.Transform(carla.Location(x=0, z=2.4)), vehicle, {'channels' : '64', 'range' : '200', 'points_per_second': semanticlidar_points_per_second, 'rotation_frequency': '20'}, [1, 1])
# If any, we instanciate the required radars
radar_points_per_second = args.radar_points
if args.radar_number >= 3:
SensorManager(world, display_manager, 'Radar', carla.Transform(carla.Location(x=0, z=2.4), carla.Rotation(pitch=5, yaw=90)), vehicle, {'points_per_second': radar_points_per_second}, [2, 2])
if args.radar_number >= 2:
SensorManager(world, display_manager, 'Radar', carla.Transform(carla.Location(x=0, z=2.4), carla.Rotation(pitch=5, yaw=-90)), vehicle, {'points_per_second': radar_points_per_second}, [2, 2])
if args.radar_number >= 1:
SensorManager(world, display_manager, 'Radar', carla.Transform(carla.Location(x=0, z=2.4), carla.Rotation(pitch=5)), vehicle, {'points_per_second': radar_points_per_second}, [2, 2])
call_exit = False
time_init_sim = timer.time()
frame = 0
time0 = timer.time()
while True:
frame += 1
# Carla Tick
if args.sync:
world.tick()
else:
world.wait_for_tick()
# Render received data
display_manager.render()
# Time measurement for profiling or to output
if not args.profiling:
if frame == 30:
time_frames = timer.time() - time0
time_procc = 0
for sensor in display_manager.sensor_list:
time_procc += sensor.time_processing
print("FPS: %.3f %.3f %.3f" % (time_frames, 1.0/time_frames * 30, time_procc/time_frames))
frame = 0
for sensor in display_manager.sensor_list:
sensor.time_processing = 0
sensor.tics_processing = 0
time0 = timer.time()
if args.render_window:
for event in pygame.event.get():
if event.type == pygame.QUIT:
call_exit = True
elif event.type == pygame.KEYDOWN:
if event.key == K_ESCAPE or event.key == K_q:
call_exit = True
break
else:
if (timer.time() - time_init_sim) < 5.0:
frame = 0
for sensor in display_manager.sensor_list:
sensor.time_processing = 0
sensor.tics_processing = 0
time0 = timer.time()
if (timer.time() - time0) > 10.0:
time_frames = timer.time() - time0
time_procc = 0
for sensor in display_manager.sensor_list:
time_procc += sensor.time_processing
prof_str = "%-10s %-9s %-9s %-15s %-7.2f %-20.3f" % (args.lidar_number, args.semanticlidar_number, args.radar_number, lidar_points_per_second, float(frame) / time_frames, time_procc/time_frames)
break
if call_exit:
break
finally:
if display_manager:
display_manager.destroy()
client.apply_batch([carla.command.DestroyActor(x) for x in vehicle_list])
if args.sync:
settings = world.get_settings()
settings.synchronous_mode = False
settings.fixed_delta_seconds = None
world.apply_settings(settings)
if args.profiling:
settings.no_rendering_mode = False
world.apply_settings(settings)
return prof_str
def main():
argparser = argparse.ArgumentParser(
description='CARLA Sensor tutorial')
argparser.add_argument(
'--host',
metavar='H',
default='127.0.0.1',
help='IP of the host server (default: 127.0.0.1)')
argparser.add_argument(
'-p', '--port',
metavar='P',
default=2000,
type=int,
help='TCP port to listen to (default: 2000)')
argparser.add_argument(
'--sync',
action='store_true',
help='Synchronous mode execution')
argparser.add_argument(
'--async',
dest='sync',
action='store_false',
help='Asynchronous mode execution')
argparser.set_defaults(sync=True)
argparser.add_argument(
'--res',
metavar='WIDTHxHEIGHT',
default='1280x720',
help='window resolution (default: 1280x720)')
argparser.add_argument(
'-lp', '--lidar_points',
metavar='LP',
default='100000',
help='lidar points per second (default: "100000")')
argparser.add_argument(
'-ln', '--lidar_number',
metavar='LN',
default=3,
type=int,
choices=range(0, 4),
help='Number of lidars to render (from zero to three)')
argparser.add_argument(
'-slp', '--semanticlidar_points',
metavar='SLP',
default='100000',
help='semantic lidar points per second (default: "100000")')
argparser.add_argument(
'-sln', '--semanticlidar_number',
metavar='SLN',
default=0,
type=int,
choices=range(0, 4),
help='Number of semantic lidars to render (from zero to three)')
argparser.add_argument(
'-rp', '--radar_points',
metavar='RP',
default='100000',
help='radar points per second (default: "100000")')
argparser.add_argument(
'-rn', '--radar_number',
metavar='LN',
default=0,
type=int,
choices=range(0, 4),
help='Number of radars to render (from zero to three)')
argparser.add_argument(
'--camera',
dest='render_cam', action='store_true',
help='render also RGB camera (camera enable by default)')
argparser.add_argument('--no-camera',
dest='render_cam', action='store_false',
help='no render RGB camera (camera disable by default)')
argparser.set_defaults(render_cam=True)
argparser.add_argument(
'--profiling',
action='store_true',
help='Use the script in profiling mode. It measures the performance of \
the lidar for different number of points.')
argparser.set_defaults(profiling=False)
argparser.add_argument(
'--no-render-window',
action='store_false',
dest='render_window',
help='Render visualization window.')
argparser.set_defaults(render_window=True)
args = argparser.parse_args()
args.width, args.height = [int(x) for x in args.res.split('x')]
try:
client = carla.Client(args.host, args.port)
client.set_timeout(5.0)
if args.profiling:
print("-------------------------------------------------------")
print("# Running profiling with %s lidars, %s semantic lidars and %s radars." % (args.lidar_number, args.semanticlidar_number, args.radar_number))
args.render_cam = False
args.render_window = False
runs_output = []
points_range = ['100000', '200000', '300000', '400000', '500000',
'600000', '700000', '800000', '900000', '1000000',
'1100000', '1200000', '1300000', '1400000', '1500000']
for points in points_range:
args.lidar_points = points
args.semanticlidar_points = points
args.radar_points = points
run_str = one_run(args, client)
runs_output.append(run_str)
print("-------------------------------------------------------")
print("# Profiling of parallel raycast sensors (LiDAR and Radar)")
try:
import multiprocessing
print("#Number of cores: %d" % multiprocessing.cpu_count())
except ImportError:
print("#Hardware information not available, please install the " \
"multiprocessing module")
print("#NumLidars NumSemLids NumRadars PointsPerSecond FPS PercentageProcessing")
for o in runs_output:
print(o)
else:
one_run(args, client)
except KeyboardInterrupt:
print('\nCancelled by user. Bye!')
if __name__ == '__main__':
main()