ppovb5fc7/gazebo/test/integration/joint_screw.cc

547 lines
18 KiB
C++
Raw Permalink Normal View History

2019-03-25 11:01:43 +08:00
/*
* Copyright (C) 2012 Open Source Robotics Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
#include <gtest/gtest.h>
#include "gazebo/physics/physics.hh"
// #include "gazebo/physics/Joint.hh"
// #include "gazebo/physics/ScrewJoint.hh"
#include "gazebo/test/ServerFixture.hh"
#include "gazebo/test/helper_physics_generator.hh"
#include "test/integration/joint_test.hh"
using namespace gazebo;
const double g_tolerance = 1e-2;
class JointTestScrew : public JointTest
{
/// \brief Test screw joint implementation with SetWorldPose.
/// Set link poses in world frame, check joint angles and joint axis.
/// \param[in] _physicsEngine Type of physics engine to use.
public: void ScrewJointSetWorldPose(const std::string &_physicsEngine);
/// \brief Test screw joint implementation with forces.
/// Apply force to screw joint links, check velocity.
/// \param[in] _physicsEngine Type of physics engine to use.
public: void ScrewJointForce(const std::string &_physicsEngine);
/// \brief Test screw joint limits implementation with forces.
/// Apply force to screw joint links, check velocity.
/// Keep increasing force until something gives
/// \param[in] _physicsEngine Type of physics engine to use.
public: void ScrewJointLimitForce(const std::string &_physicsEngine);
/// \brief Spin joints several rotations and verify that the angles
/// wrap properly.
/// \param[in] _physicsEngine Type of physics engine to use.
public: void WrapAngle(const std::string &_physicsEngine);
};
////////////////////////////////////////////////////////////
void JointTestScrew::WrapAngle(const std::string &_physicsEngine)
{
/// \TODO: bullet hinge angles are wrapped (#1074)
if (_physicsEngine == "bullet")
{
gzerr << "Aborting test for bullet, see issues #1074.\n";
return;
}
// Load an empty world
Load("worlds/empty.world", true, _physicsEngine);
physics::WorldPtr world = physics::get_world("default");
ASSERT_TRUE(world != NULL);
// Verify physics engine type
physics::PhysicsEnginePtr physics = world->GetPhysicsEngine();
ASSERT_TRUE(physics != NULL);
EXPECT_EQ(physics->GetType(), _physicsEngine);
// disable gravity
physics->SetGravity(math::Vector3::Zero);
{
std::string jointType = "screw";
gzdbg << "SpawnJoint " << jointType << " child world" << std::endl;
physics::JointPtr joint = SpawnJoint(jointType, false, true);
ASSERT_TRUE(joint != NULL);
// \TODO: option to set thread pitch, create another test
// double threadPitch = 100.0;
// joint->SetParam("thread_pitch", threadPitch);
// Inertial parameters
const double momentOfInertia = 1.0;
const double threadPitch = 1.0;
const double mass = 1.0;
double inertia = momentOfInertia + mass / (threadPitch*threadPitch);
// Verify inertial parameters
EXPECT_NEAR(threadPitch, joint->GetParam("thread_pitch", 0), g_tolerance);
{
physics::LinkPtr child = joint->GetChild();
EXPECT_NEAR(mass, child->GetInertial()->GetMass(), g_tolerance);
}
/// \TODO: verify momentOfInertia
// set torque and step forward
const double torque = 35;
const unsigned int stepCount = 1000;
double dt = physics->GetMaxStepSize();
double stepTime = stepCount * dt;
// Expect constant torque to give quadratic response in position
{
// Expected max joint angle (quatratic in time)
math::Angle maxAngle(0.5 * torque * stepTime*stepTime / inertia);
// Verify that the joint should make more than 1 revolution
EXPECT_GT(maxAngle.Radian(), 1.25 * 2 * M_PI);
}
// compute joint velocity analytically with constant torque
// joint angle is unwrapped
for (unsigned int i = 0; i < stepCount; ++i)
{
joint->SetForce(0, torque);
double vel = sqrt(2.0*torque*joint->GetAngle(0).Radian() / inertia);
world->Step(1);
EXPECT_NEAR(joint->GetVelocity(0), vel, 2e-2);
double time = world->GetSimTime().Double();
math::Angle angle(0.5 * torque * time*time / inertia);
EXPECT_NEAR(joint->GetAngle(0).Radian(), angle.Radian(), g_tolerance);
}
std::cout << "Final time: " << world->GetSimTime().Double() << std::endl;
std::cout << "Final angle: " << joint->GetAngle(0).Radian() << std::endl;
std::cout << "Final speed: " << joint->GetVelocity(0) << std::endl;
}
}
TEST_P(JointTestScrew, WrapAngle)
{
WrapAngle(this->physicsEngine);
}
//////////////////////////////////////////////////
void JointTestScrew::ScrewJointSetWorldPose(const std::string &_physicsEngine)
{
if (_physicsEngine == "dart")
{
gzerr << "DART Screw Joint will not work with Link::SetWorldPose."
<< " See issue #1096.\n";
return;
}
if (_physicsEngine == "simbody")
{
gzerr << "Simbody Screw Joint will not work with Link::SetWorldPose."
<< " See issue #857.\n";
return;
}
// Load our screw joint test world
Load("worlds/screw_joint_test.world", true, _physicsEngine);
// Get a pointer to the world, make sure world loads
physics::WorldPtr world = physics::get_world("default");
ASSERT_TRUE(world != NULL);
// Verify physics engine type
physics::PhysicsEnginePtr physics = world->GetPhysicsEngine();
ASSERT_TRUE(physics != NULL);
EXPECT_EQ(physics->GetType(), _physicsEngine);
physics->SetGravity(math::Vector3(0, 0, 0));
// simulate 1 step
world->Step(1);
double t = world->GetSimTime().Double();
// get time step size
double dt = world->GetPhysicsEngine()->GetMaxStepSize();
EXPECT_GT(dt, 0);
gzlog << "dt : " << dt << "\n";
// verify that time moves forward
EXPECT_DOUBLE_EQ(t, dt);
gzlog << "t after one step : " << t << "\n";
// get model, joints and get links
physics::ModelPtr model_1 = world->GetModel("model_1");
physics::LinkPtr link_00 = model_1->GetLink("link_00");
physics::LinkPtr link_01 = model_1->GetLink("link_01");
physics::JointPtr joint_00 = model_1->GetJoint("joint_00");
physics::JointPtr joint_01 = model_1->GetJoint("joint_01");
// both initial angles should be zero
EXPECT_EQ(joint_00->GetAngle(0), 0);
EXPECT_EQ(joint_00->GetAngle(1), 0);
// move child link to it's initial location
link_00->SetWorldPose(math::Pose(0, 0, 2, 0, 0, 0));
EXPECT_EQ(joint_00->GetAngle(0), 0);
EXPECT_EQ(joint_00->GetAngle(1), 0);
EXPECT_EQ(joint_00->GetGlobalAxis(0), math::Vector3(1, 0, 0));
EXPECT_EQ(joint_00->GetGlobalAxis(1), math::Vector3(1, 0, 0));
gzdbg << "joint angles [" << joint_00->GetAngle(0)
<< ", " << joint_00->GetAngle(1)
<< "] axis1 [" << joint_00->GetGlobalAxis(0)
<< "] axis2 [" << joint_00->GetGlobalAxis(1)
<< "]\n";
// move child link 45deg about x
double pitch_00 = joint_00->GetParam("thread_pitch", 0);
math::Pose pose_00 = math::Pose(-0.25*M_PI/pitch_00, 0, 2, 0.25*M_PI, 0, 0);
math::Pose pose_01 = math::Pose(0, 0, -1, 0, 0, 0) + pose_00;
link_00->SetWorldPose(pose_00);
link_01->SetWorldPose(pose_01);
EXPECT_EQ(joint_00->GetAngle(0), 0.25*M_PI);
EXPECT_EQ(joint_00->GetAngle(1), -0.25*M_PI/pitch_00);
EXPECT_EQ(joint_00->GetGlobalAxis(0), math::Vector3(1, 0, 0));
EXPECT_EQ(joint_00->GetGlobalAxis(1), math::Vector3(1, 0, 0));
gzdbg << "joint angles [" << joint_00->GetAngle(0)
<< ", " << joint_00->GetAngle(1)
<< "] axis1 [" << joint_00->GetGlobalAxis(0)
<< "] axis2 [" << joint_00->GetGlobalAxis(1)
<< "] pitch_00 [" << pitch_00
<< "]\n";
// move child link 45deg about y
double pitch_01 = joint_01->GetParam("thread_pitch", 0);
link_00->SetWorldPose(math::Pose(0, 0, 2, 0, 0.25*M_PI, 0));
pose_00 = math::Pose(-0.25*M_PI/pitch_00, 0, 2, 0.25*M_PI, 0, 0);
pose_01 = math::Pose(-0.3*M_PI/pitch_01, 0, -1, 0.3*M_PI, 0, 0) + pose_00;
link_00->SetWorldPose(pose_00);
link_01->SetWorldPose(pose_01);
EXPECT_EQ(joint_00->GetAngle(0), 0.25*M_PI);
EXPECT_EQ(joint_00->GetAngle(1), -0.25*M_PI/pitch_00);
EXPECT_EQ(joint_01->GetAngle(0), 0.3*M_PI);
EXPECT_EQ(joint_01->GetAngle(1), -0.3*M_PI/pitch_01);
EXPECT_EQ(joint_00->GetGlobalAxis(0), math::Vector3(1, 0, 0));
EXPECT_EQ(joint_00->GetGlobalAxis(1), math::Vector3(1, 0, 0));
gzdbg << "joint angles [" << joint_00->GetAngle(0)
<< ", " << joint_00->GetAngle(1)
<< "] axis1 [" << joint_00->GetGlobalAxis(0)
<< "] axis2 [" << joint_00->GetGlobalAxis(1)
<< "] pitch_00 [" << pitch_00
<< "] pitch_01 [" << pitch_01
<< "]\n";
// new poses should not violate the constraint. take a few steps
// and make sure nothing moves.
world->Step(10);
// move child link 90deg about both x and "rotated y axis" (z)
EXPECT_EQ(joint_00->GetAngle(0), 0.25*M_PI);
EXPECT_EQ(joint_00->GetAngle(1), -0.25*M_PI/pitch_00);
EXPECT_EQ(joint_01->GetAngle(0), 0.3*M_PI);
EXPECT_EQ(joint_01->GetAngle(1), -0.3*M_PI/pitch_01);
EXPECT_EQ(joint_00->GetGlobalAxis(0), math::Vector3(1, 0, 0));
EXPECT_EQ(joint_00->GetGlobalAxis(1), math::Vector3(1, 0, 0));
gzdbg << "joint angles [" << joint_00->GetAngle(0)
<< ", " << joint_00->GetAngle(1)
<< "] axis1 [" << joint_00->GetGlobalAxis(0)
<< "] axis2 [" << joint_00->GetGlobalAxis(1)
<< "] pitch_00 [" << pitch_00
<< "] pitch_01 [" << pitch_01
<< "]\n";
}
TEST_P(JointTestScrew, ScrewJointSetWorldPose)
{
ScrewJointSetWorldPose(this->physicsEngine);
}
//////////////////////////////////////////////////
void JointTestScrew::ScrewJointForce(const std::string &_physicsEngine)
{
if (_physicsEngine == "bullet")
{
/// \TODO skipping bullet, see issue #1081
gzerr << "BulletScrewJoint::GetAngle() is one step behind (issue #1081).\n";
return;
}
// Load our screw joint test world
Load("worlds/screw_joint_test.world", true, _physicsEngine);
// Get a pointer to the world, make sure world loads
physics::WorldPtr world = physics::get_world("default");
ASSERT_TRUE(world != NULL);
// Verify physics engine type
physics::PhysicsEnginePtr physics = world->GetPhysicsEngine();
ASSERT_TRUE(physics != NULL);
EXPECT_EQ(physics->GetType(), _physicsEngine);
physics->SetGravity(math::Vector3(0, 0, 0));
// simulate 1 step
world->Step(1);
double t = world->GetSimTime().Double();
// get time step size
double dt = world->GetPhysicsEngine()->GetMaxStepSize();
EXPECT_GT(dt, 0);
gzlog << "dt : " << dt << "\n";
// verify that time moves forward
EXPECT_DOUBLE_EQ(t, dt);
gzlog << "t after one step : " << t << "\n";
// get model, joints and get links
physics::ModelPtr model_1 = world->GetModel("model_1");
physics::LinkPtr link_00 = model_1->GetLink("link_00");
physics::LinkPtr link_01 = model_1->GetLink("link_01");
physics::JointPtr joint_00 = model_1->GetJoint("joint_00");
physics::JointPtr joint_01 = model_1->GetJoint("joint_01");
double pitch_00 = joint_00->GetParam("thread_pitch", 0);
double pitch_01 = joint_01->GetParam("thread_pitch", 0);
// both initial angles should be zero
EXPECT_EQ(joint_00->GetAngle(0), 0);
EXPECT_EQ(joint_00->GetAngle(1), 0);
// set new upper limit for joint_00
joint_00->SetHighStop(0, 0.3);
bool once = false;
int count = 0;
int maxCount = 5000;
// push joint_00 till it hits new upper limit
while (count < maxCount && joint_00->GetAngle(0) < 0.3)
{
joint_00->SetForce(0, 0.1);
world->Step(1);
++count;
// check link pose
double angle_00_angular = joint_00->GetAngle(0).Radian();
double angle_00_linear = joint_00->GetAngle(1).Radian();
double angle_01_linear = joint_01->GetAngle(1).Radian();
math::Pose pose_01 = link_01->GetWorldPose();
EXPECT_EQ(link_00->GetWorldPose(),
math::Pose(-angle_00_angular / pitch_00, 0, 2, angle_00_angular, 0, 0));
if (_physicsEngine == "simbody")
{
if (!once)
{
once = true;
gzerr << "skip test: issue #857 in simbody screw joint linear angle:"
<< " joint_00 " << angle_00_linear
<< " shoudl be 0.3\n";
}
}
else
{
EXPECT_NEAR(pose_01.pos.x, angle_00_linear + angle_01_linear, 1e-8);
}
}
gzdbg << "took [" << count << "] steps.\n";
// continue pushing for 1000 steps to make sure there is no overshoot
double maxOvershootRadians = 0.01;
for (unsigned int i = 0; i < 1000; ++i)
{
joint_00->SetForce(0, 0.1);
world->Step(1);
EXPECT_LT(joint_00->GetAngle(0), 0.3 + maxOvershootRadians);
}
// lock joint at this location by setting lower limit here too
joint_00->SetLowStop(0, 0.3);
// set joint_01 upper limit to 1.0
joint_01->SetHighStop(0, 1.0);
// push joint_01 until limit is reached
once = false;
count = 0;
while (count < maxCount && joint_01->GetAngle(0) < 1.0)
{
joint_01->SetForce(0, 0.1);
world->Step(1);
++count;
// check link pose
math::Pose pose_00 = link_00->GetWorldPose();
math::Pose pose_01 = link_01->GetWorldPose();
double angle_00_angular = joint_00->GetAngle(0).Radian();
double angle_00_linear = joint_00->GetAngle(1).Radian();
double angle_01_angular = joint_01->GetAngle(0).Radian();
double angle_01_linear = joint_01->GetAngle(1).Radian();
EXPECT_EQ(pose_00, math::Pose(
-angle_00_angular / pitch_00, 0, 2, angle_00_angular, 0, 0));
if (_physicsEngine == "simbody")
{
if (!once)
{
once = true;
gzerr << "skip test: issue #857 in simbody screw joint linear angle:"
<< " joint_00 " << angle_00_linear
<< " should be 0.3. "
<< " joint_01 " << angle_01_linear
<< " is off too.\n";
}
}
else
{
EXPECT_NEAR(pose_01.pos.x, angle_00_linear + angle_01_linear, 1e-8);
}
EXPECT_NEAR(pose_01.pos.x,
-angle_00_angular / pitch_00 - angle_01_angular / pitch_01, 1e-8);
EXPECT_NEAR(pose_01.rot.GetAsEuler().x,
angle_00_angular + angle_01_angular, 1e-8);
}
gzdbg << "took [" << count << "] steps.\n";
// continue pushing for 1000 steps to make sure there is no overshoot
for (unsigned int i = 0; i < 1000; ++i)
{
joint_01->SetForce(0, 0.1);
world->Step(1);
EXPECT_LT(joint_01->GetAngle(0), 1.0 + maxOvershootRadians);
}
// push joint_01 the other way until -1 is reached
once = false;
count = 0;
while (count < maxCount && joint_01->GetAngle(0) > -1.0)
{
joint_01->SetForce(0, -0.1);
world->Step(1);
++count;
// check link pose
math::Pose pose_00 = link_00->GetWorldPose();
math::Pose pose_01 = link_01->GetWorldPose();
double angle_00_angular = joint_00->GetAngle(0).Radian();
double angle_00_linear = joint_00->GetAngle(1).Radian();
double angle_01_angular = joint_01->GetAngle(0).Radian();
double angle_01_linear = joint_01->GetAngle(1).Radian();
EXPECT_EQ(pose_00, math::Pose(
-angle_00_angular / pitch_00, 0, 2, angle_00_angular, 0, 0));
if (_physicsEngine == "simbody")
{
if (!once)
{
once = true;
gzerr << "skip test: issue #857 in simbody screw joint linear angle:"
<< " joint_00 " << angle_00_linear
<< " should be 0.3. "
<< " joint_01 " << angle_01_linear
<< " is off too.\n";
}
}
else
{
EXPECT_NEAR(pose_01.pos.x, angle_00_linear + angle_01_linear, 1e-8);
}
EXPECT_NEAR(pose_01.pos.x,
-angle_00_angular / pitch_00 - angle_01_angular / pitch_01, 1e-8);
EXPECT_NEAR(pose_01.rot.GetAsEuler().x,
angle_00_angular + angle_01_angular, 1e-8);
}
gzdbg << "took [" << count << "] steps.\n";
// continue pushing for 1000 steps to make sure there is no overshoot
joint_01->SetLowStop(0, -1.0);
for (unsigned int i = 0; i < 1000; ++i)
{
joint_01->SetForce(0, -0.1);
world->Step(1);
EXPECT_GT(joint_01->GetAngle(0), -1.0 - maxOvershootRadians);
}
}
TEST_P(JointTestScrew, ScrewJointForce)
{
ScrewJointForce(this->physicsEngine);
}
//////////////////////////////////////////////////
void JointTestScrew::ScrewJointLimitForce(const std::string &_physicsEngine)
{
if (_physicsEngine == "dart")
{
gzerr << _physicsEngine
<< " is broken for this test,"
<< " because of the pr2 gripper's closed kinematic chain,"
<< " see issues #1435 and #1933."
<< std::endl;
return;
}
// Load pr2 world
ServerFixture::Load("worlds/pr2.world", true, _physicsEngine);
// Get a pointer to the world, make sure world loads
physics::WorldPtr world = physics::get_world("default");
ASSERT_TRUE(world != NULL);
// Verify physics engine type
physics::PhysicsEnginePtr physics = world->GetPhysicsEngine();
ASSERT_TRUE(physics != NULL);
EXPECT_EQ(physics->GetType(), _physicsEngine);
// get time step size
double dt = world->GetPhysicsEngine()->GetMaxStepSize();
EXPECT_GT(dt, 0);
gzlog << "dt : " << dt << "\n";
// get model, joints and get links
physics::ModelPtr model = world->GetModel("pr2");
physics::LinkPtr link_00 = model->GetLink("torso_lift_link");
// drop from some height
model->SetWorldPose(math::Pose(0, 0, 0.5, 0, 0, 0));
// +1sec: should have hit the ground
world->Step(1000);
// +4sec: should destabilize without patch for issue #1159
world->Step(4000);
for (int n = 0; n < 1000; ++n)
{
world->Step(1);
math::Vector3 vel_angular = link_00->GetWorldLinearVel();
math::Vector3 vel_linear = link_00->GetWorldAngularVel();
EXPECT_LT(vel_angular.GetLength(), 0.1);
EXPECT_LT(vel_linear.GetLength(), 0.1);
gzlog << "va [" << vel_angular
<< "] vl [" << vel_linear
<< "]\n";
}
}
TEST_P(JointTestScrew, ScrewJointLimitForce)
{
ScrewJointLimitForce(this->physicsEngine);
}
INSTANTIATE_TEST_CASE_P(PhysicsEngines, JointTestScrew,
::testing::Combine(PHYSICS_ENGINE_VALUES,
::testing::Values("screw")));
int main(int argc, char **argv)
{
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}