ppovb5fc7/gazebo/test/integration/surface_properties.cc

265 lines
8.6 KiB
C++

/*
* Copyright (C) 2012 Open Source Robotics Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
#include "gazebo/test/ServerFixture.hh"
#include "gazebo/physics/physics.hh"
#include "gazebo/msgs/msgs.hh"
#include "gazebo/test/helper_physics_generator.hh"
const double g_physics_tol = 1e-2;
using namespace gazebo;
class SurfaceTest : public ServerFixture,
public testing::WithParamInterface<const char*>
{
public: void CollideWithoutContact(const std::string &_physicsEngine);
public: void CollideBitmask(const std::string &_physicsEngine);
};
////////////////////////////////////////////////////////////////////////
// CollideWithoutContact:
// Load the collide_without_contact test world. It drops two boxes onto
// a larger static box with a contact sensor. One of the boxes should be
// detected by the contact sensor but not experience contact forces.
////////////////////////////////////////////////////////////////////////
void SurfaceTest::CollideWithoutContact(const std::string &_physicsEngine)
{
if ("bullet" == _physicsEngine)
{
gzerr << _physicsEngine << " Does not support <collide_without_contact>"
<< " see issue #1038" << std::endl;
return;
}
// load an empty world
Load("worlds/collide_without_contact.world", true, _physicsEngine);
physics::WorldPtr world = physics::get_world("default");
ASSERT_TRUE(world != NULL);
// check the gravity vector
physics::PhysicsEnginePtr physics = world->GetPhysicsEngine();
ASSERT_TRUE(physics != NULL);
EXPECT_EQ(physics->GetType(), _physicsEngine);
math::Vector3 g = physics->GetGravity();
// Assume gravity vector points down z axis only.
EXPECT_EQ(g.x, 0);
EXPECT_EQ(g.y, 0);
EXPECT_LE(g.z, -9.8);
// get physics time step
double dt = physics->GetMaxStepSize();
EXPECT_GT(dt, 0);
// get pointers to the falling boxes.
physics::ModelPtr contactBox, collideBox;
contactBox = world->GetModel("contact_box");
collideBox = world->GetModel("collide_box");
ASSERT_TRUE(contactBox != NULL);
ASSERT_TRUE(collideBox != NULL);
// get the contact sensor
sensors::SensorPtr sensor = sensors::get_sensor("box_contact");
sensors::ContactSensorPtr contactSensor =
std::dynamic_pointer_cast<sensors::ContactSensor>(sensor);
ASSERT_TRUE(contactSensor != NULL);
// Step forward 0.2 s
double stepTime = 0.2;
unsigned int steps = floor(stepTime / dt);
world->Step(steps);
// Expect boxes to be falling
double fallVelocity = g.z * stepTime;
EXPECT_LT(contactBox->GetWorldLinearVel().z, fallVelocity*(1-g_physics_tol));
EXPECT_LT(collideBox->GetWorldLinearVel().z, fallVelocity*(1-g_physics_tol));
// Step forward another 0.2 s
world->Step(steps);
fallVelocity = g.z * 2*stepTime;
// Expect contactBox to be resting on contact sensor box
EXPECT_NEAR(contactBox->GetWorldLinearVel().z, 0.0, g_physics_tol);
// Expect collideBox to still be falling
EXPECT_LT(collideBox->GetWorldLinearVel().z, fallVelocity*(1-g_physics_tol));
{
// Step forward until we get a contacts message from the contact sensor
msgs::Contacts contacts;
while (contacts.contact_size() == 0 && --steps > 0)
{
world->Step(1);
contacts = contactSensor->Contacts();
}
// Verify that both objects are recognized by contact sensor
int i;
msgs::Contact contact;
bool collideBoxHit = false;
bool contactBoxHit = false;
for (i = 0; i < contacts.contact_size(); ++i)
{
contact = contacts.contact(i);
if (contact.collision1() == "contact_box::link::collision" ||
contact.collision2() == "contact_box::link::collision")
{
contactBoxHit = true;
}
if (contact.collision1() == "collide_box::link::collision" ||
contact.collision2() == "collide_box::link::collision")
{
collideBoxHit = true;
}
}
EXPECT_TRUE(contactBoxHit);
EXPECT_TRUE(collideBoxHit);
}
// Step forward another 0.4 s
// The collideBox should have fallen through the ground and not
// be in contact with the sensor
world->Step(steps*2);
fallVelocity = g.z * 4*stepTime;
// Expect contactBox to still be resting on contact sensor box
EXPECT_NEAR(contactBox->GetWorldLinearVel().z, 0.0, g_physics_tol);
// Expect collideBox to still be falling
EXPECT_LT(collideBox->GetWorldLinearVel().z, fallVelocity*(1-g_physics_tol));
{
// Step forward until we get a contacts message from the contact sensor
msgs::Contacts contacts;
while (contacts.contact_size() == 0 && --steps > 0)
{
world->Step(1);
contacts = contactSensor->Contacts();
}
// Verify that only contactBox is recognized by contact sensor
int i;
msgs::Contact contact;
bool collideBoxHit = false;
bool contactBoxHit = false;
for (i = 0; i < contacts.contact_size(); ++i)
{
contact = contacts.contact(i);
if (contact.collision1() == "contact_box::link::collision" ||
contact.collision2() == "contact_box::link::collision")
{
contactBoxHit = true;
}
if (contact.collision1() == "collide_box::link::collision" ||
contact.collision2() == "collide_box::link::collision")
{
collideBoxHit = true;
}
}
EXPECT_TRUE(contactBoxHit);
EXPECT_FALSE(collideBoxHit);
}
}
////////////////////////////////////////////////////////////////////////
// CollideBitmask:
// Load the collide_bitmask test world. It drops three boxes onto
// a ground plane. Each model has the following bitmask
// - ground_plane: 0xff
// - box1: 0x01
// - box2: 0x02
// - box3: 0x03
// This set of bitmasks will make box1 collide with the ground plane,
// box2 to pass through box1 and collide with the ground plane, and
// box3 will collide with both box1 and box2.
////////////////////////////////////////////////////////////////////////
void SurfaceTest::CollideBitmask(const std::string &_physicsEngine)
{
// load an empty world
Load("worlds/collide_bitmask.world", true, _physicsEngine);
physics::WorldPtr world = physics::get_world("default");
ASSERT_TRUE(world != NULL);
// check the gravity vector
physics::PhysicsEnginePtr physics = world->GetPhysicsEngine();
ASSERT_TRUE(physics != NULL);
EXPECT_EQ(physics->GetType(), _physicsEngine);
math::Vector3 g = physics->GetGravity();
// Assume gravity vector points down z axis only.
EXPECT_EQ(g.x, 0);
EXPECT_EQ(g.y, 0);
EXPECT_LE(g.z, -9.8);
// get physics time step
double dt = physics->GetMaxStepSize();
EXPECT_GT(dt, 0);
// get pointers to the falling boxes.
physics::ModelPtr box1, box2, box3, box4;
box1 = world->GetModel("box1");
box2 = world->GetModel("box2");
box3 = world->GetModel("box3");
box4 = world->GetModel("box4");
ASSERT_TRUE(box1 != NULL);
ASSERT_TRUE(box2 != NULL);
ASSERT_TRUE(box3 != NULL);
ASSERT_TRUE(box4 != NULL);
// Step forward 1.5 s
double stepTime = 1.5;
unsigned int steps = floor(stepTime / dt);
world->Step(steps);
// Expect 3 boxes to be stationary
EXPECT_NEAR(box1->GetWorldLinearVel().z, 0, 1e-3);
EXPECT_NEAR(box2->GetWorldLinearVel().z, 0, 1e-3);
EXPECT_NEAR(box3->GetWorldLinearVel().z, 0, 1e-3);
// The first and second boxes should be on the ground plane
EXPECT_NEAR(box1->GetWorldPose().pos.z, 0.5, 1e-3);
EXPECT_NEAR(box2->GetWorldPose().pos.z, 0.5, 1e-3);
// The third boxs should be ontop of the first two boxes
EXPECT_NEAR(box3->GetWorldPose().pos.z, 1.5, 1e-3);
// Expect 4th box to be falling
double fallVelocity = g.z * world->GetSimTime().Double();
EXPECT_LT(box4->GetWorldLinearVel().z, fallVelocity*(1-g_physics_tol));
Unload();
}
/////////////////////////////////////////////////
// Run the CollidWithContact test
TEST_P(SurfaceTest, CollideWithoutContact)
{
CollideWithoutContact(GetParam());
}
/////////////////////////////////////////////////
// Run the CollidBitmask test
TEST_P(SurfaceTest, CollideBitmask)
{
CollideBitmask(GetParam());
}
INSTANTIATE_TEST_CASE_P(TestODE, SurfaceTest, ::testing::Values(
"ode", "bullet"));
/////////////////////////////////////////////////
int main(int argc, char **argv)
{
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}